Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126519

RESUMO

Viruses are constantly subject to natural selection to enrich beneficial mutations and weed out deleterious ones. However, it remains unresolved as to how the phenotypic gains or losses brought about by these mutations cause the viral genomes carrying the very mutations to become more or less numerous. Previous investigations by us and others suggest that viruses with plus strand (+) RNA genomes may compel such selection by bottlenecking the replicating genome copies in each cell to low single digits. Nevertheless, it is unclear if similarly stringent reproductive bottlenecks also occur in cells invaded by DNA viruses. Here we investigated whether tomato yellow leaf curl virus (TYLCV), a small virus with a single-stranded DNA genome, underwent population bottlenecking in cells of its host plants. We engineered a TYLCV genome to produce two replicons that express green fluorescent protein and mCherry, respectively, in a replication-dependent manner. We found that among the cells entered by both replicons, less than 65% replicated both, whereas at least 35% replicated either of them alone. Further probability computation concluded that replication in an average cell was unlikely to have been initiated with more than three replicon genome copies. Furthermore, sequential inoculations unveiled strong mutual exclusions of these two replicons at the intracellular level. In conclusion, the intracellular population of the small DNA virus TYLCV is actively bottlenecked, and such bottlenecking may be a virus-encoded, evolutionarily conserved trait that assures timely selection of new mutations emerging through error-prone replication.


Assuntos
Begomovirus , Begomovirus/genética , Genoma Viral , Doenças das Plantas/genética
2.
Plant Cell Environ ; 47(7): 2660-2674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619176

RESUMO

Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.


Assuntos
Folhas de Planta , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/virologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Folhas de Planta/virologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Célula Única , Doenças das Plantas/virologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Crinivirus/genética , Crinivirus/fisiologia
3.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610391

RESUMO

Mobile robots require the ability to plan collision-free paths. This paper introduces a wheel-foot hybrid parallel-leg walking robot based on the 6-Universal-Prismatic-Universal-Revolute and 3-Prismatic (6UPUR + 3P) parallel mechanism model. To enhance path planning efficiency and obstacle avoidance capabilities, an improved artificial potential field (IAPF) method is proposed. The IAPF functions are designed to address the collision problems and issues with goals being unreachable due to a nearby problem, local minima, and dynamic obstacle avoidance in path planning. Using this IAPF method, we conduct path planning and simulation analysis for the wheel-foot hybrid parallel-legged walking robot described in this paper, and compare it with the classic artificial potential field (APF) method. The results demonstrate that the IAPF method outperforms the classic APF method in handling obstacle-rich environments, effectively addresses collision problems, and the IAPF method helps to obtain goals previously unreachable due to nearby obstacles, local minima, and dynamic planning issues.

4.
Appl Environ Microbiol ; 89(6): e0048723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37272846

RESUMO

The phyllosphere presents a hostile environment for many biocontrol agents; however, it is as significant as is the rhizosphere for plant health. Deploying biocontrol bacteria into the phyllosphere can efficiently suppress diseases; however, the lack of knowledge on the phyllosphere adaptive traits of biocontrol bacteria poses challenges. In this study, we demonstrated that Rhodopseudomonas palustris GJ-22 colonizes the phyllosphere by forming cell aggregates. The formation of cell aggregates required the production of exopolysaccharides (EPS), which depended on the function of the rpaI-rpaR quorum sensing (QS) mechanism, mediated by the signaling molecule p-coumaroyl-HSL (pC-HSL). The mutation of the EPS biosynthesis gene Exop1 or the signaling molecule biosynthesis gene rpaI compromised the ability of GJ-22 to tolerate reactive oxygen intermediates (ROIs), such as H2O2, in vitro and to form cell aggregates in vivo. Collectively, the results revealed that QS mediates EPS production and consequently leads to bacterial cell aggregation. IMPORTANCE Quorum sensing is used by various bacteria for coordinating the multiplication of bacterial cells in a group and for modulating the behaviors of surrounding microbial species. Host plants can benefit from this interspecies modulation, as it can disrupt the QS circuits of pathogenic bacteria. Some N-acyl homoserine lactone- (AHL-) producing bacteria that were introduced into the phyllosphere as biocontrol agents may establish AHL-based crosstalk with indigenous microbes to steer the nutritional and microecological conditions toward their own and the host plant's benefit. Here, we showed that biocontrol bacteria introduced into the phyllosphere require a functioning QS circuit to establish colonies and suppress pathogens. Furthermore, our findings provoked a broader investigation into the role of the QS circuit in beneficial microorganism-plant interactions.


Assuntos
Percepção de Quorum , Rodopseudomonas , Percepção de Quorum/genética , Peróxido de Hidrogênio , Rodopseudomonas/genética , Transdução de Sinais , Acil-Butirolactonas
5.
Can J Infect Dis Med Microbiol ; 2023: 9933783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663453

RESUMO

Beauveria bassiana is a well-known insecticidal biocontrol agent. Despite its broad field applications, its survival, colonization, and stability under field conditions remained unclear, mainly due to the lack of a quick and reliable detection method. In this study, we developed a quantitative real-time PCR technology to monitor the stability and population dynamics of B. bassiana in different substrates (water, soil, and on the cotton leaves surface), different spores of B. bassiana applied on Chinese cabbage leaves surface, and the lethality of Pieris rapae spraying with different spores of B. bassiana. Our results showed a decreased concentration of B. bassiana DNA in all three substrates from the 1st day till 9th day of post inoculation (dpi) period, possibly due to the death of B. bassiana. After this decrease, a quick and significant rebound of B. bassiana DNA concentration was observed, starting from the 11th dpi in all three substrates. The B. bassiana DNA concentration reached the plateau at about 13th dpi in water and 17th dpi in the soil. On cotton leaves surface, the B. bassiana DNA concentration reached the highest level at the 17th dpi followed by a small decline and then stabilized. This increase of DNA concentration suggested recovery of B. bassiana growth in all three substrates. We found that the most suitable killing effectiveness of P. rapae was the 1.0 × 107 spores/mL of B. bassiana. In summary, we have established a detection technology that allows a fast and reliable monitoring for the concentration and stability of B. bassiana under different conditions. This technology can benefit and help us in the development of proper management strategies for the application of this biocontrol agent in the field.

6.
J Sci Food Agric ; 102(1): 417-424, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143904

RESUMO

BACKGROUND: Thiamethoxam is widely used to control pests in Chinese kale, popularly consumed leafy vegetables. The potential risk to the environment and human health has aroused much public concern. Therefore, it is important to investigate the degradation behavior, residue distribution and dietary risk assessment of thiamethoxam in Chinese kale. RESULTS: A sensitive analytical method for determination of thiamethoxam and its metabolite clothianidin residue in Chinese kale was established and validated through a quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The recoveries were 85.4-101.2% for thiamethoxam and 79.5-108.1% for clothianidin, with the relative standard deviations (RSDs) of 0.9-10.2% and 1.8-6.0%, respectively. For the dissipation kinetics, the data showed that thiamethoxam in Chinese kale was degraded with the half-lives of 4.1 to 4.5 days. In the terminal residue experiments, the residues of thiamethoxam were 0.017-0.357 mg kg-1 after application 2-3 times with a preharvest interval (PHI) of 7 days under the designed dosages. The chronic and acute dietary exposure assessment risk quotient (RQ) values of thiamethoxam in Chinese kale for different Chinese consumers were 0.08-0.19% and 0.05-0.12%, respectively, and those of clothianidin were 0.01-0.04% and 0.02-0.04%, respectively, all of the RQ values were lower than 100%. CONCLUSION: Thiamethoxam in Chinese kale was rapidly degraded following first-order kinetics models. The dietary risk of thiamethoxam and clothianidin through Chinese kale was negligible to consumers. The results from this study are important reference for Chinese governments to developing criteria for the safe and rational use of thiamethoxam, setting maximum residue levels (MRLs), monitoring the quality safety of agricultural products and protecting consumer health. © 2021 Society of Chemical Industry.


Assuntos
Brassica/química , Cromatografia Líquida/métodos , Guanidinas/metabolismo , Neonicotinoides/metabolismo , Resíduos de Praguicidas/química , Resíduos de Praguicidas/metabolismo , Espectrometria de Massas em Tandem/métodos , Tiametoxam/química , Tiametoxam/metabolismo , Tiazóis/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brassica/metabolismo , Criança , Pré-Escolar , China , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Feminino , Contaminação de Alimentos/análise , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Medição de Risco , Verduras/química , Verduras/metabolismo , Adulto Jovem
7.
BMC Plant Biol ; 21(1): 67, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514310

RESUMO

BACKGROUND: Most plant viruses rely on vectors for their transmission and spread. One of the outstanding biological questions concerning the vector-pathogen-symbiont multi-trophic interactions is the potential involvement of vector symbionts in the virus transmission process. Here, we used a multi-factorial system containing a non-persistent plant virus, cucumber mosaic virus (CMV), its primary vector, green peach aphid, Myzus persicae, and the obligate endosymbiont, Buchnera aphidicola to explore this uncharted territory. RESULTS: Based on our preliminary research, we hypothesized that aphid endosymbiont B. aphidicola can facilitate CMV transmission by modulating plant volatile profiles. Gene expression analyses demonstrated that CMV infection reduced B. aphidicola abundance in M. persicae, in which lower abundance of B. aphidicola was associated with a preference shift in aphids from infected to healthy plants. Volatile profile analyses confirmed that feeding by aphids with lower B. aphidicola titers reduced the production of attractants, while increased the emission of deterrents. As a result, M. persicae changed their feeding preference from infected to healthy plants. CONCLUSIONS: We conclude that CMV infection reduces the B. aphidicola abundance in M. persicae. When viruliferous aphids feed on host plants, dynamic changes in obligate symbionts lead to a shift in plant volatiles from attraction to avoidance, thereby switching insect vector's feeding preference from infected to healthy plants.


Assuntos
Afídeos/virologia , Buchnera/fisiologia , Capsicum/virologia , Cucumovirus/fisiologia , Doenças das Plantas/virologia , Simbiose , Animais , Afídeos/efeitos dos fármacos , Afídeos/microbiologia , Afídeos/fisiologia , Capsicum/microbiologia , Capsicum/parasitologia , Comportamento Alimentar , Interações Hospedeiro-Parasita , Insetos Vetores/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Rifampina/farmacologia , Compostos Orgânicos Voláteis/metabolismo
8.
Planta ; 254(3): 53, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402996

RESUMO

MAIN CONCLUSION: Arbuscular mycorrhizal fungi regulated the distribution of nitrogen in the leaves, thereby facilitating the adaptation of the endangered plant Torreya jackii to a low-nitrogen environment. Rhizophagus irregularis was inoculated into sterilized soil to investigate its impact on the distribution ratio of leaf nitrogen in cell wall proteins, cell membrane proteins, water-soluble proteins, and photosynthetic systems which includes the carboxylation system (PC), energy metabolism (PB), and light-harvesting system in the endangered species Torreya jackii. The results showed that R. irregularis reduced the specific leaf weight and the distribution ratio of nitrogen in cell wall proteins in the leaves of T. jackii, whereas it enhanced the distribution ratio of nitrogen in cell membrane proteins and water-soluble proteins. R. irregularis enabled more nitrogen uptake for growth by decreasing the distribution of nitrogen to the structural substances. At low-nitrogen levels, inoculation with R. irregularis improved the plant height (18.78 ~ 36.04%), shoot dry weight (50.53 ~ 64.33%), total dry weight (42.86 ~ 52.82%), maximal net photosynthetic rate (Pmax) (16.83 ~ 20.11%), photosynthetic nitrogen use efficiency (PNUE) (40.01 ~ 43.14%), PC (33.56 ~ 38.59%) and PB (29.08 ~ 34.02%). However, it did not substantially affect the leaf nitrogen content per unit area or the leaf nitrogen content per unit mass. Moreover, Pmax exhibited a significant positive correlation with PC and PB, and all three parameters showed a significant positive correlation with the PNUE, thereby revealing that R. irregularis increased the photosynthetic capacity and PNUE of T. jackii through boosting PC and PB.


Assuntos
Micorrizas , Taxaceae , Fungos , Nitrogênio , Fotossíntese
9.
Phytopathology ; 111(3): 500-508, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32876530

RESUMO

G-negative bacteria produce myriad N-acyl-homoserine lactones (AHLs) that can function as quorum sensing (QS) signaling molecules. AHLs are also known to regulate various plant biological activities. p-Coumaroyl-homoserine lactone (pC-HSL) is the only QS molecule produced by a photosynthetic bacterium, Rhodopseudomonas palustris. The role of pC-HSL in the interaction between R. palustris and plant has not been investigated. In this study, we investigated the effect of pC-HSL on plant immunity and found that this QS molecule can induce a systemic resistance to Tobacco mosaic virus (TMV) infection in Nicotiana benthamiana. The results show that pC-HSL treatment can prolong the activation of two mitogen-associated protein kinase genes (i.e., NbSIPK and NbWIPK) and increase the expression of transcription factor WRKY8 as well as immune response marker genes NbPR1 and NbPR10, leading to an increased accumulation of reactive oxygen species (ROS) in the TMV-infected plants. Our results also show that pC-HSL treatment can increase activities of two ROS-scavenging enzymes, peroxidase and superoxide dismutase. Knockdown of NbSIPK or NbWIPK expression in N. benthamiana plants through virus-induced gene silencing nullified or attenuated pC-HSL-induced systemic resistance, indicating that the functioning of pC-HSL relies on the activity of those two kinases. Meanwhile, pC-HSL-pretreated plants also showed a strong induction of kinase activities of NbSIPK and NbWIPK after TMV inoculation. Taken together, our results demonstrate that pC-HSL treatment increases plant resistance to TMV infection, which is helpful to uncover the outcome of interaction between R. palustris and its host plants.


Assuntos
Percepção de Quorum , Vírus do Mosaico do Tabaco , 4-Butirolactona/análogos & derivados , Doenças das Plantas , Rodopseudomonas , Nicotiana , Regulação para Cima
10.
Plant Dis ; 105(2): 456-463, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32729804

RESUMO

Meloidogyne graminicola is one of the major plant-parasitic nematodes (PPNs) that affect rice agriculture. Rapid identification and quantification of M. graminicola in soil is crucial for early diagnosis so that measures can be taken to reduce the impact of PPN diseases and ensure food security. In this study, M. graminicola species-specific primers for conventional PCR, loop-mediated isothermal amplification (LAMP), and real-time PCR were designed based on the sequence-characterized amplified region. The primers were highly specific and sensitive, and only samples containing M. graminicola DNA showed positive results. The sensitivity of LAMP and real-time PCR (two second-stage juvenile [J2] M. graminicola in 100 g of soil) was higher than that of conventional PCR (200 J2s in 100 g of soil). A standard curve (correlation coefficient R2 = 0.970, P < 0.001) was generated by amplifying DNA extracted from 0.5 g of soil, and a significant correlation was observed between the number of M. graminicola determined by microscopic examination and that predicted from the standard curve (R2 = 0.477, P = 0.0160). In quantification analyses of M. graminicola isolated from 31 naturally infested soils, the sensitivity of LAMP and real-time PCR (22 M. graminicola in 100 g of soil) was higher than that of conventional PCR (211 M. graminicola in 100 g of soil). The conventional PCR, LAMP, and real-time PCR methods have the potential to provide a useful platform for rapid species identification according to the experimental conditions. The real-time PCR assay and standard curve can be used for quantification of M. graminicola. These newly developed assays will help to facilitate the control of these economically important PPNs.


Assuntos
Tylenchoidea , Animais , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Solo , Tylenchoidea/genética
11.
J Sci Food Agric ; 101(14): 5992-6000, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33851415

RESUMO

BACKGROUND: Tolfenpyrad and dinotefuran are two representative pesticides used for pest control in tea gardens. Their application may bring about a potential risk to the health of consumers. Therefore, it is essential to investigate the residue behavior, transfer and risk assessment of tolfenpyrad, dinotefuran and metabolites from tea garden to teacup. RESULTS: An effective analytical method was established and validated to simultaneously determine tolfenpyrad, dinotefuran and its metabolites (DN and UF) in tea. The average recoveries of tolfenpyrad, dinotefuran, DN and UF were in the range 72.1-106.3%, with relative standard deviations lower than 11.8%. On the basis of the proposed method, the dissipation of tolfenpyrad and dinotefuran in fresh tea leaves followed first-order kinetics models with half-lives of 4.30-7.33 days and 4.65-5.50 days, respectively. With application amounts of 112.5-168.75 g a.i. ha-1 once or twice, the terminal residues of tolfenpyrad and total dinotefuran in green tea were lower than 19.6 and 7.13 mg kg-1 , respectively, and below their corresponding maximum residue limits . The leaching rates of tolfenpyrad and total dinotefuran during the tea brewing were in the ranges 1.4-2.3% and 93.7-98.1%, respectively. CONCLUSION: Tolfenpyrad and dinotefuran in tea were easily degraded. The RQc and RQa values for tolfenpyrad were 37.6% and 5.4%, which were much higher than for dinotefuran at 24.7% and 0.84%, respectively. The data indicated that there was no significant health risk in tea for consumers at the recommended dosages. The results provide scientific data regarding the reasonable use of tolfenpyrad and dinotefuran aiming to ensure safe tea consuption. © 2021 Society of Chemical Industry.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Guanidinas/química , Neonicotinoides/química , Nitrocompostos/química , Resíduos de Praguicidas/química , Pirazóis/química , Chá/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Qualidade de Produtos para o Consumidor , Culinária , Contaminação de Alimentos/análise , Guanidinas/metabolismo , Humanos , Cinética , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Resíduos de Praguicidas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Pirazóis/metabolismo , Medição de Risco , Chá/metabolismo
12.
J Sci Food Agric ; 101(5): 1998-2005, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32949153

RESUMO

BACKGROUND: Propiconazole is widely used to control fungal diseases in field crops, including celery and onion. The potential risk to the environment and human health has aroused much public concern. Therefore, it is significant to investigate the degradation behaviour, residue distribution, and dietary risk assessment of propiconazole in celery and onion. RESULTS: A sensitive analytical method for determination of propiconazole residue in celery and onion was established and validated through high-performance liquid chromatography tandem mass spectrometry. The average recovery rate of propiconazole ranged from 85.7% to 101.8%, with a relative standard deviation of 2.1-6.3%. For the dissipation kinetics, the data showed that propiconazole in celery and onion was degraded, with half-lives of 6.1-6.2 days and 8.7-8.8 days respectively. In the terminal residue experiments, the residues of propiconazole were below 4.66 mg kg-1 in celery after application two or three times and were below 0.029 mg kg-1 in onion after application of three or four times with an interval of 14 days under the designed dosages. The chronic and acute dietary exposure assessments for propiconazole were valued by risk quotient, with all values being lower than 100%. CONCLUSION: Propiconazole in celery and onion was rapidly degraded following first-order kinetics models. The dietary risk of propiconazole through celery or onion was negligible to consumers. The study not only offers a valuable reference for reasonable usage of propiconazole on celery and onion, but also facilitates the establishment of maximum residue limits in China. © 2020 Society of Chemical Industry.


Assuntos
Apium/química , Fungicidas Industriais/química , Cebolas/química , Triazóis/química , China , Cromatografia Líquida de Alta Pressão , Exposição Dietética/efeitos adversos , Resíduos de Drogas , Contaminação de Alimentos/análise , Cinética , Espectrometria de Massas em Tandem , Verduras/química
13.
BMC Microbiol ; 20(1): 72, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228456

RESUMO

BACKGROUND: Plant viruses move through plasmodesmata (PD) to infect new cells. To overcome the PD barrier, plant viruses have developed specific protein(s) to guide their genomic RNAs or DNAs to path through the PD. RESULTS: In the present study, we analyzed the function of Pepper vein yellows virus P4 protein. Our bioinformatic analysis using five commonly used algorithms showed that the P4 protein contains an transmembrane domain, encompassing the amino acid residue 117-138. The subcellular localization of P4 protein was found to target PD and form small punctates near walls. The P4 deletion mutant or the substitution mutant constructed by overlap PCR lost their function to produce punctates near the walls inside the fluorescent loci. The P4-YFP fusion was found to move from cell to cell in infiltrated leaves, and P4 could complement Cucumber mosaic virus movement protein deficiency mutant to move between cells. CONCLUSION: Taking together, we consider that the P4 protein is a movement protein of Pepper vein yellows virus.


Assuntos
Biologia Computacional/métodos , Nicotiana/virologia , Vírus de Plantas/fisiologia , Proteínas Virais/metabolismo , Algoritmos , Cucumovirus/fisiologia , Mutação , Folhas de Planta/virologia , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Domínios Proteicos , Nicotiana/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
14.
Virol J ; 16(1): 14, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700315

RESUMO

In the original publication of this article [1], the author found the legends of Fig. 3 and Fig. 4 were incorrect.

15.
Mol Biol Rep ; 46(6): 5767-5776, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31385235

RESUMO

Quantitative real time PCR (qRT-PCR) is a nucleic acid quantitative technique and is also considered as a validation tool. The Cry1Ia36 protein isolated from Bacillus thuringiensis (Bt) strain YC-10 has high nematicidal activity against nematodes. Caenorhabditis elegans is one of the major model organisms and a readily accessible source of biological material for gene expression studies. To evaluate the expression stability of 12 candidate reference genes of C. elegans for exposing to different concentrations of Cry1Ia36 protein and different treat time, five statistical approaches (the comparative delta-Ct method, BestKeeper, NormFinder, Genorm and RefFinder) were used to evaluate each individual candidate reference gene. The results indicated that cdc-42 and F35G12.2 were the best reference genes for performing reliable gene expression normalization in the impact of Cry1Ia36 protein. In addition, when C. elegans was exposed to Cry1Ia36 protein and other nematicides, avermectin and 5-aminolevulinic acid, cdc-42 was recommended as the most reliable reference genes. Y45F10D.4 was the least stable reference genes in our experimental settings. Therefore, cdc-42 was reliable reference gene for gene expression studies in C. elegans exposed to Cry1Ia36 protein and other nematicides.


Assuntos
Proteínas de Bactérias/farmacologia , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Endotoxinas/farmacologia , Genes de Helmintos/genética , Proteínas Hemolisinas/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expressão Gênica/genética , Reação em Cadeia da Polimerase em Tempo Real
16.
J Basic Microbiol ; 59(6): 591-598, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30900743

RESUMO

This study aimed at the biodegradation of fenpropathrin by Rhodopseudomonas sp. strain PSB07-21 cultured under different growth modes. The biomass production, cell surface hydrophobicity and fenpropathrin biodegradation efficiency of the strain PSB07-21 cultured under the photoheterotrophic growth mode were better than that shown by the strain PSB07-21 cultured under the photoautotrophic or the chemotrophic growth mode. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis using cell-free protein extracts showed several distinct protein bands in the gels representing the strain PSB07-21 cultured under the photoheterotrophic growth mode. The fenpropathrin enzymatic degradation was clearly affected the bacterial growth mode. Results obtained from this study should improve our knowledge regarding fenpropathrin biodegradation under field conditions. Our findings can also be used to optimize the usage of Rhodopseudomonas sp. PSB07-21 in field applications.


Assuntos
Inseticidas/metabolismo , Piretrinas/metabolismo , Rodopseudomonas/metabolismo , Poluentes do Solo/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Meios de Cultura , Rodopseudomonas/crescimento & desenvolvimento
17.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600869

RESUMO

Tomato chlorosis virus (ToCV) is widespread, seriously impacting tomato production throughout the world. ToCV is semi-persistently transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Currently, insect olfaction is being studied to develop novel pest control technologies to effectively control B. tabaci and whitefly-borne virus diseases. Despite current research efforts, no report has been published on the role of odorant-binding proteins (OBPs) in insect preference under the influence of plant virus. Our previous research showed that viruliferous B. tabaci preferred healthy plants at 48 h after virus acquisition. In this study, we determined the effect of OBPs on the host preference interactions of ToCV and whiteflies. Our results show that with the increase in acquisition time, the OBP gene expressions changed differently, and the OBP3 gene expression showed a trend of first rising and then falling, and reached the maximum at 48 h. These results indicate that OBP3 may participate in the host preference of viruliferous whiteflies to healthy plants. When the expression of the OBP3 gene was knocked down by an RNA interference (RNAi) technique, viruliferous Mediterranean (MED) showed no preference and the ToCV transmission rate was reduced by 83.3%. We conclude that OBP3 is involved in the detection of plant volatiles by viruliferous MED. Our results provide a theoretical basis and technical support for clarifying the transmission mechanism of ToCV by B. tabaci and could provide new avenues for controlling this plant virus and its vectors.


Assuntos
Crinivirus/fisiologia , Inativação Gênica , Insetos Vetores/genética , Insetos Vetores/virologia , Interferência de RNA , Receptores Odorantes/genética , Animais , Transmissão de Doença Infecciosa , Genes Reporter , Hemípteros/virologia , Interações Hospedeiro-Patógeno/genética , Solanum lycopersicum/virologia , Doenças das Plantas/virologia
18.
Minerva Pediatr ; 71(4): 358-361, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26354415

RESUMO

BACKGROUND: To investigate the effect of frontal muscle aponeurosis flap suspension surgery for severe congenital ptosis in children. METHODS: Recent results of 30 cases (45 eyes) of children with severe congenital ptosis were evaluated and follow-up observation was conducted. RESULTS: One week after the surgery, the success rate was 97.7% and it was 95.5% after three months. CONCLUSIONS: The suspension of frontal muscle aponeurosis should be the first choice for children with severe congenital ptosis for its simplicity, safety and fewer complications.


Assuntos
Blefaroptose/cirurgia , Retalhos Cirúrgicos , Aponeurose , Blefaroptose/congênito , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Índice de Gravidade de Doença
19.
Virol J ; 14(1): 169, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870255

RESUMO

BACKGROUND: In recent years, two of the crinivirus, Tomato chlorosis virus (ToCV) and Cucurbit chlorotic yellows virus (CCYV) have gained increasing attention due to their rapid spread and devastating impacts on vegetable production worldwide. Both of these viruses are transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), in a semi-persistent manner. Up to now, there is still lack of report in Hainan, the south of China. METHODS: We used observational and experimental methods to explore the prevalence and incidence dynamic of CCYV and ToCV transmitted by whiteflies in Hainan of China. RESULTS: In 2016, the chlorosis symptom was observed in the tomato and cucumber plants with a large number of B. tabaci on the infected leaves in Hainan, China, with the incidence rate of 69.8% and 62.6% on tomato and cucumber, respectively. Based on molecular identification, Q biotype was determined with a viruliferous rate of 65.0% and 55.0% on the tomato and cucumber plants, respectively. The weed, Alternanthera philoxeroides near the tomato and cucumber was co-infected by the two viruses. Furthermore, incidence dynamic of ToCV and CCYV showed a close relationship with the weed, Alternanthera philoxeroides, which is widely distributed in Hainan. CONCLUSION: Our results firstly reveal that the weed, A. philoxeroides is infected by both ToCV and CCYV. Besides, whiteflies showed a high viruliferous rate of ToCV and CCYV. Hainan is an extremely important vegetable production and seed breeding center in China. If the whitefly can carry these two viruses concurrently, co-infection in their mutual host plants can lead to devastating losses in the near future.


Assuntos
Amaranthaceae/virologia , Crinivirus/fisiologia , Cucumis sativus/virologia , Hemípteros/virologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Amaranthaceae/genética , Animais , China , Crinivirus/genética , Crinivirus/isolamento & purificação , Insetos Vetores/virologia , Tipagem Molecular , Doenças das Plantas/estatística & dados numéricos , Dispersão Vegetal , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
20.
J Nematol ; 49(3): 295-303, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29062152

RESUMO

Plant-parasitic nematodes are important agricultural pests and often cause serious crop losses. Novel, environmental friendly nematicides are urgently needed because of the harmful effects of some existing nematicides on human health. 5-Aminolevulinic acid (ALA) was reported as a potential biodegradable herbicide, insecticide, or plant-growth promoting agent. Lack of information on ALA against plant-parasitic nematodes prompted this investigation to determine the effects of ALA on Meloidogyne incognita, Heterodera glycines, Pratylenchus coffeae, and Bursaphelenchus xylophilus. A series of in vitro assays and one greenhouse trial were conducted to examine the nematicidal effects of ALA. The results demonstrated that ALA exhibited a strong effect of suppression against the four nematodes tested. ALA also inhibited hatching of M. incognita and H. glycines. Results from the greenhouse experiment indicated that treatment of soil with 6.0 mM ALA significantly reduced the root-gall index (RGI) and egg mass number per root system compared with the uninoculated control (P ≤ 0.05). The metabolism assays indicated that ALA treatment significantly altered the nematode metabolism including the total protein production, malondialdehyde (MDA) content, and oxidase activities. This study suggested that ALA is a promising nematicide against plant-parasitic nematodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA