Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38981482

RESUMO

Cellular senescence is an irreversible state of cell-cycle arrest induced by various stresses, including aberrant oncogene activation, telomere shortening, and DNA damage. Through a genome-wide screen, we discovered a conserved small nucleolar RNA (snoRNA), SNORA13, that is required for multiple forms of senescence in human cells and mice. Although SNORA13 guides the pseudouridylation of a conserved nucleotide in the ribosomal decoding center, loss of this snoRNA minimally impacts translation. Instead, we found that SNORA13 negatively regulates ribosome biogenesis. Senescence-inducing stress perturbs ribosome biogenesis, resulting in the accumulation of free ribosomal proteins (RPs) that trigger p53 activation. SNORA13 interacts directly with RPL23, decreasing its incorporation into maturing 60S subunits and, consequently, increasing the pool of free RPs, thereby promoting p53-mediated senescence. Thus, SNORA13 regulates ribosome biogenesis and the p53 pathway through a non-canonical mechanism distinct from its role in guiding RNA modification. These findings expand our understanding of snoRNA functions and their roles in cellular signaling.

2.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265146

RESUMO

Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.


Assuntos
Giro Denteado , Células-Tronco Neurais , Animais , Camundongos , Giro Denteado/metabolismo , Proteólise , Células-Tronco Neurais/metabolismo , Astrócitos/metabolismo , Lisossomos/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598339

RESUMO

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Assuntos
Carbono , Solo , Solo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Microbiologia do Solo
4.
PLoS Pathog ; 20(6): e1012311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885273

RESUMO

The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.


Assuntos
Vírion , Zinco , Zinco/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Cisteína/metabolismo , Proteínas Virais/metabolismo , Morfogênese
5.
Gastroenterology ; 167(4): 750-763.e10, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38582270

RESUMO

BACKGROUND & AIMS: Hepatitis E virus (HEV), primarily genotype 1 (HEV-1), causes approximately 20.1 million infections, 44,000 deaths, and 3000 stillbirths annually. Current evidence indicates that HEV-1 is only transmitted in humans. Here, we evaluated whether Mongolian gerbils can serve as animal models for HEV-1 infection. METHODS: Mongolian gerbils were used for HEV-1 and hepatitis E virus genotype 3 infection experiments. HEV infection parameters, including detection of HEV RNA and HEV antigen, liver function assessment, and histopathology, were evaluated. RESULTS: We adapted a clinical isolate of HEV-1 for Mongolian gerbils by serial passaging in feces of aged male gerbils. The gerbil-adapted strain obtained at passage 3 induced a robust, acute HEV infection, characterized by stable fecal virus shedding, elevated liver enzymes, histopathologic changes in the liver, and seroconversion to anti-HEV. An infectious complementary DNA clone of the adapted virus was generated. HEV-1-infected pregnant gerbils showed a high rate of maternal mortality and vertical transmission. HEV RNA or antigens were detected in the liver, kidney, intestine, placenta, testis, and fetus liver. Liver and placental transcriptomic analyses indicated activation of host immunity. Tacrolimus prolonged HEV-1 infection, whereas ribavirin cleared infection. The protective efficacy of a licensed HEV vaccine was validated using this model. CONCLUSIONS: HEV-1 efficiently infected Mongolian gerbils. This HEV-1 infection model will be valuable for investigating hepatitis E immunopathogenesis and evaluating vaccines and antivirals against HEV.


Assuntos
Modelos Animais de Doenças , Genótipo , Gerbillinae , Vírus da Hepatite E , Hepatite E , Imunocompetência , Fígado , RNA Viral , Animais , Vírus da Hepatite E/genética , Vírus da Hepatite E/patogenicidade , Vírus da Hepatite E/imunologia , Hepatite E/virologia , Hepatite E/imunologia , Hepatite E/transmissão , Masculino , Feminino , RNA Viral/isolamento & purificação , RNA Viral/análise , Fígado/virologia , Fígado/patologia , Fezes/virologia , Gravidez , Transmissão Vertical de Doenças Infecciosas , Antivirais/uso terapêutico , Antivirais/farmacologia , Eliminação de Partículas Virais , Ribavirina/uso terapêutico , Ribavirina/farmacologia , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/imunologia
6.
J Virol ; 98(7): e0084624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38899900

RESUMO

Chronic hepatitis E mostly occurs in organ transplant recipients and can lead to rapid liver fibrosis and cirrhosis. Previous studies found that the development of chronic hepatitis E virus (HEV) infection is linked to the type of immunosuppressant used. Animal models are crucial for the study of pathogenesis of chronic hepatitis E. We previously established a stable chronic HEV infection rabbit model using cyclosporine A (CsA), a calcineurin inhibitor (CNI)-based immunosuppressant. However, the immunosuppression strategy and timing may be optimized, and how different types of immunosuppressants affect the establishment of chronic HEV infection in this model is still unknown. Here, we showed that chronic HEV infection can be established in 100% of rabbits when CsA treatment was started at HEV challenge or even 4 weeks after. Tacrolimus or prednisolone treatment alone also contributed to chronic HEV infection, resulting in 100% and 77.8% chronicity rates, respectively, while mycophenolate mofetil (MMF) only led to a 28.6% chronicity rate. Chronic HEV infection was accompanied with a persistent activation of innate immune response evidenced by transcriptome analysis. The suppressed adaptive immune response evidenced by low expression of genes related to cytotoxicity (like perforin and FasL) and low anti-HEV seroconversion rates may play important roles in causing chronic HEV infection. By analyzing HEV antigen concentrations with different infection outcomes, we also found that HEV antigen levels could indicate chronic HEV infection development. This study optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits and highlighted the potential association between the development of chronic HEV infection and immunosuppressants.IMPORTANCEOrgan transplant recipients are at high risk of chronic hepatitis E and generally receive a CNI-based immunosuppression regimen containing CNI (tacrolimus or CsA), MMF, and/or corticosteroids. Previously, we established stable chronic HEV infection in a rabbit model by using CsA before HEV challenge. In this study, we further optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits. Chronic HEV infection can also be established when CsA treatment was started at the same time or even 4 weeks after HEV challenge, clearly indicating the risk of progression to chronic infection under these circumstances and the necessity of HEV screening for both the recipient and the donor preoperatively. CsA, tacrolimus, or prednisolone instead of MMF significantly contributed to chronic HEV infection. HEV antigen in acute infection phase indicates the development of chronic infection. Our results have important implications for understanding the potential association between chronic HEV infection and immunosuppressants.


Assuntos
Ciclosporina , Modelos Animais de Doenças , Vírus da Hepatite E , Hepatite E , Terapia de Imunossupressão , Imunossupressores , Tacrolimo , Animais , Coelhos , Hepatite E/imunologia , Hepatite E/virologia , Hepatite E/tratamento farmacológico , Vírus da Hepatite E/imunologia , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Prednisolona/uso terapêutico , Prednisolona/farmacologia , Masculino , Imunidade Inata/efeitos dos fármacos , Ácido Micofenólico/farmacologia , Hepatite Crônica/tratamento farmacológico , Hepatite Crônica/imunologia , Hepatite Crônica/virologia , Doença Crônica , Inibidores de Calcineurina/farmacologia , Inibidores de Calcineurina/uso terapêutico
7.
Mol Ther ; 32(5): 1510-1525, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454605

RESUMO

The acute respiratory virus infection can induce uncontrolled inflammatory responses, such as cytokine storm and viral pneumonia, which are the major causes of death in clinical cases. Cyclophilin A (CypA) is mainly distributed in the cytoplasm of resting cells and released into the extracellular space in response to inflammatory stimuli. Extracellular CypA (eCypA) is upregulated and promotes inflammatory response in severe COVID-19 patients. However, how eCypA promotes virus-induced inflammatory response remains elusive. Here, we observe that eCypA is induced by influenza A and B viruses and SARS-CoV-2 in cells, mice, or patients. Anti-CypA mAb reduces pro-inflammatory cytokines production, leukocytes infiltration, and lung injury in virus-infected mice. Mechanistically, eCypA binding to integrin ß2 triggers integrin activation, thereby facilitating leukocyte trafficking and cytokines production via the focal adhesion kinase (FAK)/GTPase and FAK/ERK/P65 pathways, respectively. These functions are suppressed by the anti-CypA mAb that specifically blocks eCypA-integrin ß2 interaction. Overall, our findings reveal that eCypA-integrin ß2 signaling mediates virus-induced inflammatory response, indicating that eCypA is a potential target for antibody therapy against viral pneumonia.


Assuntos
COVID-19 , Ciclofilina A , Ciclofilina A/metabolismo , Animais , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/virologia , COVID-19/imunologia , Antígenos CD18/metabolismo , SARS-CoV-2 , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Pneumonia Viral/imunologia , Citocinas/metabolismo , Anticorpos Monoclonais/farmacologia , Transdução de Sinais , Vírus da Influenza A , Modelos Animais de Doenças
8.
Genomics ; 116(3): 110835, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521201

RESUMO

Pod length (PL) is one of the major traits determining pod size and yield of peanut. Discovering the quantitative trait loci (QTL) and identifying candidate genes associated with PL are essential for breeding high-yield peanut. In this study, quantitative trait loci sequencing (QTL-seq) was performed using the F2 population constructed by a short-pod variety Tifrunner (Tif) and a long-pod line Lps, and a 0.77 Mb genomic region on chromosome 07 was identified as the candidate region for PL. Then, the candidate region was narrowed to a 265.93 kb region by traditional QTL approach. RNA-seq analysis showed that there were four differentially expressed genes (DEGs) in the candidate region, among which Arahy.PF2L6F (AhCDC48) and Arahy.P4LK2T (AhTAA1) were speculated to be PL-related candidate genes. These results were informative for the elucidation of the underlying regulatory mechanism in peanut pod length and would facilitate further identification of valuable target genes.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , RNA-Seq , Genes de Plantas
9.
Genes Immun ; 25(1): 66-81, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246974

RESUMO

Interferon-γ (IFN-γ) is an important cytokine in tissue homeostasis and immune response, while studies about it in antibody-mediated rejection (ABMR) are very limited. This study aims to comprehensively elucidate the role of IFN-γ in ABMR after renal transplantation. In six renal transplantation cohorts, the IFN-γ responses (IFNGR) biological process was consistently top up-regulated in ABMR compared to stable renal function or even T cell-mediated rejection in both allografts and peripheral blood. According to single-cell analysis, IFNGR levels were found to be broadly elevated in most cell types in allografts and peripheral blood with ABMR. In allografts with ABMR, M1 macrophages had the highest IFNGR levels and were heavily infiltrated, while kidney resident M2 macrophages were nearly absent. In peripheral blood, CD14+ monocytes had the top IFNGR level and were significantly increased in ABMR. Immunofluorescence assay showed that levels of IFN-γ and M1 macrophages were sharply elevated in allografts with ABMR than non-rejection. Importantly, the IFNGR level in allografts was identified as a strong risk factor for long-term renal graft survival. Together, this study systematically analyzed multi-omics from thirteen independent cohorts and identified IFN-γ and IFNGR as determinants of ABMR and clinical outcomes in patients after renal transplantation.


Assuntos
Transplante de Rim , Humanos , Anticorpos , Rejeição de Enxerto/etiologia , Interferon gama , Fatores de Risco
10.
J Cell Mol Med ; 28(16): e70021, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39153212

RESUMO

Accumulating evidence has demonstrated that F-box protein 22 (FBXO22) participates in tumour development and progression in various types of human malignancies. However, the functions and detailed molecular mechanisms of FBXO22 in osteosarcoma tumorigenesis and progression remain elusive. In this study, we aimed to determine the effects of FBXO22 on the cell proliferation, migration and invasion of osteosarcoma cells using cell counting kit-8 and Matrigel Transwell approaches. Moreover, we explored the molecular mechanisms by which FBXO22 mediated oncogenesis and progression in osteosarcoma via Western blotting, immunoprecipitation and ubiquitination. We found that FBXO22 depletion inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas FBXO22 overexpression increased the proliferation and motility of osteosarcoma cells. Mechanistically, FBXO22 promoted the ubiquitination and degradation of FoxO1 in osteosarcoma cells. FBXO22 depletion reduced cell proliferation and motility via regulation of FoxO1. Taken together, our findings provide new insight into FBXO22-induced osteosarcoma tumorigenesis. The inhibition of FBXO22 could be a promising strategy for the treatment of osteosarcoma.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas F-Box , Proteína Forkhead Box O1 , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Ubiquitinação , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Humanos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Proteólise , Progressão da Doença , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Invasividade Neoplásica , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Receptores Citoplasmáticos e Nucleares
11.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961329

RESUMO

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Assuntos
Frutas , Perfilação da Expressão Gênica , Metabolômica , Folhas de Planta , Prunus persica , Folhas de Planta/metabolismo , Folhas de Planta/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Metaboloma , Transcriptoma , Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo
12.
Neuroimage ; 290: 120560, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431181

RESUMO

Brain extraction and image quality assessment are two fundamental steps in fetal brain magnetic resonance imaging (MRI) 3D reconstruction and quantification. However, the randomness of fetal position and orientation, the variability of fetal brain morphology, maternal organs around the fetus, and the scarcity of data samples, all add excessive noise and impose a great challenge to automated brain extraction and quality assessment of fetal MRI slices. Conventionally, brain extraction and quality assessment are typically performed independently. However, both of them focus on the brain image representation, so they can be jointly optimized to ensure the network learns more effective features and avoid overfitting. To this end, we propose a novel two-stage dual-task deep learning framework with a brain localization stage and a dual-task stage for joint brain extraction and quality assessment of fetal MRI slices. Specifically, the dual-task module compactly contains a feature extraction module, a quality assessment head and a segmentation head with feature fusion for simultaneous brain extraction and quality assessment. Besides, a transformer architecture is introduced into the feature extraction module and the segmentation head. We utilize a multi-step training strategy to guarantee a stable and successful training of all modules. Finally, we validate our method by a 5-fold cross-validation and ablation study on a dataset with fetal brain MRI slices in different qualities, and perform a cross-dataset validation in addition. Experiments show that the proposed framework achieves very promising performance.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Gravidez , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Cabeça , Feto/diagnóstico por imagem
13.
J Am Chem Soc ; 146(10): 6773-6783, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421958

RESUMO

The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.


Assuntos
Hidrocarbonetos Fluorados , Propanóis , Proteínas , Triptofano , Proteínas/química , Peptídeos , Catálise
14.
Anal Chem ; 96(6): 2658-2665, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311857

RESUMO

Liquid biopsy is of great significance in tumor early diagnosis and treatment stratification. PD-L1-positive small extracellular vesicles (PD-L1+ sEVs) are closely related to tumor growth and immunotherapy response, which are considered valuable liquid biopsy biomarkers. In contrast to conventional in vitro detection, in vivo detection has the ability to improve the detection efficiency and enable continuous or real-time dynamic monitoring. However, in vivo detection of PD-L1+ sEVs has multiple difficulties, such as high cell background, complex blood environments, and lack of a specific and stable detection method. Herein, the in vivo detection of PD-L1+ sEVs method was constructed, which efficiently separated sEVs based on the microfluidic device and quantitatively analyzed PD-L1+ sEVs by aptamer recognition and hybridization chain reaction. The concentration of PD-L1+ sEVs was continuously monitored, and significant differences at different stages of tumor as well as a correlation with tumor volume were found. Diseased and healthy individuals could also be effectively distinguished based on the concentration of PD-L1+ sEVs. The method with good stability, biocompatibility, and detection performance provided a powerful means for in vivo detection of PD-L1+ sEVs, contributing to the clinical diagnosis and treatment of tumor.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Antígeno B7-H1 , Neoplasias/diagnóstico , Biópsia Líquida , Dispositivos Lab-On-A-Chip
15.
Biochem Biophys Res Commun ; 704: 149672, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401306

RESUMO

4-hydroxyphenylpyruvate dioxygenase (HPPD) Inhibitor Sensitive 1 (HIS1) is an endogenous gene of rice, conferring broad-spectrum resistance to ß-triketone herbicides. Similar genes, known as HIS1-like genes (HSLs), exhibit analogous functions and can complement the herbicide-resistant characteristics endowed by HIS1. The identification of HIS1 and HSLs represents a valuable asset, as the intentional pairing of herbicides with resistance genes emerges as an effective strategy for crop breeding. Encoded by HIS1 is a Fe(II)/2-oxoglutarate-dependent oxygenase responsible for detoxifying ß-triketone herbicides through hydroxylation. However, the precise structure supporting this function remains unclear. This work, which determined the crystal structure of HIS1, reveals a conserved core motif of Fe(II)/2-oxoglutarate-dependent oxygenase and pinpoints the crucial residue dictating substrate preference between HIS1 and HSL.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Oryza , Oryza/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Cicloexanonas/química , Cicloexanonas/farmacologia , Ácidos Cetoglutáricos , Oxigenases , Herbicidas/farmacologia , Compostos Ferrosos , Inibidores Enzimáticos/farmacologia
16.
Small ; : e2402105, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727184

RESUMO

The scarcity of fresh water necessitates sustainable and efficient water desalination strategies. Solar-driven steam generation (SSG), which employs solar energy for water evaporation, has emerged as a promising approach. Graphene oxide (GO)-based membranes possess advantages like capillary action and Marangoni effect, but their stacking defects and dead zones of flexible flakes hinders efficient water transportation, thus the evaporation rate lag behind unobstructed-porous 3D evaporators. Therefore, fundamental mass-transfer approach for optimizing SSG evaporators offers new horizons. Herein, a universal multi-force-fields-based method is presented to regularize membrane channels, which can mechanically eliminate inherent interlayer stackings and defects. Both characterization and simulation demonstrate the effectiveness of this approach across different scales and explain the intrinsic mechanism of mass-transfer enhancement. When combined with a structurally optimized substrate, the 4Laponite@GO-1 achieves evaporation rate of 2.782 kg m-2 h-1 with 94.48% evaporation efficiency, which is comparable with most 3D evaporators. Moreover, the optimized membrane exhibits excellent cycling stability (10 days) and tolerance to extreme conditions (pH 1-14, salinity 1%-15%), verifies the robust structural stability of regularized channels. This optimization strategy provides simple but efficient way to enhance the SSG performance of GO-based membranes, facilitating their extensive application in sustainable water purification technologies.

17.
Appl Environ Microbiol ; 90(1): e0156623, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38126758

RESUMO

Microbial interactions affect community stability and niche spaces in all ecosystems. However, it is not clear what factors influence these interactions, leading to changes in species fitness and ecological niches. Here, we utilized 16 monocultures and their corresponding pairwise co-cultures to measure niche changes among 16 cultivable bacterial species in a wide range of carbon sources, and we used resource availability as a parameter to alter the interactions of the synthetic bacterial community. Our results suggest that metabolic similarity drives niche deformation between bacterial species. We further found that resource limitation resulted in increased microbial inhibition and more negative interactions. At high resource availability, bacteria exhibited little inhibitory potential and stronger facilitation (in 71% of cases), promoting niche expansion. Overall, our results show that metabolic similarity induces different degrees of resource competition, altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. This framework may lay the basis for understanding complex niche deformation and microbial interactions as modulated by metabolic similarity and resource availability.IMPORTANCEUnderstanding the intricate dynamics of microbial interactions is crucial for unraveling the stability and ecological roles of diverse ecosystems. However, the factors driving these interactions, leading to shifts in species fitness and ecological niches, remain inadequately explored. We demonstrate that metabolic similarity serves as a key driver of niche deformation between bacterial species. Resource availability emerges as a pivotal parameter, affecting interactions within the community. Our findings reveal heightened microbial inhibition and more negative interactions under resource-limited conditions. The prevalent facilitation is observed under conditions of high resource availability, underscoring the potential for niche expansion in such contexts. These findings emphasize that metabolic similarity induces varying degrees of resource competition, thereby altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. Our workflow has broad implications for understanding the roles of metabolic similarity and resource availability in microbial interactions and for designing synthetic microbial communities.


Assuntos
Bactérias , Microbiota , Interações Microbianas , Carbono
18.
Plant Cell Environ ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031093

RESUMO

The fixation and transfer of biological nitrogen from peanuts to maize in maize-peanut intercropping systems play a pivotal role in maintaining the soil nutrient balance. However, the mechanisms through which root interactions regulate biological nitrogen fixation and transfer remain unclear. This study employed a 15N isotope labelling method to quantify nitrogen fixation and transfer from peanuts to maize, concurrently elucidating key microorganisms and genera in the nitrogen cycle through metagenomic sequencing. The results revealed that biological nitrogen fixation in peanut was 50 mg and transfer to maize was 230 mg when the roots interacted. Moreover, root interactions significantly increased nitrogen content and the activities of protease, dehydrogenase (DHO) and nitrate reductase in the rhizosphere soil. Metagenomic analyses and structural equation modelling indicated that nrfC and nirA genes played important roles in regulating nitrogen fixation and transfer. Bradyrhizobium was affected by soil nitrogen content and DHO, indirectly influencing the efficiency of nitrogen fixation and transfer. Overall, our study identified key bacterial genera and genes associated with nitrogen fixation and transfer, thus advancing our understanding of interspecific interactions and highlighting the pivotal role of soil microorganisms and functional genes in maintaining soil ecosystem stability from a molecular ecological perspective.

19.
Opt Express ; 32(11): 20279-20290, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859142

RESUMO

In the 400 Gbit/s transmission system based on C + L band spectrum and QPSK modulation format, the short-wavelength signal power will be shifted to the long-wavelength signal due to the presence of the stimulated Raman scattering (SRS) effect, which will seriously affect the performance of the transmission system as the transmission span accumulates. The solution is to set the gain and gain slopes of the C-band amplifier and L-band amplifier appropriately at each optical amplifier site, and adjust the signal power of each channel through the WSS at the transmitting end and the WSS at the DGE site, so that the flatness of the channel power at the receiving end can be controlled in a reasonable range, thus guaranteeing the transmission performance of the system. However, the system fault will destroy the originally set channel power, which will seriously affect the transmission performance of the system. In this paper, filling channel device combined with output power locking of amplifiers used in a 400 Gbit/s system based on C + L band and QPSK modulation format to provide the protection for the system is proposed and demonstrated for the first time, which gives different solutions for sudden fault at different locations of the system, and provides a reference for the channel power management of multi-band optical transmission systems in the future.

20.
Cancer Cell Int ; 24(1): 60, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326861

RESUMO

BACKGROUND: Glioblastoma (GBM) characterized by immune escape is the most malignant primary brain tumors, which has strong immunosuppressive effect. Programmed death ligand-1 (PD-L1) is a recognized immunosuppressive member on the surface of tumor cells, and plays a crucial role in immune evasion of tumors. Actually, little is known about the regulation of PD-L1 expression in GBM. Insulin-like growth factor binding protein 3 (IGFBP3) is upregulated in GBM and is related to poor patient prognosis. However, it remains unclear whether IGFBP3 plays a role in the regulation of PD-L1 expression in GBM. METHODS: The role of IGFBP3 in the glioma immune microenvironment was investigated using the CIBERSORT algorithm. The correlation between IGFBP3 and PD-L1 expression was analyzed using TCGA and CGGA databases. QRT-PCR, immunoblotting and RNA-seq were used to examine the regulatory effect of IGFBP3 on PD-L1 expression. Co-culture assay, cell counting kit (CCK-8), qRT-PCR, ELISA and flow cytometry were performed to explore the function of IGFBP3 in inducing immunosuppression. The biological role of IGFBP3 was verified using immunohistochemical, immunofluorescence and mice orthotopic tumor model. RESULTS: In this study, we analyzed immune cells infiltration in gliomas and found that IGFBP3 may be associated with an immunosuppressive microenvironment. Then, by analyzing TCGA and CGGA databases, our results showed that IGFBP3 and PD-L1 expression were positively correlated in GBM patients, but not in LGG patients. In vitro experiments conducted on different GBM cell lines revealed that the overexpression of IGFBP3 led to an increase in PD-L1 expression, which was reversible upon knockdown IGFBP3. Mechanistically, IGFBP3 activated the JAK2/STAT3 signaling pathway, leading to an increase in PD-L1 expression. Additionally, co-culture experiments results showed IGFBP3 overexpression induced upregulation of PD-L1 expression promoted apoptosis in Jurkat cells, and this effect was blocked by IGFBP3 antibody and PDL-1 inhibitors. Importantly, in vivo experiments targeting IGFBP3 suppressed tumor growth and significantly prolonged the survival of mice. CONCLUSIONS: This research demonstrated IGFBP3 is a novel regulator for PD-L1 expression in GBM, and identified a new mechanism by which IGFBP3 regulates immune evasion through PD-L1, suggesting that IGFBP3 may be a potential novel target for GBM therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA