Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chemistry ; 29(3): e202202000, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36274220

RESUMO

Cation-tuning engineering has become a new frontier in altering the electronic structure of electrocatalysts, which has been employed to enhance their electrochemical performance. Significant efforts have been made to promote the electrochemical performance of transition metal-based materials during oxygen electrocatalysis and related energy devices such as Zn-air batteries. Herein, the advantages of cation-tuning engineering, including cation vacancies/defects and cation doping, in the modification of the electronic structure of transition metal oxide catalysts are discussed. Additionally, practical applications of the cation-tuning engineering strategy are reviewed in detail with a special emphasis on oxygen reduction reaction and oxygen evolution reaction. Lastly, challenges and future opportunities in this field are also proposed.

2.
Small ; 17(26): e2100732, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080772

RESUMO

The rational synthesis of single-layer noble metal directly anchored on support materials is an elusive target to accomplish for a long time. This paper reports well-defined single-layer Pt (Pt-SL) clusters anchored on ultrathin TiO2 nanosheets-as a new frontier in electrocatalysis. The structural evolution of Pt-SL/TiO2 via self-assembly of single Pt atoms (Pt-SA) is systematically recorded. Significantly, the Pt atoms of Pt-SL/TiO2 possess a unique electronic configuration with PtPt covalent bonds surrounded by abundant unpaired electrons. This Pt-SL/TiO2 catalyst presents enhanced electrochemical performance toward diverse electrocatalytic reactions (such as the hydrogen evolution reaction and the oxygen reduction reaction) compared with Pt-SA, multilayer Pt nanoclusters, and Pt nanoparticles, suggesting an efficient new type of catalyst that can be achieved by constructing single-layer atomic clusters on supports.

3.
Opt Lett ; 44(24): 5977-5980, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628197

RESUMO

Anti-reflection coatings are widely used throughout the field of optical technology such as in corrective eyeglasses, camera lenses, and microscope optics, to improve the transmittance and reduce the reflectance of glass and other transparent materials. To date, these coatings have suffered from relatively poor scratch resistance and high scratch visibility compared to standard glasses. This has limited their use in applications requiring high mechanical durability such as on the chemically strengthened glasses widely used in modern touch screen devices. Here extremely scratch-resistant anti-reflection coatings are fabricated using industrially scalable reactive sputtering processes. These coatings provide a combination of surface reflectance below 0.7%, low color shifts, nanoindentation hardness as high as 18 GPa, and levels of scratch resistance which dramatically exceed commercial chemically strengthened glasses. An interdisciplinary opto-mechanical design approach has enabled a significant paradigm shift in the use of high-precision optical coatings for mechanically demanding applications. As a direct outcome of the work reported in this Letter, similar coating designs have been successfully deployed on millions of consumer electronics devices with very robust field performance.

4.
Angew Chem Int Ed Engl ; 58(5): 1484-1488, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30537071

RESUMO

Room-temperature sodium-sulfur (RT-Na/S) batteries hold significant promise for large-scale application because of low cost of both sodium and sulfur. However, the dissolution of polysulfides into the electrolyte limits practical application. Now, the design and testing of a new class of sulfur hosts as transition-metal (Fe, Cu, and Ni) nanoclusters (ca. 1.2 nm) wreathed on hollow carbon nanospheres (S@M-HC) for RT-Na/S batteries is reported. A chemical couple between the metal nanoclusters and sulfur is hypothesized to assist in immobilization of sulfur and to enhance conductivity and activity. S@Fe-HC exhibited an unprecedented reversible capacity of 394 mAh g-1 despite 1000 cycles at 100 mA g-1 , together with a rate capability of 220 mAh g-1 at a high current density of 5 A g-1 . DFT calculations underscore that these metal nanoclusters serve as electrocatalysts to rapidly reduce Na2 S4 into short-chain sulfides and thereby obviate the shuttle effect.

5.
Angew Chem Int Ed Engl ; 58(34): 11868-11873, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31173428

RESUMO

Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π-electron-assisted strategy to anchor single-atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four-fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water-splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm-2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.

6.
Angew Chem Int Ed Engl ; 56(44): 13790-13794, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28922528

RESUMO

Architectural control of porous solids, such as porous carbon cages, has received considerable attention for versatile applications because of their ability to interact with liquids and gases not only at the surface, but throughout the bulk. Herein we report a scalable, facile spray-pyrolysis route to synthesize holey carbon microcages with mosquito-net-like shells. Using the surfaces of water droplets as the growth templates, styrene-butadiene rubber macromolecules are controllably cross-linked, and size-controllable holes on the carbon shells are generated. The as-formed carbon microcages encapsulating Si nanoparticles exhibit enhanced lithium-storage performances for lithium-ion batteries. The scalable, inexpensive synthesis of porous carbon microcages with controlled porosity and the demonstration of outstanding electrochemical properties are expected to extend their uses in energy storage, molecular sieves, catalysis, adsorbents, water/air filters, and biomedical engineering.

7.
Phys Chem Chem Phys ; 16(27): 13662-71, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24668231

RESUMO

Cubic PtRh alloys supported on graphene (PtxRhy/GN) with different atomic ratio of Pt and Rh were directly synthesized for the first time using the modified polyol method with Br(-) for the shape-directing agents. The process didn't use surface-capping agents such as PVP that easily occupy the active sites of electrocatalysts and are difficult to remove. Graphene is the key factor for cubic shape besides Br(-) and keeping catalysts high-dispersed. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of these electrocatalysts. The results showed that they were composed of homogeneous cubic PtRh alloys. Traditional electrochemical methods, such as cyclic voltammetry and chronoamperometry, were used to investigate the electrocatalytic properties of PtxRhy/GN towards ethanol electrooxidation. It can be seen that PtxRhy/GN with all atomic ratios exhibited high catalytic activity, and the most active one has a composition with Pt : Rh = 9 : 1 atomic ratio. Electrochemical in situ FTIR spectroscopy was used to evaluate the cleavage of C-C bond in ethanol at room temperature in acidic solutions, the results illustrated that Rh in an alloy can promote the split of C-C bond in ethanol, and the alloy catalyst with atomic ratio Pt : Rh = 1 : 1 showed obviously better performance for the C-C bond breaking in ethanol and higher selectivity for the enhanced activity of ethanol complete oxidation to CO2 than alloys with other ratios of Pt and Rh. The investigation indicates that high activity of PtxRhy/GN electrocatalyst towards ethanol oxidation is due to the specific shape of alloys and the synergistic effect of two metal elements as well as graphene support.

8.
ACS Nano ; 18(1): 551-559, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112383

RESUMO

The exorbitant cost of Pt-based electrocatalysts and the poor durability of non-noble metal electrocatalysts for proton exchange membrane fuel cells limited their practical application. Here, FeN4 active sites electronically coupled with PtFe alloys (PtFe-FeNC) were successfully prepared by a vapor deposition strategy as an ultralow Pt loading (0.64 wt %) hybrid electrocatalyst. The FeN4 sites on the FeNC matrix are able to effectively anchor the PtFe alloys, thus inhibiting their aggregation during long-life cycling. These PtFe alloys, in turn, can efficiently restrain the leaching of the FeN4 sites from the FeNC matrix. Thus, the PtFe-FeNC demonstrated an improved Pt mass activity of 2.33 A mgPt-1 at 0.9 V toward oxygen reduction reaction, which is 12.9 times higher than that of commercial Pt/C (0.18 A mgPt-1). It demonstrated great stability, with the Pt mass activity decreasing by only 9.4% after 70,000 cycles. Importantly, the fuel cell with an ultralow Pt loading in the cathode (0.012 mgPt cm-2) displays a high Pt mass activity of 1.75 A mgPt-1 at 0.9 ViR-free, which is significantly better than commercial MEA (0.25 A mgPt-1). Interestingly, PtFe-FeNC catalysts possess enhanced durability, exhibiting a 12.5% decrease in peak power density compared to the 51.7% decrease of FeNC.

9.
Adv Sci (Weinh) ; : e2400364, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251278

RESUMO

Sodium-ion batteries (SIBs) and sodium-ion capacitors (SICs) are promising candidates for cost-effective and large-scale energy storage devices. However, sluggish kinetics and low capacity of traditional anode materials inhibit their practical applications. Herein, a novel design featuring a layer-expanded MoS2 is presented that dual-reinforced by hollow N, P-codoped carbon as the inner supporter and surface groups abundant MXene as the outer supporter, resulting in a cross-linked robust composite (NPC@MoS2 /MXene). The hollow N, P-codoped carbon effectively prevents agglomeration of MoS2 layers and facilitates shorter distances between the electrolyte and electrode. The conductive MXene outer surface envelops the NPC@MoS2 units inside, creating interconnected channels that enable efficient charge transfer and diffusion, ensuring rapid kinetics and enhanced electrode utilization. It exhibits a high reversible capacity of 453 mAh g-1 , remarkable cycling stability, and exceptional rate capability with 54% capacity retention when the current density increases from 100 to 5000 mA g-1 toward SIBs. The kinetic mechanism studies reveal that the NPC@MoS2 /MXene demonstrates a pseudocapacitance dominated hybrid sodiation/desodiation process. Coupled with active carbon (AC), the NPC@MoS2 /MXene//AC SICs achieve both high energy density of 136 Wh kg-1 at 254 W kg-1 and high-power density of 5940 W kg-1 at 27 Wh g-1 , maintaining excellent stability.

10.
Nat Commun ; 15(1): 6229, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043680

RESUMO

In pursuing cheap and effective oxygen reduction catalysts, the Fe/N/C system emerges as a promising candidate. Nevertheless, the structural transformations of starting materials into Fe- and N-doped carbon catalysts remains poorly characterized under pyrolytic conditions. Here, we explore the evolution of Fe species and track the formation of Fe-N4 site development by employing diverse in-situ diagnostic techniques. In-situ heating microscopy reveals the initial formation of FeOx nanoparticles and subsequent internal migration within the carbon matrix, which stops once FeOx is fully reduced. The migration and decomposition of nanoparticles then leads to carbon layer reconstruction. Experimental and theoretical analysis reveals size-dependent behavior of FeOx where nanoparticles below 7 nm readily release Fe atoms to form Fe-N4 while nanoparticles with sizes >10 nm tend to coalesce and impede Fe-N4 site formation. The work visualizes the pyrolysis process of Fe/N/C materials, providing theoretical guidance for the rational design of catalysts.

11.
Chem Sci ; 15(3): 1123-1131, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239697

RESUMO

Exploring economical, efficient, and stable electrocatalysts for the seawater hydrogen evolution reaction (HER) is highly desirable but is challenging. In this study, a Mo cation doped Ni0.85Se/MoSe2 heterostructural electrocatalyst, Mox-Ni0.85Se/MoSe2, was successfully prepared by simultaneously doping Mo cations into the Ni0.85Se lattice (Mox-Ni0.85Se) and growing atomic MoSe2 nanosheets epitaxially at the edge of the Mox-Ni0.85Se. Such an Mox-Ni0.85Se/MoSe2 catalyst requires only 110 mV to drive current densities of 10 mA cm-2 in alkaline simulated seawater, and shows almost no obvious degradation after 80 h at 20 mA cm-2. The experimental results, combined with the density functional theory calculations, reveal that the Mox-Ni0.85Se/MoSe2 heterostructure will generate an interfacial electric field to facilitate the electron transfer, thus reducing the water dissociation barrier. Significantly, the heteroatomic Mo-doping in the Ni0.85Se can regulate the local electronic configuration of the Mox-Ni0.85Se/MoSe2 heterostructure catalyst by altering the coordination environment and orbital hybridization, thereby weakening the bonding interaction between the Cl and Se/Mo. This synergistic effect for the Mox-Ni0.85Se/MoSe2 heterostructure will simultaneously enhance the catalytic activity and durability, without poisoning or corrosion of the chloride ions.

12.
Chem Commun (Camb) ; 59(81): 12148-12151, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740332

RESUMO

The electrochemical reduction of oxygen via the 2e pathway is an environmentally friendly approach to the electrosynthesis of H2O2. Nevertheless, its sluggish kinetics and limited selectivity hinder its practical application. Herein, single Fe atoms anchored on graphene oxide (SA Fe/GO) with Fe-O4-C sites are developed as an efficient electrocatalyst for the electro-synthesis of H2O2. These Fe-O4-C site active centres could efficiently enhance the activity and selectivity towards 2e electrochemical oxygen reduction in an alkaline environment. The newly-developed SA Fe/GO electrocatalyst demonstrates exceptional electrochemical performance, exhibiting impressive activity with an onset potential of 0.90 and H2O2 production of 0.60 mg cm-2 h-1 at 0.4 V. Remarkably, it achieves a remarkable H2O2 selectivity of over 95.5%.

13.
Adv Mater ; 35(1): e2206828, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36308045

RESUMO

Room-temperature sodium-sulfur (RT-Na/S) batteries possess high potential for grid-scale stationary energy storage due to their low cost and high energy density. However, the issues arising from the low S mass loading and poor cycling stability caused by the shuttle effect of polysulfides seriously limit their operating capacity and cycling capability. Herein, sulfur-doped graphene frameworks supporting atomically dispersed 2H-MoS2 and Mo1 (S@MoS2 -Mo1 /SGF) with a record high sulfur mass loading of 80.9 wt.% are synthesized as an integrated dual active sites cathode for RT-Na/S batteries. Impressively, the as-prepared S@MoS2 -Mo1 /SGF display unprecedented cyclic stability with a high initial capacity of 1017 mAh g-1 at 0.1 A g-1 and a low-capacity fading rate of 0.05% per cycle over 1000 cycles. Experimental and computational results including X-ray absorption spectroscopy, in situ synchrotron X-ray diffraction and density-functional theory calculations reveal that atomic-level Mo in this integrated dual-active-site forms a delocalized electron system, which could improve the reactivity of sulfur and reaction reversibility of S and Na, greatly alleviating the shuttle effect. The findings not only provide an effective strategy to fabricate high-performance dual-site cathodes, but also deepen the understanding of their enhancement mechanisms at an atomic level.

14.
Exploration (Beijing) ; 2(5): 20210182, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37325500

RESUMO

Flexibility has become a certain trend in the development of secondary batteries to meet the requirements of wide portability and applicability. On account of their intrinsic high energy density, flexible alkali metal-chalcogen batteries are attracting increasing interest. Although great advances have been made in promoting the electrochemical performance of metal-S or metal-Se batteries, explorations on flexible chalcogen-based batteries are still limited. Extensive and rational use of soft materials for electrodes is the main bottleneck. The re-emergence of safe liquid metals (LMs), which provide an ideal combination of metallic and fluidic properties at room temperature, offers a fascinating paradigm for constructing flexible chalcogen batteries. They may provide dendrite-free anodes and restrain the dissolution of polysulfides and polyselenides for cathodes. From this perspective, we elaborate on the appealing features of LMs for the construction of flexible metal-chalcogen batteries. Recent advances on LM-based battery are discussed, covering novel liquid alkali metals as anodes and LM-sulfur hybrids as cathodes, with the focus placed on durable high-energy-density output and self-healing flexible capability. At last, perspectives are proposed on the future development of LM-based chalcogen batteries, and the viable strategies to meet the current challenges that are obstructing more practical flexible chalcogen batteries.

15.
Commun Chem ; 5(1): 43, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36697643

RESUMO

Electrochemical oxygen reduction provides an eco-friendly synthetic route to hydrogen peroxide (H2O2), a widely used green chemical. However, the kinetically sluggish and low-selectivity oxygen reduction reaction (ORR) is a key challenge to electrochemical production of H2O2 for practical applications. Herein, we demonstrate that single cobalt atoms anchored on oxygen functionalized graphene oxide form Co-O-C@GO active centres (abbreviated as Co1@GO for simplicity) that act as an efficient and durable electrocatalyst for H2O2 production. This Co1@GO electrocatalyst shows excellent electrochemical performance in O2-saturated 0.1 M KOH, exhibiting high reactivity with an onset potential of 0.91 V and H2O2 production of 1.0 mg cm-2 h-1 while affording high selectivity of 81.4% for H2O2. Our combined experimental observations and theoretical calculations indicate that the high reactivity and selectivity of Co1@GO for H2O2 electrogeneration arises from a synergistic effect between the O-bonded single Co atoms and adjacent oxygen functional groups (C-O bonds) of the GO present in the Co-O-C active centres.

16.
Front Immunol ; 13: 802690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222381

RESUMO

Background: Intravenous immunoglobulin (IVIG) showed its therapeutic efficacy on Kawasaki disease (KD). However, the mechanisms by which it reduces systemic inflammation are not completely understood. Dendritic cells (DCs) and T cells play critical roles in the pathogenic processes of immune disorders. Assessing the quantity of DC subsets and T cells and identifying functional molecules present on these cells, which provide information about KD, in the peripheral blood may provide new insights into the mechanisms of immunoglobulin therapy. Methods: In total, 54 patients with KD and 27 age-matched healthy controls (HCs) were included in this study. The number, percentage, and phenotype of DC subsets and CD4+ T cells in peripheral blood were analyzed through flow cytometry. Results: Patients with KD exhibited fewer peripheral DC subsets and CD4+ T cells than HCs. Human leucocyte antigen-DR (HLA-DR) expression was reduced on CD1c+ myeloid DCs (CD1c+ mDCs), whereas that on plasmacytoid DCs (pDCs) did not change significantly. Both pDCs and CD1c+ mDCs displayed significantly reduced expression of co-stimulatory molecules, including CD40, CD86. pDCs and CD1c+ mDCs presented an immature or tolerant phenotype in acute stages of KD. Number of circulating pDC and CD1c+ mDC significantly inversely correlated with plasma interleukin-6 (IL-6) levels in KD patients pre-IVIG treatment. No significant differences were found concerning the DC subsets and CD4+ T cells in patients with KD with and without coronary artery lesions. Importantly, these altered quantity and phenotypes on DC subsets and CD4+ T cells were restored to a great extent post-IVIG treatment. T helper (Th) subsets including Th1 and Th2 among CD4+ T cells did not show alteration pre- and post-IVIG treatment, although the Th1-related cytokine IFN-γ level in plasma increased dramatically in patients with KD pre-IVIG treatment. Conclusions: pDCs and CD1c+ mDCs presented an immature or tolerant phenotype in acute stages of KD, IVIG treatment restored the quantity and functional molecules of DCs and CD4+ T cells to distinct levels in vivo, indicating the involvement of DCs and CD4+ T cells in the inflammation in KD. The findings provide insights into the immunomodulatory actions of IVIG in KD.


Assuntos
Imunoglobulinas Intravenosas , Síndrome de Linfonodos Mucocutâneos , Linfócitos T CD4-Positivos , Células Dendríticas , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Inflamação/metabolismo , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/metabolismo , Fenótipo , Linfócitos T/metabolismo
17.
Adv Mater ; 34(30): e2202745, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657036

RESUMO

The key to breaking through the capacity limitation imposed by intercalation chemistry lies in the ability to harness more active sites that can reversibly accommodate more ions (e.g., Li+ ) and electrons within a finite space. However, excessive Li-ion insertion into the Li layer of layered cathodes results in fast performance decay due to the huge lattice change and irreversible phase transformation. In this study, an ultrahigh reversible capacity is demonstrated by a layered oxide cathode purely based on manganese. Through a wealth of characterizations, it is clarified that the presence of low-content Li2 MnO3 domains not only reduces the amount of irreversible O loss; but also regulates Mn migration in LiMnO2 domains, enabling elastic lattice with high reversibility for tetrahedral sites Li-ion storage in Li layers. This work utilizes bulk cation disorder to create stable Li-ion-storage tetrahedral sites and an elastic lattice for layered materials, with a reversible capacity of 600 mA h g-1 , demonstrated in th range 0.6-4.9 V versus Li/Li+ at 10 mA g-1 . Admittedly, discharging to 0.6 V might be too low for practical use, but this exploration is still of great importance as it conceptually demonstrates the limit of Li-ions insertion into layered oxide materials.

18.
Nanomicro Lett ; 13(1): 106, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-34138340

RESUMO

The electrochemical nitrogen reduction reaction (NRR) to directly produce NH3 from N2 and H2O under ambient conditions has attracted significant attention due to its ecofriendliness. Nevertheless, the electrochemical NRR presents several practical challenges, including sluggish reaction and low selectivity. Here, bi-atom catalysts have been proposed to achieve excellent activity and high selectivity toward the electrochemical NRR by Ma and his co-workers. It could accelerate the kinetics of N2-to-NH3 electrochemical conversion and possess better electrochemical NRR selectivity. This work sheds light on the introduction of bi-atom catalysts to enhance the performance of the electrochemical NRR.

19.
Adv Mater ; 32(12): e1907557, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32058658

RESUMO

Confinement of polysulfides in sulfur cathodes is pivotal for eliminating the "shuttle effect" in metal-sulfur batteries, which represent promising solutions for large-scale and sustainable energy storage. However, mechanistic exploration and in-depth understanding for the confinement of polysulfides remain limited. Consequently, it is a critical challenge to achieve highly stable metal-sulfur batteries. Here, based on a 2D metal-organic framework (2D MOF), a new mechanism to realize effective confinement of polysulfides is proposed. A combination of in situ synchrotron X-ray diffraction, electrochemical measurements, and theoretical computations reveal that the dynamic electron states of the Ni centers in the 2D MOF enable the interaction between polysulfides and the MOF in the discharge/charge process to be tuned, resulting in both strong adsorption and fast conversion kinetics of polysulfides. The resultant room-temperature sodium-sulfur batteries are amongst the most stable reported so far, thus demonstrating that the new mechanism opens a promising avenue for the development of high-performance metal-sulfur batteries.

20.
ACS Appl Mater Interfaces ; 10(24): 20422-20428, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29762005

RESUMO

We report the use of passion fruit-like double-carbon-shell porous carbon microspheres (PCMs) as the sulfur substrate in room-temperature sodium-sulfur batteries. The PCMs are covered by microsized carbon shells on the outside and consisted of carbon nanobeads with hollow structure inside, leading to a unique multidimensional scaling double-carbon-shell structure with high electronic conductivity and strengthened mechanical properties. Sulfur is filled inside the PCMs (PCMs-S) and protected by the unique double-carbon-shell, which means the subsequently generated intermediate sodium polysulfide species cannot be exposed to the electrolyte directly and well protected inside. In addition, the inner interconnected porous structure provides room for the volume expansion of sulfur during discharge processes. It is found that the PCMs-S with a 63.6% initial Coulombic efficiency contributed to the 290 mA h g-1 at the current density of 100 mA g-1 after 350 cycles. More importantly, PCMs-S exhibited good rate performance with a capacity of 113 and 56 mA h g-1 at the current densities of 1000 and 2000 mA g-1, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA