Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Angew Chem Int Ed Engl ; 63(12): e202319587, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226832

RESUMO

Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.

2.
Angew Chem Int Ed Engl ; 63(21): e202400769, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544401

RESUMO

Generating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (glum) is difficult due to usually unmatched electric transition dipole moment (µ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a "cascade cationic insertion" trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high glum values reaching -2.3×10-2 without using any chiral inducers. Achiral solvents of hydrochloric acid (HCl) and N, N-dimethylformamide (DMF) infiltrate the crystal lattice via asymmetric hydrogen bonding, distorting the perovskite structure to induce the "intrinsic" chirality. Surprisingly, additional insertion of Cs+ cation to substitute partial (CH3)2NH2 + transforms the chiral space group to achiral but the crystal maintains chiroptical activity. Further doping of Sb3+ stimulates strong photoluminescence as a result of self-trapped excitons (STEs) formation without disturbing the crystal framework. The chiral perovskites of indium-antimony chlorides embedded on LEDs chips demonstrate promising potential as CPL emitters. Our work presents rare cases of chiroptical activity of highly luminescent perovskites from only achiral building blocks via spontaneous resolution as a result of symmetry breaking.

3.
Small ; 19(49): e2303608, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37587787

RESUMO

Topological insulators (TIs) are characterized by a full insulating gap in the bulk and gapless edge or surface states, which have attracted tremendous attention. 2D Bi (110), as a typical TI, is of particular interest due to its low symmetry structure and topologically protected and spin-momentum-locked Dirac surface states. However, the material's potential applications are hindered by difficulties in fabrication, due to its strong semi-metallic bonding and poor stability. In this study, a novel electrochemical intercalation method for the fabrication of ultrathin Bi (110) nanosheets with the highest yield ever reported is presented. These nanosheets are stabilized through cathodic exfoliation in a reductive environment and further modification with polymer ionic liquids. The versatility of these nanosheets is demonstrated by fabricating flexible acoustic sensors with ultrahigh sensitivity. These sensors can even detect sounds as quiet as 45 dB. Furthermore, these sensors are utilized for acoustic-to-electric energy conversion and information transfer. This work offers a promising approach for scalable fabrication and preservation of ultrathin 2D TI Bi (110) nanosheets and paves the way for their integration into smart devices.

4.
Chemistry ; 29(72): e202303085, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877318

RESUMO

Chiral π-conjugated polycycles have garnered increasing attention due to versatile applications in optoelectronic materials and biological sciences. In this study, we report the synthesis of chiral π-conjugated polycycles incorporating a chiral epoxycyclooctadiene moiety. Our synthetic strategy capitalizes on the novel reactions of hetera-buckybowl triselenasumanene (TSS) and is achieved in two-step manner. Firstly, the TSS is regio-selectively transformed into its ortho-quinone form. Subsequently, the nucleophilic addition reactions of TSS ortho-quinone by phenylethynides are metal ion-dependent. When utilizing (phenylethynyl)magnesium bromide as the nucleophile, two phenylethynyls are furnished onto the edged benzene ring of TSS. When the nucleophile is (phenylethynyl)lithium, a cascade of nucleophilic addition, intermolecular electron-transfer, ring-opening, and tetradehydro-Diels-Alder (TDDA) reactions occur sequentially in one-pot, ultimately affording chiral π-conjugated polycycles featuring the epoxycyclooctadiene moiety as an integral part of their backbones. This work represents a step forward in the synthesis of chiral π-conjugated polycycles using TSS as synthon.

5.
Chemistry ; 29(19): e202203361, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36449331

RESUMO

Conjugated polymers with high charge mobilities have drawn increasing attention in organic field-effect transistors (OFETs) in recent years. However, OFETs of conjugated polymers with high mobility and good device stability remain a challenge. In this article, we report a hyperbranched polymer approach to improve the charge mobility and device stability. Three hyperbranched diketopyrrolopyrrole-based polymers were designed and synthesized via linear alkyl side-chain linkers. The results show that 2D topological hyperbranched polymers form stable thin film microstructures, and thus improve the device stability, since the conjugated moiety is interconnected by linear alkyl chain. Besides, the incorporation of linear alkyl chain instead of branching alkyl one reduce steric hindrance, and improve the microstructure ordering as well as the charge mobility. Bar-coated OFETs result demonstrates that the devices mobilities and operational stabilities (bias stability and bending resistance) are both improved. All these indicate that hyperbranched polymer is a potential candidate for future application.

6.
Chem Soc Rev ; 51(8): 3071-3122, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35319036

RESUMO

Organic molecular semiconductors have been paid great attention due to their advantages of low-temperature processability, low fabrication cost, good flexibility, and excellent electronic properties. As a typical example of five-ring-fused organic semiconductors, a single crystal of pentacene shows a high mobility of up to 40 cm2 V-1 s-1, indicating its potential application in organic electronics. However, the photo- and optical instabilities of pentacene make it unsuitable for commercial applications. But, molecular engineering, for both the five-ring-fused building block and side chains, has been performed to improve the stability of materials as well as maintain high mobility. Here, several groups (thiophenes, pyrroles, furans, etc.) are introduced to design and replace one or more benzene rings of pentacene and construct novel five-ring-fused organic semiconductors. In this review article, ∼500 five-ring-fused organic prototype molecules and their derivatives are summarized to provide a general understanding of this catalogue material for application in organic field-effect transistors. The results indicate that many five-ring-fused organic semiconductors can achieve high mobilities of more than 1 cm2 V-1 s-1, and a hole mobility of up to 18.9 cm2 V-1 s-1 can be obtained, while an electron mobility of 27.8 cm2 V-1 s-1 can be achieved in five-ring-fused organic semiconductors. The HOMO-LUMO levels, the synthesis process, the molecular packing, and the side-chain engineering of five-ring-fused organic semiconductors are analyzed. The current problems, conclusions, and perspectives are also provided.

7.
Angew Chem Int Ed Engl ; 62(6): e202214281, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314420

RESUMO

The development of photoinduced luminescent radicals with dynamic emission color is still challenging. Herein we report a novel molecular radical system (TBIQ) that shows photo-controllable luminescence, leading to a wide range of ratiometric color changes via light excitation. The conjugated skeleton of TBIQ is decorated with steric-demanding tertiary butyl groups that enable appropriate intermolecular interaction to make dynamic intermolecular coupling possible for controllable behaviors. We reveal that the helicenic pseudo-planar conformation of TBIQ experiences a planarization process after light excitation, leading to more compactly stacked supermolecules and thus generating radicals via intermolecular charge transfer. The photo-controllable luminescent radical system is employed for a high-level information encryption application. This study may offer unique insight into molecular dynamic motion for optical manufacturing and broaden the scope of smart-responsive materials for advanced applications.

8.
Angew Chem Int Ed Engl ; 62(23): e202301863, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022283

RESUMO

The development of conjugated polymers with high semiconducting performance and high reliability is of great significance for flexible electronics. Herein, we developed a new type of electron-accepting building block; i.e., non-symmetric half-fused B←N coordinated diketopyrrolopyrrole (DPP) (HBNDPP), for amorphous conjugated polymers toward flexible electronics. The rigid B←N fusion part of HBNDPP endows the resulting polymers with decent electron transport, while its non-symmetric structure causes the polymer to exhibit multiple conformation isomers with flat torsional potential energies. Thus, it gets packed in an amorphous manner in solid state, ensuring good resistance to bending strain. Combined with hardness and softness, the flexible organic field-effect transistor devices exhibit n-type charge properties with decent mobility, good bending resistance, and good ambient stability. The preliminary study makes this building block a potential candidate for future design of conjugated materials for flexible electronic devices.

9.
Small ; 18(15): e2108090, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35142051

RESUMO

Two-dimensional (2D) CsPbI3 is developed to conquer the phase-stability problem of CsPbI3 by introducing bulky organic cations to produce a steric hindrance effect. However, organic cations also inevitably increase the formation energy and difficulty in crystallization kinetics regulation. Such poor crystallization process modulation of 2D CsPbI3 leads to disordered phase-arrangement, which impedes the transport of photo-generated carriers and worsens device performance. Herein, a type of C3 N quantum dots (QDs) with ordered carbon and nitrogen atoms to manipulate the crystallization process of 2D CsPbI3 for improving the crystallization pathway, phase-arrangement and morphology, is introduced. Combination analyses of theoretical simulation, morphology regulation and femtosecond transient absorption (fs-TA) characterization, show that the C3 N QDs induce the formation of electron-rich regions to adsorb bulky organic cations and provide nucleation sites to realize a bi-directional crystallization process. Meanwhile, the quality of 2D CsPbI3 film is improved with lower trap density, higher surface potential, and compact morphology. As a result, the power conversion efficiency (PCE) of the optimized device (n = 5) boosts to an ultra-high value of 15.63% with strengthened environmental stability. Moreover, the simple C3 N QDs insertion method shows good universality to other bulky organic cations of Ruddlesden-Popper and Dion-Jacobson, providing a good modulation strategy for other optoelectronic devices.

10.
Chemistry ; 28(20): e202200306, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35226759

RESUMO

Exploration of π-conjugated polycycles, particularly those have π-frameworks spread over the three-dimensional space, is essential in materials science and synthetic chemistry as these chemical entities possess featured optoelectronic properties and supramolecular assembly. Herein, the bowl-shaped trichalcogenasumanenes are fused onto three branches of triptycene through pyrazine units, affording waterwheel-like three-dimensional polycycles 4 a/4 b. Because the three branches on 4 a/4 b are chemically equal, the molecular orbitals of 4 a/4 b show degenerate feature that results in the strong UV-Vis absorbance at steady state. 4 a/4 b exhibit photo-induced charge-separation and subsequent charge-redistribution at transient state, leading to excited state absorption in NIR-II window (1165-1400 nm). 4 a/4 b are excellent fullerene receptors, and they form 1 : 1 host-guest complexes with C60 /C70 as proved by spectroscopic titrations and single crystal structure analysis. Moreover, 4 a/4 b show much stronger affinity toward C70 than C60 . Consequently, 4 a/4 b are able to separate C60 and C70 from their mixture, giving the purity of C60 up to 99.5 %.

11.
J Org Chem ; 87(16): 11281-11291, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35930606

RESUMO

A photocatalyst- and additive-free visible-light-induced α-C(sp3)-H phosphinylation of unactivated ethers involving a C-O bond cleavage with molecular oxygen as the sole oxidant at room temperature has been achieved. This method provides a sustainable access to α-hydroxyphosphine oxides in up to 88% yield with good functional group compatibility under mild and neutral conditions (34 examples). Moreover, the subsequent two-step conversion of the resulting dihydroxy diarylphosphine oxides afforded α-phosphinylated cyclic ethers in good overall yields (10 examples).

12.
Macromol Rapid Commun ; 43(16): e2200326, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35703581

RESUMO

Singlet fission (SF) is a spin-allowed process in which a singlet state splits into two triplet states. Materials that enable SF have attracted great attention in the last decade, mainly stemming from the potential of overcoming the Shockley-Queisser (SQ) limit in photoenergy conversion. In the past decade, a large number of new molecules exhibiting SF are explored and many devices based on SF materials are studied, though the mechanistic understanding is still obscure. This review focuses on the recent developments of SF materials, including small molecules, oligomers, and polymers. The molecular design strategies and related mechanisms of SF are discussed. Then the dynamics of charge transfer and energy transfer between SF materials and other materials are introduced. Further, the progresses of implementing SF in photovoltaics are discussed. It is hoped that a comprehensive understanding to the SF materials, devices, and mechanism may pave a new way for the design of next generation photovoltaics.

13.
Phys Chem Chem Phys ; 24(46): 28530-28539, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36411969

RESUMO

Metal oxide sensors face the challenge of high response and fast recovery at low operating temperatures for the detection of toxic and flammable hydrogen sulfide (H2S) gases. Herein, novel In-doped ZnO with a sunflower-like structure and tunable surface properties was rationally synthesized. The substitutional In atom in the ZnO crystal can dramatically enhance the concentration of oxygen vacancies (Ov), the In-ZnO sites are responsible for fast recovery, and the formation of sub-stable sulfide intermediates gives rise to the high response towards H2S. As a result, the response of the optimized 4In-ZnO sensor is 3538.36 to 50 ppm H2S at a low operating temperature of 110 °C, which is 106 times higher than that of pristine ZnO. Moreover, the response time and recovery time to 50 ppm H2S are 100 s and 27 s, respectively, with high selectivity and stability. First-principles calculations revealed that 4In-ZnO with rich Ov exhibited higher adsorption energy for the H2S molecule than pristine ZnO, resulting in effortless H2S detection. Our work lays the foundation for the rational design of highly sensitive gas sensors through precise doping of atoms in oxygen-rich vacancies in semiconductor materials.

14.
Angew Chem Int Ed Engl ; 61(22): e202117504, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35239988

RESUMO

Buckybowls have unique properties that can be tailored by embedding main-group elements into their π-scaffolds. Herein, a synthetic approach is developed for producing monoazadichalcogenasumanenes (4 a/4 b, 6 a/6 b, 7 a/7 b) derived from sumanene by replacing its three benzylic carbons with one nitrogen and two chalcogen atoms (S for 4 a/4 b, Se for 6 a/6 b, Te for 7 a/7 b). Monoazadichalcogenasumanenes are deeper π-bowls than trichalcogensumanenes as the C-N bond is much shorter than C-X (X=S, Se, Te). The bowl-depth of 4 b (0.95 Å) is greater than that of corannulene (0.85 Å). The nitrogen atom donates electron density to the entire π-system that makes monoazadichalcogenasumanenes electron-rich. They undergo ring reconstruction of chalcogenophene ring via transferring a chalcogen atom from one molecule to another under acidic conditions. The nitrogen and chalcogen atoms play crucial role on this reaction.

15.
Angew Chem Int Ed Engl ; 61(44): e202210924, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098932

RESUMO

Graphene nanoribbons (GNRs) are promising in organic optoelectronic materials, and their properties largely depend on the size, edge, and conformation. Herein, the fully armchair-edged GNRs (AGNRs) with lengths up to 2.65 nm by using a Cu-catalyzed deoxygenative coupling as a key step. The resulting AGNRs (2HBT, 3HBT, and 4HBT) possess highly twisted π-scaffolds, and the torsion angles between the adjacent triphenylene moieties are larger than 32°, as proved by crystallographic analyses. Theoretical and spectroscopic studies show that the butoxy groups endow AGNRs with electron-rich features, the extension of the π-system from 2HBT to 4HBT reinforces S0 →S1 excitation, and the distortion of the π-scaffold enhances the fluorescence quantum yield (ΦF ). In particular, 4HBT has the lowest oxidation potential (Eox 1 =0.55 V vs. SCE) and displays red fluorescence with a ΦF value of 81 %.

16.
Angew Chem Int Ed Engl ; 61(38): e202208383, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35869870

RESUMO

Efficient cathode interfacial layers (CILs) are becoming essential elements for organic solar cells (OSCs). However, the absorption of commonly used cathode interfacial materials (CIMs) is either too weak or overlaps too much with that of photoactive materials, hindering their contribution to the light absorption. In this work, we demonstrate the construction of highly efficient CIMs based on 2,7-di-tert-butyl-4,5,9,10-pyrene diimide (t-PyDI) framework. By introducing amino, amino N-oxide and quaternary ammonium bromide as functional groups, three novel self-doped CIMs named t-PyDIN, t-PyDINO and t-PyDINBr are synthesized. These CIMs are capable of boosting the device performances by broadening the absorption, forming ohmic contact at the interface of active layer and electrode, as well as facilitating electron collection. Notably, the device based on t-PyDIN achieved a power conversion efficiency of 18.25 %, which is among the top efficiencies reported to date in binary OSCs.

17.
Small ; 16(24): e2001070, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419332

RESUMO

Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal-organic frameworks, COFs are a new type of porous materials with well-designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal-free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF-based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.

18.
Small ; 16(39): e2002808, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851802

RESUMO

As stated in the classic Kirchhoff's circuit laws, the total conductance of two parallel channels in an electronic circuit is the sum of the individual conductance. However, in molecular circuits, the quantum interference (QI) between the individual channels may lead to apparent invalidity of Kirchhoff's laws. Such an effect can be very significant in single-molecule circuits consisting of partially overlapped multiple transport channels. Herein, an investigation on how the molecular circuit conductance correlates to the individual channels is conducted in the presence of QI. It is found that the conductance of multi-channel circuit consisting of both constructive and destructive QI is significantly smaller than the addition of individual ones due to the interference between channels. In contrast, the circuit consisting of destructive QI channels exhibits an additive transport. These investigations provide a new cognition of transport mechanism and manipulation of transport in multi-channel molecular circuits.

19.
Chemistry ; 26(31): 7083-7091, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32073723

RESUMO

The electron donor tetrathiafulvalene (D1 ) was fused onto the electron-rich heterabuckybowl trichalcogenasumanene (D2 ) through an electron-deficient pyrazine unit (A) to give 1 c, 1 d, 2 c, and 2 d, featuring the D1 -A-D2 structure. Both D1 and D2 play a pivotal role in intramolecular charge-transfer (ICT) transitions, consequently 1 c, 2 d, 2 c, and 2 d show a broad ICT band at 450-720 nm in steady state. They exhibit two charge-separated transient states, CS1 and CS2 , that appear in sequence. CS1 has a short lifetime (542 fs), and the D1 moiety on CS1 is in the radical cation state with an absorption maximum (λmax ) at 889 nm. CS1 then converts into CS2 (λmax , 1105 nm) through an ICT between D1 .+ and D2 , affording D1 (1-δ).+ and D2 δ.+ . Compounds 1 c, 1 d, 2 c, and 2 d show protonation-induced intramolecular electron transfer that leads to absorption at λ=700-1300 nm. Owing to the existence of an electron-rich C=C bond on the D1 moiety and in situ generation of 1 O2 by the pyrazine-fused D2 moiety, compounds 1 c, 1 d, 2 c, and 2 d display self-sensitized photooxidation in 50 s.


Assuntos
Compostos Heterocíclicos/química , Pirazinas/química , Transporte de Elétrons , Elétrons , Hidrogenação , Estrutura Molecular
20.
Chem Rec ; 20(5): 413-428, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31584251

RESUMO

The development of two-dimensional (2D) materials have attracted increasing interest due to their unique structure and various potential applications such as opto-electronic devices and photocatalysis. Our group have contributed to this exciting field by creating novel preparation methods for a various of 2D materials including transition metal dichalcogenides (TMDs), carbon nitrides and single elemental 2D materials from Group 15. Particularly, employing powerful time-resolved spectroscopic techniques such as femtosecond transient absorption spectroscopy, we elucidated the excited-state dynamics of 2D materials behind their outstanding performance in photocatalytic and photonic devices. Therefore in this account, we focus on the effective fabrication methods of 2D materials and their photoinduced excited-state dynamics. Following the introduction in Part 1, we will summarize our novel strategies for fabricating 2D materials (Part 2). Then in Part 3 we will introduce the instrumentation for exploring the photoinduced excited-state dynamics of the 2D materials spanning a wide time scale from ultrafast fs to slow ms. Part 4 details the applications of the 2D materials in photocatalysis and nonlinear optics determined by their excited-state physics and chemistry. Part 5 of perspectives summarizes a few future trends of 2D materials on a series of issues like fabrications, dynamic investigations and photonic optoelectronic applications. Collective efforts through researchers from interdisciplinary fields are expected to further push the exciting territory towards a new horizon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA