Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lung ; 200(4): 463-472, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717488

RESUMO

PURPOSE: Alpha-melanocyte stimulating hormone (α-MSH) is known to have anti-inflammatory effects. However, the anti-inflammatory properties of α-MSH on normal bronchial epithelial cells are largely unknown, especially in the context of in vitro sarcoidosis models. METHODS: We evaluated the anti-inflammatory effects of α-MSH on two different in vitro sarcoidosis models (lung-on-membrane model; LOMM and three-dimensional biochip pulmonary sarcoidosis model; 3D-BSGM) generated from NBECs and an in vivo sarcoidosis mouse model. RESULTS: Treatment with α-MSH decreased inflammatory cytokine levels and downregulated type I interferon pathway genes and related proteins in LOMM and 3D-BSGM models. Treatment with α-MSH also significantly decreased macrophages and cytotoxic T-cells counts in a sarcoidosis mice model. CONCLUSION: Our results confirm the direct role of type I IFNs in the pathogenesis of sarcoid lung granulomas and highlight α-MSH as a potential novel therapeutic agent for treating pulmonary sarcoidosis.


Assuntos
Sarcoidose Pulmonar , Sarcoidose , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Granuloma/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Sarcoidose/tratamento farmacológico , Sarcoidose Pulmonar/tratamento farmacológico , alfa-MSH/metabolismo , alfa-MSH/farmacologia , alfa-MSH/uso terapêutico
2.
Environ Sci Technol ; 54(18): 11048-11057, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32808764

RESUMO

Nitrous acid (HONO) is a major precursor of tropospheric hydroxyl radical (OH) that accelerates the formation of secondary pollutants. The HONO sources, however, are not well understood, especially in polluted areas. Based on a comprehensive winter field campaign conducted at a rural site of the North China Plain, a box model (MCM v3.3.1) was used to simulate the daytime HONO budget and nitrate formation. We found that HONO photolysis acted as the dominant source for primary OH with a contribution of more than 92%. The observed daytime HONO could be well explained by the known sources in the model. The heterogeneous conversion of NO2 on ground surfaces and the homogeneous reaction of NO with OH were the dominant HONO sources with contributions of more than 36 and 34% to daytime HONO, respectively. The contribution from the photolysis of particle nitrate and the reactions of NO2 on aerosol surfaces was found to be negligible in clean periods (2%) and slightly higher during polluted periods (8%). The relatively high OH levels due to fast HONO photolysis at the rural site remarkably accelerated gas-phase reactions, resulting in the fast formation of nitrate as well as other secondary pollutants in the daytime.


Assuntos
Nitratos , Ácido Nitroso , Aerossóis , China , Radical Hidroxila , Ácido Nitroso/análise
3.
J Environ Sci (China) ; 95: 256-265, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32653188

RESUMO

Atmospheric carbonyls were measured at a typical rural area of the North China Plain (NCP) from November 13 to December 24, 2017 to investigate the pollution characteristics, sources and environmental implications. Fifteen carbonyls were detected, and formaldehyde, acetaldehyde and acetone accounted for about 81% at most. The concentration of the total carbonyls in heavily polluted days was twice more than that in clean days. In contrast to other carbonyls, m-tolualdehyde exhibited relatively high concentrations in the clean days in comparison with the polluted days. The ratios of three principal carbonyls to CO showed similar daily variations at different pollution levels with significant daytime peaks. Multiple linear regression analysis revealed that the contributions of background, primary and secondary sources to three principal carbonyls showed similar variation trends from the clean level to the heavily polluted level. The OH formation rate of formaldehyde showed a similar variation trend to its photodegradation rate, reaching the peak value at noon, which is important to maintain relatively high OH levels to initiate the oxidation of various gas-phase pollutants for secondary pollutant formation at the rural site. OH radical consumption rate and ozone formation potential (OFP) calculations showed that formaldehyde and acetaldehyde were the dominant oxidative species among measured carbonyls. As for OH radical consumption, n-butyraldehyde and m-tolualdehyde were important contributors, while for ozone formation potential, n-butyraldehyde and propionaldehyde made significant contributions. In addition, the contribution of carbonyl compounds to secondary organic aerosol (SOA) formation was also important and needs further investigation.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , China , Monitoramento Ambiental , Estações do Ano
4.
Arterioscler Thromb Vasc Biol ; 38(1): 64-75, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025707

RESUMO

OBJECTIVE: Disturbed flow (DF) is well-known to induce endothelial dysfunction and synergistically with plasma dyslipidemia facilitate plaque formation. Little is known, however, about the synergistic impact of DF and dyslipidemia on endothelial biomechanics. Our goal was to determine the impact of DF on endothelial stiffness and evaluate the role of dyslipidemia/oxLDL (oxidized low-density lipoprotein) in this process. APPROACH AND RESULTS: Endothelial elastic modulus of intact mouse aortas ex vivo and of human aortic endothelial cells exposed to laminar flow or DF was measured using atomic force microscopy. Endothelial monolayer of the aortic arch is found to be significantly stiffer than the descending aorta (4.2+1.1 versus 2.5+0.2 kPa for aortic arch versus descending aorta) in mice maintained on low-fat diet. This effect is significantly exacerbated by short-term high-fat diet (8.7+2.5 versus 4.5+1.2 kPa for aortic arch versus descending aorta). Exposure of human aortic endothelial cells to DF in vitro resulted in 50% increase in oxLDL uptake and significant endothelial stiffening in the presence but not in the absence of oxLDL. DF also increased the expression of oxLDL receptor CD36 (cluster of differentiation 36), whereas downregulation of CD36 abrogated DF-induced endothelial oxLDL uptake and stiffening. Furthermore, genetic deficiency of CD36 abrogated endothelial stiffening in the aortic arch in vivo in mice fed either low-fat diet or high-fat diet. We also show that the loss of endothelial stiffening in CD36 knockout aortas is not mediated by the loss of CD36 in circulating cells. CONCLUSIONS: DF facilitates endothelial CD36-dependent uptake of oxidized lipids resulting in local increase of endothelial stiffness in proatherogenic areas of the aorta.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Antígenos CD36/metabolismo , Dislipidemias/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Rigidez Vascular , Animais , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Transporte Biológico , Antígenos CD36/deficiência , Antígenos CD36/genética , Células Cultivadas , Modelos Animais de Doenças , Dislipidemias/patologia , Dislipidemias/fisiopatologia , Módulo de Elasticidade , Células Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Camundongos Knockout , Fluxo Sanguíneo Regional , Transdução de Sinais , Regulação para Cima
5.
Lung ; 197(5): 541-549, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392398

RESUMO

PURPOSE: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that a GHRH receptor (GHRH-R) antagonist, MIA-602, would inhibit bleomycin-induced lung inflammation and/or fibrosis in C57Bl/6J mice. METHODS: We tested whether MIA-602 (5 µg or vehicle given subcutaneously [SC] on days 1-21) would decrease lung inflammation (at day 14) and/or fibrosis (at day 28) in mice treated with intraperitoneal (IP) bleomycin (0.8 units on days 1, 3, 7, 10, 14, and 21). Bleomycin resulted in inflammation and fibrosis around airways and vessels evident histologically at days 14 and 28. RESULTS: Inflammation (histopathologic scores assessed blindly) was visibly less evident in mice treated with MIA-602 for 14 days. After 28 days, lung hydroxyproline (HP) content increased significantly in mice treated with vehicle; in contrast, lung HP did not increase significantly compared to naïve controls in mice treated with GHRH-R antagonist. GHRH-R antagonist increased basal and maximal oxygen consumption of cultured lung fibroblasts. Multiple genes related to chemotaxis, IL-1, chemokines, regulation of inflammation, and extracellular signal-regulated kinases (ERK) were upregulated in lungs of mice treated with bleomycin and MIA-602. MIA-602 also prominently suppressed multiple genes related to the cellular immune response including those for T-cell differentiation, receptor signaling, activation, and cytokine production. CONCLUSIONS: MIA-602 reduced lung inflammation and fibrosis due to bleomycin. Multiple genes related to immune response and T-cell functions were downregulated, supporting the view that MIA-602 can modulate the cellular immune response to bleomycin lung injury.


Assuntos
Bleomicina , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Antagonistas de Hormônios/farmacologia , Pulmão/efeitos dos fármacos , Pneumonia/prevenção & controle , Fibrose Pulmonar/prevenção & controle , Sermorelina/análogos & derivados , Animais , Células Cultivadas , Citoproteção , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hidroxiprolina/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Sermorelina/farmacologia , Transdução de Sinais
6.
Proteins ; 86(2): 177-191, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29139201

RESUMO

The eukaryotic eRF1 translation termination factor plays an important role in recognizing stop codons and initiating the end to translation. However, which exact complexes contain eRF1 and at what abundance is not clear. We have used analytical ultracentrifugation with fluorescent detection system to identify the protein complexome of eRF1 in the yeast Saccharomyces cerevisiae. In addition to eRF1 presence in translating polysomes, we found that eRF1 associated with five other macromolecular complexes: 77S, 57S, 39S, 28S, and 20S in size. Generally equal abundances of each of these complexes were found. The 77S complex primarily contained the free 80S ribosome consistent with in vitro studies and did not appear to contain significant levels of the monosomal translating complex that co-migrates with the free 80S ribosome. The 57S and 39S complexes represented, respectively, free 60S and 40S ribosomal subunits bound to eRF1, associations not previously reported. The novel 28S and 20S complexes (containing minimal masses of 830 KDa and 500 KDa, respectively) lacked significant RNA components and appeared to be oligomeric, as eRF1 has a mass of 49 KDa. The majority of polysomal complexes containing eRF1 were both substantially deadenylated and lacking in closed-loop factors eIF4E and eIF4G. The thirteen percent of such translating polysomes that contained poly(A) tails had equivalent levels of eIF4E and eIF4G, suggesting these complexes were in a closed-loop structure. The identification of eRF1 in these unique and previously unrecognized complexes suggests a variety of new roles for eRF1 in the regulation of cellular processes.


Assuntos
Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Iniciação 4E em Eucariotos/análise , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/análise , Fator de Iniciação Eucariótico 4G/metabolismo , Peso Molecular , Fatores de Terminação de Peptídeos/análise , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análise , Ultracentrifugação/métodos
7.
Am J Physiol Cell Physiol ; 313(3): C340-C351, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701359

RESUMO

Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu2+-oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu2+-oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu2+-oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27kip1). Both Cu2+-oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu2+- and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis.


Assuntos
Colesterol/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Endoteliais/fisiologia , Lipoproteínas LDL/metabolismo , Proteína Oncogênica v-akt/metabolismo , Quinases Associadas a rho/metabolismo , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais/citologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Transdução de Sinais/fisiologia
8.
J Lipid Res ; 57(5): 791-808, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26989083

RESUMO

Endothelial biomechanics is emerging as a key factor in endothelial function. Here, we address the mechanisms of endothelial stiffening induced by oxidized LDL (oxLDL) and investigate the role of oxLDL in lumen formation. We show that oxLDL-induced endothelial stiffening is mediated by CD36-dependent activation of RhoA and its downstream target, Rho kinase (ROCK), via inhibition of myosin light-chain phosphatase (MLCP) and myosin light-chain (MLC)2 phosphorylation. The LC-MS/MS analysis identifies 7-ketocholesterol (7KC) as the major oxysterol in oxLDL. Similarly to oxLDL, 7KC induces RhoA activation, MLCP inhibition, and MLC2 phosphorylation resulting in endothelial stiffening. OxLDL also facilitates formation of endothelial branching networks in 3D collagen gels in vitro and induces increased formation of functional blood vessels in a Matrigel plug assay in vivo. Both effects are RhoA and ROCK dependent. An increase in lumen formation was also observed in response to pre-exposing the cells to 7KC, an oxysterol that induces endothelial stiffening, but not to 5α,6α epoxide that does not affect endothelial stiffness. Importantly, loading cells with cholesterol prevented oxLDL-induced RhoA activation and the downstream signaling cascade, and reversed oxLDL-induced lumen formation. In summary, we show that oxLDL-induced endothelial stiffening is mediated by the CD36/RhoA/ROCK/MLCP/MLC2 pathway and is associated with increased endothelial angiogenic activity.


Assuntos
Células Endoteliais/patologia , Lipoproteínas LDL/fisiologia , Neovascularização Patológica/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Miosinas Cardíacas/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Camundongos Nus , Camundongos SCID , Cadeias Leves de Miosina/metabolismo , Transdução de Sinais , Rigidez Vascular , Quinases Associadas a rho/metabolismo
10.
Mol Genet Genomics ; 288(9): 401-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793387

RESUMO

The poly(A)-binding protein PAB1 from the yeast Saccharomyces cerevisiae plays an important role in controlling mRNA deadenylation rates. Deletion of either its RRM1 or proline-rich domain (P domain) severely restricts deadenylation and slows mRNA degradation. Because these large deletions could be having unknown effects on the structure of PAB1, different strategies were used to determine the importance of the RRM1 and P domains to deadenylation. Since the P domain is quite variable in size and sequence among eukaryotes, P domains from two human PABPCs and from Xenopus were substituted for that of PAB1. The resultant PAB1 hybrid proteins, however, displayed limited or no difference in mRNA deadenylation as compared with PAB1. In contrast to the P domain, the RRM1 domain is highly conserved across species, and a systematic mutagenesis of the RRM1 domain was undertaken to identify its functional regions. Several mutations along the RNA-binding surface of RRM1 inhibited deadenylation, whereas one set of mutations on its exterior non-RNA binding surface shifted deadenylation from a slow distributive process to a rapid processive deadenylation. These results suggest that the RRM1 domain is the more critical region of PAB1 for controlling deadenylation and consists of at least two distinguishable functional regions.


Assuntos
Proteínas de Ligação a Poli(A)/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Sítios de Ligação , Humanos , Proteínas de Ligação a Poli(A)/genética , Estrutura Terciária de Proteína , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
11.
Mol Genet Genomics ; 287(9): 711-730, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22836166

RESUMO

Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Ligação a Poli(A)/química , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Ligação Proteica
12.
Peptides ; 150: 170716, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34952135

RESUMO

The syntheses and biological evaluation of GHRH antagonists of AVR series with high anticancer and anti-inflammatory activities are described. Compared to our previously reported GHRH antagonist 602 of MIAMI series, AVR analogs contain additional modifications at positions 0, 6, 8, 10, 11, 12, 20, 21, 29 and 30, which induce greater antitumor activities. Five of nineteen tested AVR analogs presented binding affinities to the membrane GHRH receptors on human pituitary, 2-4-fold better than MIA-602. The antineoplastic properties of these analogs were evaluated in vitro using proliferation assays and in vivo in nude mice xenografted with various human cancer cell lines including lung (NSCLC-ADC HCC827 and NSCLC H460), gastric (NCI-N87), pancreatic (PANC-1 and CFPAC-1), colorectal (HT-29), breast (MX-1), glioblastoma (U87), ovarian (SK-OV-3 and OVCAR-3) and prostatic (PC3) cancers. In vitro AVR analogs showed inhibition of cell viability equal to or greater than MIA-602. After subcutaneous administration at 5 µg/day doses, some AVR antagonists demonstrated better inhibition of tumor growth in nude mice bearing various human cancers, with analog AVR-353 inducing stronger suppression than MIA-602 in lung, gastric, pancreatic and colorectal cancers and AVR-352 in ovarian cancers and glioblastoma. Both antagonists induced greater inhibition of GH release than MIA-602 in vitro in cultured rat pituitary cells and in vivo in rats. AVR-352 also demonstrated stronger anti-inflammatory effects in lung granulomas from mice with lung inflammation. Our studies demonstrate the merit of further investigation of AVR GHRH antagonists and support their potential use for clinical therapy of human cancers and other diseases.


Assuntos
Glioblastoma , Neoplasias Pulmonares , Neoplasias Ovarianas , Animais , Anti-Inflamatórios/farmacologia , Apoptose , Linhagem Celular Tumoral , Feminino , Hormônio do Crescimento , Hormônio Liberador de Hormônio do Crescimento , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ratos , Sermorelina/metabolismo , Sermorelina/farmacologia
13.
PLoS One ; 16(2): e0245805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539409

RESUMO

Sarcoidosis is a multi-system disorder of granulomatous inflammation which most commonly affects the lungs. Its etiology and pathogenesis are not well defined in part due to the lack of reliable modeling. Here, we present the development of an in vitro three-dimensional lung-on-chip biochip designed to mimic granuloma formation. A lung on chip fluidic macrodevice was developed and added to our previously developed a lung-on-membrane model (LOMM). Granulomas were cultured from blood samples of patients with sarcoidosis and then inserted in the air-lung-interface of the microchip to create a three-dimensional biochip pulmonary sarcoidosis model (3D BSGM). Cytokines were measured after 48 hours. ELISA testing was performed to measure cytokine response difference between LOMM with 3D BSGM. There were statistically significant differences in IL-1ß (P = 0.001953), IL-6 (P = 0.001953), GM-CSF (P = 0.001953), and INF-γ expressions (P = 0.09375) between two groups. The current model represents the first 3D biochip sarcoidosis model created by adding a microfluidics system to a dual-chambered lung on membrane model and introducing developed sarcoid-granuloma to its air-lung-interface.


Assuntos
Biomimética/instrumentação , Dispositivos Lab-On-A-Chip , Sarcoidose Pulmonar/patologia , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo
14.
J Appl Physiol (1985) ; 130(4): 1122-1132, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539264

RESUMO

Olfactory receptor (Olfr) 78 is expressed in the carotid bodies (CB) and participates in CB responses to acute hypoxia. Olfr78 is also expressed in the kidney, which is a major site of erythropoietin (Epo) production by hypoxia. The present study examined the role of Olfr78 in cardiorespiratory and renal Epo gene responses to hypobaric hypoxia (HH), simulating low O2 condition experienced at high altitude. Studies were performed on adult, male wild-type (WT) and Olfr78 null mice treated with 18 h of HH (0.4 atmospheres). HH-treated WT mice exhibited increased baseline breathing, augmented hypoxic ventilatory response, elevated blood pressure, and plasma norepinephrine (NE) levels. These effects were associated with increased baseline CB sensory nerve activity and augmented CB sensory nerve response to subsequent acute hypoxia. In contrast, HH-treated Olfr78 null mice showed an absence of cardiorespiratory and CB sensory nerve responses, suggesting impaired CB-dependent cardiorespiratory adaptations. WT mice responded to HH with activation of the renal Epo gene expression and elevated plasma Epo levels, and these effects were attenuated or absent in Olfr78 null mice. The attenuated Epo activation by HH was accompanied with markedly reduced hypoxia-inducible factor (HIF)-2α protein and reduced activation of HIF-2 target gene Sod-1 in Olfr78 null mice, suggesting impaired transcriptional activation of HIF-2 contributes to attenuated Epo responses to HH. These results demonstrate a hitherto uncharacterized role for Olfr78 in cardiorespiratory adaptations and renal Epo gene activation by HH such as that experienced at high altitude.NEW & NOTEWORTHY In this study, we delineated a previously uncharacterized role for olfactory receptor 78 (Olfr78), a G-protein-coupled receptor in regulation of erythropoietin and cardiorespiratory responses to hypobaric hypoxia. Our results demonstrate a striking loss of cardiorespiratory adaptations accompanied by an equally striking absence of carotid body sensory nerve responses to hypobaric hypoxia in Olfr78 null mice. We further demonstrate a hitherto uncharacterized role for Olfr78 in erythropoietin activation by hypobaric hypoxia.


Assuntos
Corpo Carotídeo , Eritropoetina , Receptores Odorantes , Animais , Hipóxia , Masculino , Camundongos , Respiração
15.
Clin Transl Immunology ; 10(7): e1310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257968

RESUMO

OBJECTIVES: Growth hormone-releasing hormone (GHRH) is a potent stimulator of growth hormone (GH) secretion from the pituitary gland. Although GHRH is essential for the growth of immune cells, the regulatory effects of its antagonist in granulomatous disease remain unknown. METHODS: Here, we report expression of GHRH receptor (R) in human tissue with sarcoidosis granuloma and demonstrate the anti-inflammatory effects of MIA602 (a GHRH antagonist) in two in vitro human granuloma models and an in vivo granuloma model using different methods including ELISA, immunohistochemistry, RNA-seq analysis and flow cytometry. RESULTS: MIA602 decreases the levels of IL-2, IL-2R, IL-7, IL-12, IL-17A and TNF-α in an in vitro granuloma model. Further, we show that the anti-inflammatory effect of MIA602 appears to be mediated by a reduction in CD45+CD68+ cells in granulomatous tissue and upregulation in PD-1 expression in macrophages. Analysis of the expression of proteins involved in the mitochondrial stage of apoptosis showed that MIA602 increases the levels of caspase-3, BCL-xL/BAK dimer and MCl-1/Bak dimer in the granuloma. These findings indicate that MIA602 may not induce apoptosis. CONCLUSIONS: Our findings further suggest that GHRH-R is potentially a clinical target for the treatment of granulomatous disease and that MIA602 may be used as a novel therapeutic agent for sarcoidosis.

16.
Sci Rep ; 11(1): 3455, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568776

RESUMO

The Nucleocapsid Protein (N Protein) of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV2) is located in the viral core. Immunoglobulin G (IgG) targeting N protein is detectable in the serum of infected patients. The effect of high titers of IgG against N-protein on clinical outcomes of SARS-CoV2 disease has not been described. We studied 400 RT-PCR confirmed SARS-CoV2 patients to determine independent factors associated with poor outcomes, including Medical Intensive Care Unit (MICU) admission, prolonged MICU stay and hospital admissions, and in-hospital mortality. We also measured serum IgG against the N protein and correlated its concentrations with clinical outcomes. We found that several factors, including Charlson comorbidity Index (CCI), high levels of IL6, and presentation with dyspnea were associated with poor clinical outcomes. It was shown that higher CCI and higher IL6 levels were independently associated with in-hospital mortality. Anti-N protein IgG was detected in the serum of 55 (55%) patients at the time of admission. A high concentration of antibodies, defined as signal to cut off ratio (S/Co) > 1.5 (75 percentile of all measurements), was found in 25 (25%) patients. The multivariable logistic regression models showed that between being an African American, higher CCI, lymphocyte counts, and S/Co ratio > 1.5, only S/Co ratio were independently associated with MICU admission and longer length of stay in hospital. This study recommends that titers of IgG targeting N-protein of SARS-CoV2 at admission is a prognostic factor for the clinical course of disease and should be measured in all patients with SARS-CoV2 infection.


Assuntos
COVID-19/imunologia , Imunoglobulina G/imunologia , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Unidades de Terapia Intensiva , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Prognóstico , Glicoproteína da Espícula de Coronavírus/imunologia
17.
Mol Cell Biol ; 27(17): 6243-53, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17620415

RESUMO

The mRNA deadenylation process, catalyzed by the CCR4 deadenylase, is known to be the major factor controlling mRNA decay rates in Saccharomyces cerevisiae. We have identified the proline-rich region and RRM1 domains of poly(A) binding protein (PAB1) as necessary for CCR4 deadenylation. Deletion of either of these regions but not other regions of PAB1 significantly reduced PAB1-PAB1 protein interactions, suggesting that PAB1 oligomerization is a required step for deadenylation. Moreover, defects in these two regions inhibited the formation of a novel, circular monomeric PAB1 species that forms in the absence of poly(A). Removal of the PAB1 RRM3 domain, which promoted PAB1 oligomerization and circularization, correspondingly accelerated CCR4 deadenylation. Circular PAB1 was unable to bind poly(A), and PAB1 multimers were severely deficient or unable to bind poly(A), implicating the PAB1 RNA binding surface as critical in making contacts that allow PAB1 self-association. These results support the model that the control of CCR4 deadenylation in vivo occurs in part through the removal of PAB1 from the poly(A) tail following its self-association into multimers and/or a circular species. Known alterations in the P domains of different PAB proteins and factors and conditions that affect PAB1 self-association would, therefore, be expected to be critical to controlling mRNA turnover in the cell.


Assuntos
Proteínas de Ligação a Poli(A)/metabolismo , Poliadenilação , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , Prolina/metabolismo , Conformação Proteica , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Ribonucleases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
Cells ; 9(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096674

RESUMO

Growth hormone-releasing hormone (GHRH) is secreted primarily from the hypothalamus, but other tissues, including the lungs, produce it locally. GHRH stimulates the release and secretion of growth hormone (GH) by the pituitary and regulates the production of GH and hepatic insulin-like growth factor-1 (IGF-1). Pituitary-type GHRH-receptors (GHRH-R) are expressed in human lungs, indicating that GHRH or GH could participate in lung development, growth, and repair. GHRH-R antagonists (i.e., synthetic peptides), which we have tested in various models, exert growth-inhibitory effects in lung cancer cells in vitro and in vivo in addition to having anti-inflammatory, anti-oxidative, and pro-apoptotic effects. One antagonist of the GHRH-R used in recent studies reviewed here, MIA-602, lessens both inflammation and fibrosis in a mouse model of bleomycin lung injury. GHRH and its peptide agonists regulate the proliferation of fibroblasts through the modulation of extracellular signal-regulated kinase (ERK) and Akt pathways. In addition to downregulating GH and IGF-1, GHRH-R antagonist MIA-602 inhibits signaling pathways relevant to inflammation, including p21-activated kinase 1-signal transducer and activator of transcription 3/nuclear factor-kappa B (PAK1-STAT3/NF-κB and ERK). MIA-602 induces fibroblast apoptosis in a dose-dependent manner, which is an effect that is likely important in antifibrotic actions. Taken together, the novel data reviewed here show that GHRH is an important peptide that participates in lung homeostasis, inflammation, wound healing, and cancer; and GHRH-R antagonists may have therapeutic potential in lung diseases.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/metabolismo , Pneumopatias/metabolismo , Pneumopatias/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Animais , Respiração Celular , Humanos , Pulmão/patologia , Pneumopatias/patologia , Estresse Oxidativo , Transdução de Sinais
19.
Sci Rep ; 10(1): 7277, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350353

RESUMO

Lung inflammation due to sarcoidosis is characterized by a complex cascade of immunopathologic events, including leukocyte recruitment and granuloma formation. α-melanocyte stimulating hormone (α-MSH) is a melanocortin signaling peptide with anti-inflammatory properties. We aimed to evaluate the effects of α-MSH in a novel in vitro sarcoidosis model. An in vitro sarcoidosis-like granuloma model was developed by challenging peripheral blood mononuclear cells (PBMCs) derived from patients with confirmed treatment-naïve sarcoidosis with microparticles generated from Mycobacterium abscessus cell walls. Unchallenged PBMCsand developed granulomas were treated daily with 10 µM α-MSH or saline as control. Cytokine concentrations in supernatants of culture and in cell extracts were measured using Illumina multiplex Elisa and western blot, respectively. Gene expression was analyzed using RNA-Seq and RT-PCR. Protein secretion and gene expression of IL-7, IL-7R, IFN-γ, MC1R, NF-κB, phosphorylated NF-κB (p-NF-κB), MARCO, and p-CREB were measured with western blot and RNAseq. A significant increase in IL-7, IL-7R, and IFN-γ protein expression was found in developed granulomas comparing to microparticle unchallenged PBMCs. IL-7, IL-7R, and IFN-γ protein expression was significantly reduced in developed granulomas after exposure to α-MSH compared with saline treated granulomas. Compared with microparticle unchallenged PBMCs, total NF-κB and p-NF-κB were significantly increased in developed granulomas, while expression of p-CREB was not changed. Treatment with α-MSH promoted a significantly higher concentration of p-CREB in granulomas. The anti-inflammatory effects of α-MSH were blocked by specific p-CREB inhibition. α-MSH has anti-inflammatory properties in this in vitro granuloma model, which is an effect mediated by induction of phosphorylation of CREB.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Granuloma , Leucócitos Mononucleares , Modelos Biológicos , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium abscessus/metabolismo , Sarcoidose , alfa-MSH/farmacologia , Criança , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Leucócitos Mononucleares/patologia , Masculino , Infecções por Mycobacterium não Tuberculosas/patologia , Sarcoidose/metabolismo , Sarcoidose/microbiologia , Sarcoidose/patologia
20.
Nucleic Acids Res ; 35(9): 3002-15, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17439972

RESUMO

The CAF1 protein is a component of the CCR4-NOT deadenylase complex. While yeast CAF1 displays deadenylase activity, this activity is not required for its deadenylation function in vivo, and CCR4 is the primary deadenylase in the complex. In order to identify CAF1-specific functional regions required for deadenylation in vivo, we targeted for mutagenesis six regions of CAF1 that are specifically conserved among CAF1 orthologs. Defects in residues 213-215, found to be a site required for binding CCR4, reduced the rate of deadenylation to a lesser extent and resulted in in vivo phenotypes that were less severe than did defects in other regions of CAF1 that displayed greater contact to CCR4. These results imply that CAF1, while affecting deadenylation through its contact to CCR4, has functions in deadenylation separate from its contact to CCR4. Synthetic lethalities of caf1Delta, but not that of ccr4Delta, with defects in DHH1 or PAB1, both of which are involved in translation, further supports a role of CAF1 separate from that of CCR4. Importantly, other mutations in PAB1 that reduced translation, while not affecting deadenylation by themselves or when combined with ccr4Delta, severely blocked deadenylation when coupled with a caf1 deletion. These results indicate that both CAF1 and factors involved in translation are required for deadenylation.


Assuntos
Processamento de Terminações 3' de RNA , RNA Mensageiro/metabolismo , Ribonucleases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Alelos , Sequência de Aminoácidos , Sequência Conservada , Deleção de Genes , Mutagênese , Fenótipo , Poli A/metabolismo , Poliadenilação , Ribonucleases/genética , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA