Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2209967120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719921

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Cardiomiopatia Dilatada/genética , Sobrevivência Celular , Distrofina/genética , Insuficiência Cardíaca/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/metabolismo , Telômero/genética , Telômero/metabolismo
2.
Circ Res ; 132(2): 187-204, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36583388

RESUMO

BACKGROUND: NOTCH1 pathogenic variants are implicated in multiple types of congenital heart defects including hypoplastic left heart syndrome, where the left ventricle is underdeveloped. It is unknown how NOTCH1 regulates human cardiac cell lineage determination and cardiomyocyte proliferation. In addition, mechanisms by which NOTCH1 pathogenic variants lead to ventricular hypoplasia in hypoplastic left heart syndrome remain elusive. METHODS: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 genome editing was utilized to delete NOTCH1 in human induced pluripotent stem cells. Cardiac differentiation was carried out by sequential modulation of WNT signaling, and NOTCH1 knockout and wild-type differentiating cells were collected at day 0, 2, 5, 10, 14, and 30 for single-cell RNA-seq. RESULTS: Human NOTCH1 knockout induced pluripotent stem cells are able to generate functional cardiomyocytes and endothelial cells, suggesting that NOTCH1 is not required for mesoderm differentiation and cardiovascular development in vitro. However, disruption of NOTCH1 blocks human ventricular-like cardiomyocyte differentiation but promotes atrial-like cardiomyocyte generation through shortening the action potential duration. NOTCH1 deficiency leads to defective proliferation of early human cardiomyocytes, and transcriptomic analysis indicates that pathways involved in cell cycle progression and mitosis are downregulated in NOTCH1 knockout cardiomyocytes. Single-cell transcriptomic analysis reveals abnormal cell lineage determination of cardiac mesoderm, which is manifested by the biased differentiation toward epicardial and second heart field progenitors at the expense of first heart field progenitors in NOTCH1 knockout cell populations. CONCLUSIONS: NOTCH1 is essential for human ventricular-like cardiomyocyte differentiation and proliferation through balancing cell fate determination of cardiac mesoderm and modulating cell cycle progression. Because first heart field progenitors primarily contribute to the left ventricle, we speculate that pathogenic NOTCH1 variants lead to biased differentiation of first heart field progenitors, blocked ventricular-like cardiomyocyte differentiation, and defective cardiomyocyte proliferation, which collaboratively contribute to left ventricular hypoplasia in hypoplastic left heart syndrome.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Células-Tronco Pluripotentes Induzidas , Humanos , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/fisiologia , Miócitos Cardíacos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
3.
Nature ; 572(7769): 335-340, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316208

RESUMO

Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-ß (PDGFRB) as a potential therapeutic target.


Assuntos
Cardiomiopatia Dilatada/genética , Lamina Tipo A/genética , Mutação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Haploinsuficiência/genética , Homeostase , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Célula Única
4.
J Mol Cell Cardiol ; 192: 65-78, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761989

RESUMO

Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Humanos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Células Endoteliais/metabolismo , Animais , Células-Tronco Pluripotentes/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia
5.
Eur Surg Res ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253041

RESUMO

Background Clinical Artificial intelligence (AI) has reached a critical inflection point. Advances in algorithmic science and increased understanding of operational considerations in AI deployment are opening the door to widespread clinical pathway transformation. For surgery in particular, the application of machine learning algorithms in fields such as computer vision and operative robotics are poised to radically change how we screen, diagnose, risk-stratify, treat and follow-up patients, in both pre- and post-operative stages, and within operating theatres. Summary In this paper, we summarise the current landscape of existing and emerging integrations within complex surgical care pathways. We investigate effective methods for practical use of AI throughout the patient pathway, from early screening and accurate diagnosis to intraoperative robotics, post-operative monitoring and follow-up. Horizon scanning of AI technologies in surgery is used to identify novel innovations that can enhance surgical practice today, with potential for paradigm shifts across core domains of surgical practice in the future. Any AI-driven future must be built on responsible and ethical usage, reinforced by effective oversight of data governance, and of risks to patient safety in deployment. Implementation is additionally bound to considerations of usability and pathway feasibility, and the need for robust healthcare technology assessment and evidence generation. While these factors are traditionally seen as barriers to translating AI into practice, we discuss how holistic implementation practices can create a solid foundation for scaling AI across pathways. Key Messages The next decade will see rapid translation of experimental development into real-world impact. AI will require evolution of work practices, but will also enhance patient safety, enhance surgical quality outcomes, and provide significant value for surgeons and health systems. Surgical practice has always sat on a bedrock of technological innovation. For those that follow this tradition, the future of AI in surgery starts now.

6.
Br J Anaesth ; 128(2): 343-351, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34772497

RESUMO

BACKGROUND: Artificial intelligence (AI) has the potential to personalise mechanical ventilation strategies for patients with respiratory failure. However, current methodological deficiencies could limit clinical impact. We identified common limitations and propose potential solutions to facilitate translation of AI to mechanical ventilation of patients. METHODS: A systematic review was conducted in MEDLINE, Embase, and PubMed Central to February 2021. Studies investigating the application of AI to patients undergoing mechanical ventilation were included. Algorithm design and adherence to reporting standards were assessed with a rubric combining published guidelines, satisfying the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis [TRIPOD] statement. Risk of bias was assessed by using the Prediction model Risk Of Bias ASsessment Tool (PROBAST), and correspondence with authors to assess data and code availability. RESULTS: Our search identified 1,342 studies, of which 95 were included: 84 had single-centre, retrospective study design, with only one randomised controlled trial. Access to data sets and code was severely limited (unavailable in 85% and 87% of studies, respectively). On request, data and code were made available from 12 and 10 authors, respectively, from a list of 54 studies published in the last 5 yr. Ethnicity was frequently under-reported 18/95 (19%), as was model calibration 17/95 (18%). The risk of bias was high in 89% (85/95) of the studies, especially because of analysis bias. CONCLUSIONS: Development of algorithms should involve prospective and external validation, with greater code and data availability to improve confidence in and translation of this promising approach. TRIAL REGISTRATION NUMBER: PROSPERO - CRD42021225918.


Assuntos
Inteligência Artificial , Respiração Artificial/métodos , Insuficiência Respiratória/terapia , Algoritmos , Viés , Humanos , Modelos Teóricos , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Relatório de Pesquisa/normas
7.
Eur Heart J ; 42(30): 2935-2951, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34179958

RESUMO

AIMS: The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. Here, we evaluated the role and therapeutic value of dual-specificity phosphatase 26 (DUSP26) in CAVD. METHODS AND RESULTS: Microarray profiling of human calcific aortic valves and normal controls demonstrated that DUSP26 was significantly up-regulated in calcific aortic valves. ApoE-/- mice fed a normal diet or a high cholesterol diet (HCD) were infected with adeno-associated virus serotype 2 carrying DUSP26 short-hairpin RNA to examine the effects of DUSP26 silencing on aortic valve calcification. DUSP26 silencing ameliorated aortic valve calcification in HCD-treated ApoE-/- mice, as evidenced by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and decreased levels of osteogenic markers (Runx2, osterix, and osteocalcin) in the aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Immunoprecipitation, liquid chromatography-tandem mass spectrometry, and functional assays revealed that dipeptidyl peptidase-4 (DPP4) interacted with DUSP26 to mediate the procalcific effects of DUSP26. High N6-methyladenosine levels up-regulated DUSP26 in CAVD; in turn, DUSP26 activated DPP4 by antagonizing mouse double minute 2-mediated ubiquitination and degradation of DPP4, thereby promoting CAVD progression. CONCLUSION: DUSP26 promotes aortic valve calcification by inhibiting DPP4 degradation. Our findings identify a previously unrecognized mechanism of DPP4 up-regulation in CAVD, suggesting that DUSP26 silencing or inhibition is a viable therapeutic strategy to impede CAVD progression.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Fosfatases de Especificidade Dupla , Fosfatases da Proteína Quinase Ativada por Mitógeno , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Calcinose/genética , Calcinose/metabolismo , Células Cultivadas , Dipeptidil Peptidase 4 , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Humanos , Camundongos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Ubiquitinação
8.
Crit Care ; 25(1): 226, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193243

RESUMO

BACKGROUND: Rapid response systems aim to achieve a timely response to the deteriorating patient; however, the existing literature varies on whether timing of escalation directly affects patient outcomes. Prior studies have been limited to using 'decision to admit' to critical care, or arrival in the emergency department as 'time zero', rather than the onset of physiological deterioration. The aim of this study is to establish if duration of abnormal physiology prior to critical care admission ['Score to Door' (STD) time] impacts on patient outcomes. METHODS: A retrospective cross-sectional analysis of data from pooled electronic medical records from a multi-site academic hospital was performed. All unplanned adult admissions to critical care from the ward with persistent physiological derangement [defined as sustained high National Early Warning Score (NEWS) > / = 7 that did not decrease below 5] were eligible for inclusion. The primary outcome was critical care mortality. Secondary outcomes were length of critical care admission and hospital mortality. The impact of STD time was adjusted for patient factors (demographics, sickness severity, frailty, and co-morbidity) and logistic factors (timing of high NEWS, and out of hours status) utilising logistic and linear regression models. RESULTS: Six hundred and thirty-two patients were included over the 4-year study period, 16.3% died in critical care. STD time demonstrated a small but significant association with critical care mortality [adjusted odds ratio of 1.02 (95% CI 1.0-1.04, p = 0.01)]. It was also associated with hospital mortality (adjusted OR 1.02, 95% CI 1.0-1.04, p = 0.026), and critical care length of stay. Each hour from onset of physiological derangement increased critical care length of stay by 1.2%. STD time was influenced by the initial NEWS, but not by logistic factors such as out-of-hours status, or pre-existing patient factors such as co-morbidity or frailty. CONCLUSION: In a strictly defined population of high NEWS patients, the time from onset of sustained physiological derangement to critical care admission was associated with increased critical care and hospital mortality. If corroborated in further studies, this cohort definition could be utilised alongside the 'Score to Door' concept as a clinical indicator within rapid response systems.


Assuntos
Deterioração Clínica , Administração Hospitalar/estatística & dados numéricos , Mortalidade/tendências , Tempo para o Tratamento/normas , Idoso , Estudos Transversais , Feminino , Administração Hospitalar/normas , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Análise de Regressão , Estudos Retrospectivos , Medição de Risco/métodos , Medição de Risco/normas , Medição de Risco/estatística & dados numéricos , Tempo para o Tratamento/estatística & dados numéricos
9.
Eur Arch Otorhinolaryngol ; 278(6): 2107-2114, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33420842

RESUMO

PURPOSE: The COVID-19 pandemic placed an unprecedented demand on critical care services for the provision of mechanical ventilation. Tracheostomy formation facilitates liberation from mechanical ventilation with advantages for both the patient and wider critical care resource, and can be performed using both percutaneous dilatational and surgical techniques. We compared outcomes in those patients undergoing percutaneous dilatational tracheostomy to those undergoing surgical tracheostomy and make recommendations for provision of tracheostomy services in any future surge. METHODS: Multicentre multidisciplinary retrospective observational cohort study including 201 patients with COVID-19 pneumonitis admitted to an ICU in one of five NHS Trusts within the South London Adult Critical Care Network who required mechanical ventilation and subsequent tracheostomy. RESULTS: Percutaneous dilatational tracheostomy was performed in 124 (62%) of patients, and surgical tracheostomy in 77 (38%) of patients. There was no difference between percutaneous dilatational tracheostomy and surgical tracheostomy in either the rate of peri-operative complications (16.9 vs. 22.1%, p = 0.46), median [IQR(range)] time to decannulation [19.0 (15.0-30.2 (5.0-65.0)] vs. 21.0 [15.5-36.0 (5.0-70.0) days] or mortality (13.7% vs. 15.6%, p = 0.84). Of the 172 patients that were alive at follow-up, two remained ventilated and 163 were decannulated. CONCLUSION: In patients with COVID-19 pneumonitis that require tracheostomy to facilitate weaning from mechanical ventilation, there was no difference in outcomes between those patients that had percutaneous dilatational tracheostomy compared with those that had surgical tracheostomy. Planning for future surges in COVID-19-related critical care demands should utilise all available resource and expertise.


Assuntos
COVID-19 , Traqueostomia , Adulto , Humanos , Londres , Pandemias , Respiração Artificial , Estudos Retrospectivos , SARS-CoV-2
10.
Circulation ; 139(21): 2451-2465, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30866650

RESUMO

BACKGROUND: Molecular targeted chemotherapies have been shown to significantly improve the outcomes of patients who have cancer, but they often cause cardiovascular side effects that limit their use and impair patients' quality of life. Cardiac dysfunction induced by these therapies, especially trastuzumab, shows a distinct cardiotoxic clinical phenotype in comparison to the cardiotoxicity induced by conventional chemotherapies. METHODS: We used the human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) platform to determine the underlying cellular mechanisms in trastuzumab-induced cardiac dysfunction. We assessed the effects of trastuzumab on structural and functional properties in iPSC-CMs from healthy individuals and performed RNA-sequencing to further examine the effect of trastuzumab on iPSC-CMs. We also generated human induced pluripotent stem cells from patients receiving trastuzumab and examined whether patients' phenotype could be recapitulated in vitro by using patient-specific iPSC-CMs. RESULTS: We found that clinically relevant doses of trastuzumab significantly impaired the contractile and calcium-handling properties of iPSC-CMs without inducing cardiomyocyte death or sarcomeric disorganization. RNA-sequencing and subsequent functional analysis revealed mitochondrial dysfunction and altered the cardiac energy metabolism pathway as primary causes of trastuzumab-induced cardiotoxic phenotype. Human iPSC-CMs generated from patients who received trastuzumab and experienced severe cardiac dysfunction were more vulnerable to trastuzumab treatment than iPSC-CMs generated from patients who did not experience cardiac dysfunction following trastuzumab therapy. It is important to note that metabolic modulation with AMP-activated protein kinase activators could avert the adverse effects induced by trastuzumab. CONCLUSIONS: Our results indicate that alterations in cellular metabolic pathways in cardiomyocytes could be a key mechanism underlying the development of cardiac dysfunction following trastuzumab therapy; therefore, targeting the altered metabolism may be a promising therapeutic approach for trastuzumab-induced cardiac dysfunction.


Assuntos
Antineoplásicos Imunológicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Cardiopatias/induzido quimicamente , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Trastuzumab/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cardiotoxicidade , Estudos de Casos e Controles , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Feminino , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Contração Miocárdica/efeitos dos fármacos , Fenótipo , Fatores de Risco , Transcriptoma/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 114(52): E11111-E11120, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29203658

RESUMO

Patient-specific pluripotent stem cells (PSCs) can be generated via nuclear reprogramming by transcription factors (i.e., induced pluripotent stem cells, iPSCs) or by somatic cell nuclear transfer (SCNT). However, abnormalities and preclinical application of differentiated cells generated by different reprogramming mechanisms have yet to be evaluated. Here we investigated the molecular and functional features, and drug response of cardiomyocytes (PSC-CMs) and endothelial cells (PSC-ECs) derived from genetically relevant sets of human iPSCs, SCNT-derived embryonic stem cells (nt-ESCs), as well as in vitro fertilization embryo-derived ESCs (IVF-ESCs). We found that differentiated cells derived from isogenic iPSCs and nt-ESCs showed comparable lineage gene expression, cellular heterogeneity, physiological properties, and metabolic functions. Genome-wide transcriptome and DNA methylome analysis indicated that iPSC derivatives (iPSC-CMs and iPSC-ECs) were more similar to isogenic nt-ESC counterparts than those derived from IVF-ESCs. Although iPSCs and nt-ESCs shared the same nuclear DNA and yet carried different sources of mitochondrial DNA, CMs derived from iPSC and nt-ESCs could both recapitulate doxorubicin-induced cardiotoxicity and exhibited insignificant differences on reactive oxygen species generation in response to stress condition. We conclude that molecular and functional characteristics of differentiated cells from human PSCs are primarily attributed to the genetic compositions rather than the reprogramming mechanisms (SCNT vs. iPSCs). Therefore, human iPSCs can replace nt-ESCs as alternatives for generating patient-specific differentiated cells for disease modeling and preclinical drug testing.


Assuntos
Diferenciação Celular , Metilação de DNA , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Técnicas de Transferência Nuclear , Células Endoteliais/citologia , Estudo de Associação Genômica Ampla , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia
12.
Eur Heart J ; 40(45): 3685-3695, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219556

RESUMO

AIMS: Diastolic dysfunction (DD) is common among hypertrophic cardiomyopathy (HCM) patients, causing major morbidity and mortality. However, its cellular mechanisms are not fully understood, and presently there is no effective treatment. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold great potential for investigating the mechanisms underlying DD in HCM and as a platform for drug discovery. METHODS AND RESULTS: In the present study, beating iPSC-CMs were generated from healthy controls and HCM patients with DD. Micropatterned iPSC-CMs from HCM patients showed impaired diastolic function, as evidenced by prolonged relaxation time, decreased relaxation rate, and shortened diastolic sarcomere length. Ratiometric Ca2+ imaging indicated elevated diastolic [Ca2+]i and abnormal Ca2+ handling in HCM iPSC-CMs, which were exacerbated by ß-adrenergic challenge. Combining Ca2+ imaging and traction force microscopy, we observed enhanced myofilament Ca2+ sensitivity (measured as dF/Δ[Ca2+]i) in HCM iPSC-CMs. These results were confirmed with genome-edited isogenic iPSC lines that carry HCM mutations, indicating that cytosolic diastolic Ca2+ overload, slowed [Ca2+]i recycling, and increased myofilament Ca2+ sensitivity, collectively impairing the relaxation of HCM iPSC-CMs. Treatment with partial blockade of Ca2+ or late Na+ current reset diastolic Ca2+ homeostasis, restored diastolic function, and improved long-term survival, suggesting that disturbed Ca2+ signalling is an important cellular pathological mechanism of DD. Further investigation showed increased expression of L-type Ca2+channel (LTCC) and transient receptor potential cation channels (TRPC) in HCM iPSC-CMs compared with control iPSC-CMs, which likely contributed to diastolic [Ca2+]i overload. CONCLUSION: In summary, this study recapitulated DD in HCM at the single-cell level, and revealed novel cellular mechanisms and potential therapeutic targets of DD using iPSC-CMs.


Assuntos
Cardiomiopatia Hipertrófica/genética , Insuficiência Cardíaca Diastólica/fisiopatologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Estudos de Casos e Controles , Diferenciação Celular , Insuficiência Cardíaca Diastólica/tratamento farmacológico , Insuficiência Cardíaca Diastólica/mortalidade , Humanos , Mutação , Cadeias Pesadas de Miosina/genética , Fenótipo , Sarcômeros/fisiologia , Troponina T/genética
14.
Circulation ; 138(23): 2666-2681, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29914921

RESUMO

BACKGROUND: The progression toward low-cost and rapid next-generation sequencing has uncovered a multitude of variants of uncertain significance (VUS) in both patients and asymptomatic "healthy" individuals. A VUS is a rare or novel variant for which disease pathogenicity has not been conclusively demonstrated or excluded, and thus cannot be definitively annotated. VUS, therefore, pose critical clinical interpretation and risk-assessment challenges, and new methods are urgently needed to better characterize their pathogenicity. METHODS: To address this challenge and showcase the uncertainty surrounding genomic variant interpretation, we recruited a "healthy" asymptomatic individual, lacking cardiac-disease clinical history, carrying a hypertrophic cardiomyopathy (HCM)-associated genetic variant (NM_000258.2:c.170C>A, NP_000249.1:p.Ala57Asp) in the sarcomeric gene MYL3, reported by the ClinVar database to be "likely pathogenic." Human-induced pluripotent stem cells (iPSCs) were derived from the heterozygous VUS MYL3(170C>A) carrier, and their genome was edited using CRISPR/Cas9 to generate 4 isogenic iPSC lines: (1) corrected "healthy" control; (2) homozygous VUS MYL3(170C>A); (3) heterozygous frameshift mutation MYL3(170C>A/fs); and (4) known heterozygous MYL3 pathogenic mutation (NM_000258.2:c.170C>G), at the same nucleotide position as VUS MYL3(170C>A), lines. Extensive assays including measurements of gene expression, sarcomere structure, cell size, contractility, action potentials, and calcium handling were performed on the isogenic iPSC-derived cardiomyocytes (iPSC-CMs). RESULTS: The heterozygous VUS MYL3(170C>A)-iPSC-CMs did not show an HCM phenotype at the gene expression, morphology, or functional levels. Furthermore, genome-edited homozygous VUS MYL3(170C>A)- and frameshift mutation MYL3(170C>A/fs)-iPSC-CMs lines were also asymptomatic, supporting a benign assessment for this particular MYL3 variant. Further assessment of the pathogenic nature of a genome-edited isogenic line carrying a known pathogenic MYL3 mutation, MYL3(170C>G), and a carrier-specific iPSC-CMs line, carrying a MYBPC3(961G>A) HCM variant, demonstrated the ability of this combined platform to provide both pathogenic and benign assessments. CONCLUSIONS: Our study illustrates the ability of clustered regularly interspaced short palindromic repeats/Cas9 genome-editing of carrier-specific iPSCs to elucidate both benign and pathogenic HCM functional phenotypes in a carrier-specific manner in a dish. As such, this platform represents a promising VUS risk-assessment tool that can be used for assessing HCM-associated VUS specifically, and VUS in general, and thus significantly contribute to the arsenal of precision medicine tools available in this emerging field.


Assuntos
Sistemas CRISPR-Cas/genética , Cardiomiopatias/patologia , Variação Genética , Sequência de Aminoácidos , Cálcio/metabolismo , Cardiomiopatias/genética , Diferenciação Celular , Mutação da Fase de Leitura , Edição de Genes/métodos , Expressão Gênica , Heterozigoto , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/genética , Alinhamento de Sequência
16.
Biochem J ; 473(14): 2049-60, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27154203

RESUMO

FK506-binding proteins 12.6 (FKBP12.6) and 12 (FKBP12) tightly associate with the cardiac ryanodine receptor (RyR2). Studies suggest that dissociation of FKBP12.6 from mutant forms of RyR2 contributes to store overload-induced Ca(2+) release (SOICR) and Ca(2+)-triggered arrhythmias. However, these findings are controversial. Previous studies focused on the effect of FKBP12.6 on the initiation of SOICR and did not explore changes in the termination of Ca(2+) release. Less is known about FKBP12. We aimed to determine the effect of FKBP12.6 and FKBP12 on the termination of SOICR. Using single-cell imaging, in cells expressing wild-type RyR2, we found that FKBP12.6 and FKBP12 significantly increase the termination threshold of SOICR without changing the activation threshold of SOICR. This effect, dependent on the association of each FKBP with RyR2, reduced the magnitude of Ca(2+) release but had no effect on the propensity for SOICR. In contrast, neither FKBP12.6 nor FKBP12 was able to regulate an arrhythmogenic variant of RyR2, despite a conserved protein interaction. Our results suggest that both FKBP12.6 and FKBP12 play critical roles in regulating RyR2 function by facilitating the termination of SOICR. The inability of FKBPs to mediate a similar effect on the mutant RyR2 represents a novel mechanism by which mutations within RyR2 lead to arrhythmia.


Assuntos
Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Arritmias Cardíacas/metabolismo , Células HEK293 , Humanos , Transporte de Íons/genética , Transporte de Íons/fisiologia , Mutação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/genética
17.
Biophys J ; 110(11): 2386-2396, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276257

RESUMO

At the single-channel level, oxidation of the cardiac ryanodine receptor (RyR2) is known to activate and inhibit the channel depending on the level of oxidation. However, the mechanisms through which these changes alter the activity of RyR2 in a cellular setting are poorly understood. In this study, we determined the effect of oxidation on a common form of RyR2 regulation; store overload-induced Ca(2+) release (SOICR). We found that oxidation resulted in concentration and time-dependent changes in the activation threshold for SOICR. Low concentrations of the oxidant H2O2 resulted in a decrease in the threshold for SOICR, which led to an increase in SOICR events. However, higher concentrations of H2O2, or prolonged exposure, reversed these changes and led to an increase in the threshold for SOICR. This increase in the threshold for SOICR in most cells was to such an extent that it led to the complete inhibition of SOICR. Acute exposure to high concentrations of H2O2 led to an initial decrease and then increase in the threshold for SOICR. In the majority of cells the increased threshold could not be reversed by the application of the reducing agent dithiothreitol. Therefore, our data suggest that low levels of RyR2 oxidation increase the channel activity by decreasing the threshold for SOICR, whereas high levels of RyR2 oxidation irreversibly increase the threshold for SOICR leading to an inhibition of RyR2. Combined, this indicates that oxidation regulates RyR2 by the same mechanism as phosphorylation, methylxanthines, and mutations, via changes in the threshold for SOICR.


Assuntos
Cálcio/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Substâncias Redutoras/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
18.
J Biol Chem ; 290(12): 7736-46, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25627681

RESUMO

The NH2-terminal region (residues 1-543) of the cardiac ryanodine receptor (RyR2) harbors a large number of mutations associated with cardiac arrhythmias and cardiomyopathies. Functional studies have revealed that the NH2-terminal region is involved in the activation and termination of Ca(2+) release. The three-dimensional structure of the NH2-terminal region has recently been solved. It is composed of three domains (A, B, and C). However, the roles of these individual domains in Ca(2+) release activation and termination are largely unknown. To understand the functional significance of each of these NH2-terminal domains, we systematically deleted these domains and assessed their impact on caffeine- or Ca(2+)-induced Ca(2+) release and store overload-induced Ca(2+) release (SOICR) in HEK293 cells. We found that all deletion mutants were capable of forming caffeine- and ryanodine-sensitive functional channels, indicating that the NH2-terminal region is not essential for channel gating. Ca(2+) release measurements revealed that deleting domain A markedly reduced the threshold for SOICR termination but had no effect on caffeine or Ca(2+) activation or the threshold for SOICR activation, whereas deleting domain B substantially enhanced caffeine and Ca(2+) activation and lowered the threshold for SOICR activation and termination. Conversely, deleting domain C suppressed caffeine activation, abolished Ca(2+) activation and SOICR, and diminished protein expression. These results suggest that domain A is involved in channel termination, domain B is involved in channel suppression, and domain C is critical for channel activation and expression. Our data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations.


Assuntos
Cálcio/metabolismo , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Western Blotting , Cafeína/farmacologia , Células HEK293 , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/química
20.
Biochem J ; 467(1): 177-90, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25605235

RESUMO

The cardiac Ca²âº release channel [ryanodine receptor type 2 (RyR2)] is modulated by thiol reactive agents, but the molecular basis of RyR2 modulation by thiol reagents is poorly understood. Cys³6³5 in the skeletal muscle RyR1 is one of the most hyper-reactive thiols and is important for the redox and calmodulin (CaM) regulation of the RyR1 channel. However, little is known about the role of the corresponding cysteine residue in RyR2 (Cys³6°²) in the function and regulation of the RyR2 channel. In the present study, we assessed the impact of mutating Cys³6°² (C³6°²A) on store overload-induced Ca²âº release (SOICR) and the regulation of RyR2 by thiol reagents and CaM. We found that the C³6°²A mutation suppressed SOICR by raising the activation threshold and delayed the termination of Ca²âº release by reducing the termination threshold. As a result, C³6°²A markedly increased the fractional Ca²âº release. Furthermore, the C³6°²A mutation diminished the inhibitory effect of N-ethylmaleimide on Ca²âº release, but it had no effect on the stimulatory action of 4,4'-dithiodipyridine (DTDP) on Ca²âº release. In addition, Cys³6°² mutations (C³6°²A or C³6°²R) did not abolish the effect of CaM on Ca²âº-release termination. Therefore, RyR2-Cys³6°² is a major site mediating the action of thiol alkylating agent N-ethylmaleimide, but not the action of the oxidant DTDP. Our data also indicate that residue Cys³6°² plays an important role in the activation and termination of Ca²âº release, but it is not essential for CaM regulation of RyR2.


Assuntos
Sinalização do Cálcio , Calmodulina/metabolismo , Cisteína/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Alquilação/efeitos dos fármacos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/química , Calmodulina/genética , Sequência Conservada , Dissulfetos/farmacologia , Etilmaleimida/farmacologia , Células HEK293 , Humanos , Cinética , Camundongos , Oxirredução , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Piridinas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Reagentes de Sulfidrila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA