Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(3): 653-665, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269590

RESUMO

BACKGROUND: Single-cell RNA-Seq analysis can determine the heterogeneity of cells between different tissues at a single-cell level. Coronary artery endothelial cells (ECs) are important to coronary blood flow. However, little is known about the heterogeneity of coronary artery ECs, and cellular identity responses to flow. Identifying endothelial subpopulations will contribute to the precise localization of vascular endothelial subpopulations, thus enabling the precision of vascular injury treatment. METHODS: Here, we performed a single-cell RNA sequencing of 31 962 cells and functional assays of 3 branches of the coronary arteries (right coronary artery/circumflex left coronary artery/anterior descending left coronary artery) in wild-type mice. RESULTS: We found a compendium of 7 distinct cell types in mouse coronary arteries, mainly ECs, granulocytes, cardiac myocytes, smooth muscle cells, lymphocytes, myeloid cells, and fibroblast cells, and showed spatial heterogeneity between arterial branches. Furthermore, we revealed a subpopulation of coronary artery ECs, CD133+TRPV4high ECs. TRPV4 (transient receptor potential vanilloid 4) in CD133+TRPV4high ECs is important for regulating vasodilation and coronary blood flow. CONCLUSIONS: Our study elucidates the nature and range of coronary arterial cell diversity and highlights the importance of coronary CD133+TRPV4high ECs in regulating coronary vascular tone.


Assuntos
Células Endoteliais , Canais de Cátion TRPV , Camundongos , Animais , Células Endoteliais/metabolismo , Canais de Cátion TRPV/genética , Análise da Expressão Gênica de Célula Única , Vasodilatação/fisiologia , Endotélio Vascular/metabolismo
2.
Langmuir ; 40(12): 6107-6117, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466815

RESUMO

Many advanced materials are designed for the removal of heavy metal ions from water. However, materials for eliminating trace heavy metal ions from wastewater to meet drinking water standards remain a major challenge. Herein, epoxy group-functionalized open-cellular beads are synthesized by UV polymerization of a water-in-oil-in-water system. The epoxy groups are further transformed into diethylenetriaminepentaacetic acid (DTPA) with hexamethylene diamine as a bridging agent. The resulting material (DTPA@polyHIPE beads) can eliminate trace Cu(II), Cr(III), Pb(II), Fe(III), or Cd(II) from water. When 0.15 g of DTPA@polyHIPE beads are used to adsorb metal ions of 20 mg in 100 mL of water, the residue concentrations of Cu(II), Cr(III), Pb(II), Fe(III), and Cd(II) are reduced to 0.08, 0.06, 0.02, 0.09, and 0.07 mg/L, respectively. The adsorption efficiencies of the beads for these ions are all higher than 99.55%. The adsorbent is durable and exhibits good recyclability by retaining an adsorption capacity of ≥91% after 5 cycles. The negative values of ΔG in the adsorption process indicate that the adsorption is feasible and spontaneous. The chemical adsorption follows the Freundlich adsorption model, indicating a multilayer heterogeneous adsorption. The DTPA@polyHIPE beads have a great potential application in dealing with trace heavy metal ion polluted water.

3.
Plant Physiol ; 190(4): 2757-2774, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36130294

RESUMO

Sclerotinia sclerotiorum causes substantial damage and loss of yield in oilseed rape (Brassica napus). The molecular mechanisms of oilseed rape defense against Sclerotinia remain elusive. In this study, we found that in the early stages of B. napus infection a conserved mitogen-activated protein kinase (MAPK) cascade mediated by BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 module phosphorylates the substrate BnWRKY33, enhancing its transcriptional activity. The activated BnWRKY33 binds to its own promoter and triggers a transcriptional burst of BnWRKY33, thus helping plants effectively resist the pathogenic fungi by enhancing the expression of phytoalexin synthesis-related genes. The expression of BnWRKY33 is fine-tuned during defense. Ongoing Sclerotinia infection induces BnaA03.WRKY28 and BnaA09.VQ12 expression. BnaA09.VQ12 interacts physically with BnaA03.WRKY28 to form a protein complex, causing BnaA03.WRKY28 to outcompete BnWRKY33 and bind to the BnWRKY33 promoter. BnaA03.WRKY28 induction suppresses BnWRKY33 expression in the later stages of infection but promotes branch formation in the leaf axils by regulating the expression of branching-related genes such as BnBRC1. BnaA03.WRKY28 participates in the trade-off between defense and growth. These findings suggest that oilseed rape plants may modulate defense-response strength and develop alternative reproduction and survival strategies in the face of lethal pathogens.


Assuntos
Ascomicetos , Brassica napus , Brassica napus/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica
4.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1268-1277, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36082933

RESUMO

Endothelial calcium (Ca 2+) signaling plays a major role in regulating vasodilation in response to fluid shear stress (FSS) generated by blood flow. Local Ca 2+ influx through single transient receptor potential channel subfamily V member 4 (TRPV4) (termed "sparklets") activated by low concentrations of chemical and biological stimuli has been revealed to modulate vascular function. However, the range in which FSS can initiate TRPV4 sparklets to induce vasodilation is unknown. Here, we assess the activity of TPRV4 sparklets induced by various physiological levels of FSS and investigate the mechanisms involving these Ca 2+ signals in FSS-induced vasodilation. Intact small mesenteric arteries are used for Ca 2+ imaging with a GCaMP2(TRPV4-KO) mouse model and high-speed confocal systems. Markedly increased local Ca 2+ signals are observed in the endothelium under 4-8 dyne/cm 2 FSS, whereas FSS >8 dyne/cm 2 causes global Ca 2+ influx. Further analysis shows that TRPV4 channels form a four-channel group to mediate Ca 2+ sparklets under certain levels of FSS. The large Ca 2+ influx hyperpolarizes endothelial cells by stimulating intermediate (IK)- and small (SK)-conductance Ca 2+-sensitive potassium channels, leading to hyperpolarization of the surrounding smooth muscle cells and ultimately causing endothelium-dependent vasodilation. In conclusion, Ca 2+ influx transits through a small number of endothelial TRPV4 channels opened by certain levels of FSS, which activates the Ca 2+-sensitive IK and SK channels to cause vasodilation.


Assuntos
Células Endoteliais , Canais de Cátion TRPV , Camundongos , Animais , Canais de Cátion TRPV/metabolismo , Células Endoteliais/metabolismo , Sinalização do Cálcio/fisiologia , Artérias Mesentéricas/metabolismo , Vasodilatação/fisiologia , Endotélio Vascular/metabolismo
5.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077154

RESUMO

The paper reports a strategy to synthesize Cd0.9Co0.1S nanorods (NRs) via a one-pot solvothermal method. Remarkably, the pencil-shaped Cd0.9Co0.1S NRs with a large aspect ratio and good polycrystalline plane structure significantly shorten the photogenerated carrier transfer path and achieve fast separation. An appropriate amount of Co addition enhances visible light-harvesting and generates a photothermal effect to improve the surface reaction kinetics and increases the charge transfer rate. Moreover, the internal electric field facilitates the separation and transfer of carriers and effectively impedes their recombination. As a result, the optimized Cd0.9Co0.1S NRs yield a remarkable H2 evolution rate of 8.009 mmol·g-1·h-1, which is approximately 7.2 times higher than that of pristine CdS. This work improves the photocatalytic hydrogen production rate by tuning and optimizing electronic structures through element addition and using the photothermal synergistic effect.


Assuntos
Compostos de Cádmio , Nanotubos , Cádmio , Compostos de Cádmio/química , Eletricidade , Luz , Nanotubos/química
6.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558139

RESUMO

Lung cancer is one of the 10 most common cancers in the world, which seriously affects the normal life and health of patients. According to the investigation report, the 3-year survival rate of patients with lung cancer is less than 20%. Heredity, the environment, and long-term smoking or secondhand smoke greatly promote the development and progress of the disease. The mechanisms of action of the occurrence and development of lung cancer have not been fully clarified. As a new type of gas signal molecule, hydrogen sulfide (H2S) has received great attention for its physiological and pathological roles in mammalian cells. It has been found that H2S is widely involved in the regulation of the respiratory system and digestive system, and plays an important role in the occurrence and development of lung cancer. H2S has the characteristics of dissolving in water and passing through the cell membrane, and is widely expressed in body tissues, which determines the possibility of its participation in the occurrence of lung cancer. Both endogenous and exogenous H2S may be involved in the inhibition of lung cancer cells by regulating mitochondrial energy metabolism, mitochondrial DNA integrity, and phosphoinositide 3-kinase/protein kinase B co-pathway hypoxia-inducible factor-1α (HIF-1α). This article reviews and discusses the molecular mechanism of H2S in the development of lung cancer, and provides novel insights for the prevention and targeted therapy of lung cancer.


Assuntos
Sulfeto de Hidrogênio , Neoplasias Pulmonares , Animais , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
7.
Liver Int ; 40(6): 1327-1338, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32187823

RESUMO

BACKGROUND AND AIMS: Little is known about the mechanisms of IL-17 secreting T cells accumulation in HBV-transfected livers. Here, we investigated the role of the chemokines CCL17, CCL20 and CCL22 in this process. METHODS: Peripheral blood and liver tissues were obtained from 30 chronic hepatitis B (CHB) patients and 15 healthy volunteers and were evaluated by flow cytometric analysis and immunohistochemistry. Chemokine production by monocyte-derived dendritic cells (MoDCs) cocultured with HBV-transfected or untransfected Huh7 cells was measured by quantitative real-time PCR and enzyme-linked immunosorbent assay. The chemotactic activity of the culture supernatants was also tested. RESULTS: The proportions of IL-17 secreting CD4 (Th17) and CD8 (Tc17) T cells were both increased in liver and peripheral blood mononuclear cells of CHB patients compared to those in HVs. CHB patients showed higher intrahepatic levels of CCL17 mRNA, CCL22 mRNA, CCR6 mRNA and CCR4 mRNA than HVs. The expression of CCR6 and CCR4 on the surface of Th17 and Tc17 cells in CHB patients was also significantly higher than that in HVs. Significant correlations existed between the CCR4/CCR6 levels and both the alanine transaminase levels and HBV DNA loads. Contact between MoDCs and pBlue-HBV-transfected Huh7 cells induced the expression of CCL17 and CCL22 dependent on the dose of HBV DNA. However, CCL20 expression was lower in CHB patients than in HVs. Transwell experiments showed that upregulation of CCL17 and CCL22 enhanced the migration of IL-17 secreting T cells. CONCLUSIONS: Contact of HBV-transfected cells with MoDCs induces CCL17 and CCL22 chemokine production, which may favour the recruitment of Th17 and Tc17 cells to liver tissue in CHB. Our results reveal the mechanism of IL-17 secreting T cells recruitment to liver tissue and thus provide new immunotherapy targets for CHB patients.


Assuntos
Vírus da Hepatite B , Interleucina-17 , Quimiocina CCL17 , Quimiocina CCL22 , Humanos , Leucócitos Mononucleares , Células Th17
9.
Adv Exp Med Biol ; 977: 367-373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685467

RESUMO

The worldwide blood shortage has generated demands for alternatives to transfusible human blood. One such important option is based on recombinant hemoglobin-based oxygen carriers (rHBOCs). Most efforts have been focused on various E. coli based production systems. One of the key challenges in these systems is to devise an efficient and economical protein production strategy involving selection of suitable host cell and Hb variant, growth conditions and media engineering. Hb also influences the heterologous host cell metabolism and therefore the identification of modified protein-protein interactions is critical for optimizing Hb production. In this study, molecularly imprinted polymers (MIPs) directed against Hb were used to identify the human Hb protein interaction network in E. coli. One E. coli host protein, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), interacted strongly with Hb, especially fetal Hb (HbF).


Assuntos
Hemoglobinas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Adulto , Escherichia coli/metabolismo , Hemoglobina Fetal/química , Hemoglobina Fetal/metabolismo , Hemoglobinas/química , Humanos , Espectrometria de Massas , Modelos Moleculares , Polímeros/química , Polímeros/metabolismo , Ligação Proteica , Proteínas Recombinantes/química
11.
Int J Mol Sci ; 16(8): 18752-77, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26270661

RESUMO

Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in "stimulus" "stress" biological process, and activated genes in leaf mainly functioned in "cell" "cell part" components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.


Assuntos
Brassica napus/genética , Secas , Folhas de Planta/genética , Raízes de Plantas/genética , Estresse Fisiológico/genética , Transcriptoma , Adaptação Biológica/genética , Brassica napus/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Biotechnol J ; 19(1): e2300261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844203

RESUMO

Polymer surfactants are key components of cell culture media as they prevent mechanical damage during fermentation in stirred bioreactors. Among cell-protecting surfactants, Pluronics are widely utilized in biomanufacturing to ensure high cell viability and productivity. Monodispersity of monomer sequence and length is critical for the effectiveness of Pluronics-since minor deviations can damage the cells-but is challenging to achieve due to the stochastic nature of polymerization. Responding to this challenge, this study introduces Peptonics, a novel family of peptide and peptoid surfactants whose monomer composition and sequence are designed to achieve high cell viability and productivity at a fraction of chain length and cost of Pluronics. A designed ensemble of Peptonics was initially characterized via light scattering and tensiometry to select sequences whose phase behavior and tensioactivity align with those of Pluronics. Selected sequences were evaluated as cell-protecting surfactants using Chinese hamster ovary (CHO) cells expressing therapeutic monoclonal antibodies (mAb). Peptonics IH-T1010, ih-T1010, and ih-T1020 afforded high cell density (up to 3 × 107 cells mL-1 ) and viability (up to 95% within 10 days of culture), while reducing the accumulation of ammonia (a toxic metabolite) by ≈10% compared to Pluronic F-68. Improved cell viability afforded high mAb titer (up to 5.5 mg mL-1 ) and extended the production window beyond 14 days; notably, Peptonic IH-T1020 decreased mAb fragmentation and aggregation ≈5%, and lowered the titer of host cell proteins by 16% compared to Pluronic F-68. These features can improve significantly the purification of mAbs, thus increasing their availability at a lower cost to patients.


Assuntos
Poloxâmero , Tensoativos , Cricetinae , Animais , Humanos , Cricetulus , Tensoativos/farmacologia , Células CHO , Anticorpos Monoclonais/química , Técnicas de Cultura de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
13.
Diabetes ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869460

RESUMO

Diabetes is a significant global public health issue with implications for vascular endothelial cells (ECs) dysfunction and the subsequent development and advancement of diabetic complications. This study aims to compare the cellular and molecular properties of the aorta in normal and streptozotocin (STZ)-induced diabetic mice, with a focus on elucidating potential mechanism underlying EC dysfunction. Here, we performed a single-cell RNA sequencing survey of 32,573 cells from the aorta of normal and STZ-induced diabetic mice. We found a compendium of 10 distinct cell types, mainly ECs, smooth muscle cells (SMCs), fibroblast, pericyte, immune cells and stromal cells. As the diabetes condition progressed, we observed a subpopulation of aortic ECs that exhibited significantly elevated expression of complement (C) molecule C1qa compared to their healthy counterparts. This increased expression of C1qa was found to induce reactive oxygen species (ROS) production, facilitate EC migration and increased permeability, and impair the vasodilation within the aortic segment of mice. Furthermore, AAV-Tie2-shRNA-C1qa was administered into diabetic mice by tail vein injection, showing that inhibition of C1qa in the endothelium led to a reduction in ROS production, decreased vascular permeability, and improved vasodilation. Collectively, these findings highlight the crucial involvement of C1qa in endothelial dysfunction associated with diabetes.

14.
J Colloid Interface Sci ; 668: 181-189, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677207

RESUMO

Herein, an ion-exchange strategy is utilized to greatly improve the kinetics of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by Ru-modified CoNi- 1,3,5-Benzenetricarboxylic acid (BTC)-metal organic framework nanosheets (Ru@CoNi-MOF). Due to the higher Ni active sites and lower electron transfer impedance, Ru@CoNi-MOF catalyst requires the overpotential as low as 47 and 279 mV, at a current density of 10 mA/cm2 toward HER and OER, respectively. Significantly, the mass activity of Ru@CoNi-MOF for HER and OER are 25.9 and 10.6 mA mg-1, nearly 15.2 and 8.8 times higher than that of Ni-MOF. In addition, the electrolyzer of Ru@CoNi-MOF demonstrates exceptional electrolytic performance in both KOH and seawater environment, surpasses the commercial Pt/C||IrO2 couple. Theoretical calculations prove that introducing Ru atoms in - CoNi-MOF modulates the electronic structure of Ni, optimizes adsorption energy for H* and reduces energy barrier of metal organic frameworks (MOFs). This modification significantly improves the kinetic rate of the Ru@CoNi-MOF during water splitting. Certainly, this study highlights the utilization of MOF nanosheets as advanced HER/OER electrocatalysts with immense potential, and will paves a way to develop more efficient MOFs for catalytic applications.

15.
Front Plant Sci ; 15: 1419508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933465

RESUMO

Brassica napus is one of the most important oil crops in the world. Breeding oilseed rape with colorful flowers can greatly enhance the ornamental value of B. napus and thus improve the economic benefits of planting. As water-soluble flavonoid secondary metabolites, anthocyanins are very important for the synthesis and accumulation of pigments in the petals of plants, giving them a wide range of bright colors. Despite the documentation of over 60 distinct flower shades in B. napus, the intricacies underlying flower color variation remain elusive. Particularly, the mechanisms driving color development across varying flower color backgrounds necessitate further comprehensive investigation. This research undertook a comprehensive exploration through the integration of transcriptome and metabolome analyses to pinpoint pivotal genes and metabolites underpinning an array of flower colors, including beige, beige-red, yellow, orange-red, deep orange-red, white, light-purple, and purple. First, we used a two-way BLAST search to find 275 genes in the reference genome of B. napus Darmor v10 that were involved in making anthocyanins. The subsequent scrutiny of RNA-seq outcomes underscored notable upregulation in the structural genes F3H and UGT, alongside the MYB75, GL3, and TTG1 transcriptional regulators within petals, showing anthocyanin accumulation. By synergizing this data with a weighted gene co-expression network analysis, we identified CHS, F3H, MYB75, MYB12, and MYB111 as the key players driving anthocyanin synthesis in beige-red, orange-red, deep orange-red, light-purple, and purple petals. By integrating transcriptome and weighted gene co-expression network analysis findings with anthocyanin metabolism data, it is hypothesized that the upregulation of MYB75, which, in turn, enhances F3H expression, plays a pivotal role in the development of pigmented oilseed rape flowers. These findings help to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provide valuable genetic resources for breeding B. napus varieties with novel flower colors.

16.
Cell Immunol ; 282(2): 113-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23770720

RESUMO

Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, played an important role in immune-mediated diseases. The promoter region of MIF, which had functional polymorphisms, controlled MIF expression. MIF polymorphism was associated with many inflammatory diseases. But the association of MIF polymorphism with chronic hepatitis B (CHB) or HBV-induced liver cirrhosis (HC) had not yet been reported. In present study, polymorphism of MIF-173 was genotyped in 95 CHB patients, 73 HC patients and 90 healthy controls in southern China. The frequency of MIF-173 C/C genotype in patients with CHB or HC was statistically significantly higher than that in healthy controls, respectively. Moreover, difference in the distribution of MIF-173 C allele between CHB patients and healthy controls was statistically significant. However, there was no statistical relationship between MIF-173 genotype and clinical features in patients with CHB or HC. Our results suggest that MIF-173 C/C polymorphism might be associated with increased risk of CHB or HC in Chinese southern population.


Assuntos
Predisposição Genética para Doença/genética , Hepatite B Crônica/genética , Cirrose Hepática/genética , Fatores Inibidores da Migração de Macrófagos/genética , Polimorfismo de Nucleotídeo Único , Adulto , Alelos , Povo Asiático/genética , Sequência de Bases , China , Análise Mutacional de DNA , Feminino , Frequência do Gene , Predisposição Genética para Doença/etnologia , Genótipo , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/etnologia , Hepatite B Crônica/virologia , Humanos , Cirrose Hepática/etnologia , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Fatores de Risco
17.
Zhonghua Gan Zang Bing Za Zhi ; 21(6): 442-5, 2013 Jun.
Artigo em Zh | MEDLINE | ID: mdl-24034846

RESUMO

OBJECTIVE: To investigate whether hepatitis B virus (HBV) can induce the expression of the host-encoded cytokine interleukin-32 (IL-32) and its effects on host signaling mechanisms related to HBV pathogenesis. METHODS: A eukaryotic expression vector harboring an enhanced green fluorescent protein was constructed with HBV genomic sequences (pIRES2-HBV-EGFP) and transfected into HepG2 cells. In addition, the nuclear factor-kappa B (NF-kB) subunits, p50 and p65, were transfected respectively into HepG2 cells. In both cases, 48 hrs after transfection, IL-32 expression was determined at the mRNA and protein levels using real-time PCR and ELISA and western blot, respectively. The HepG2 cells transfected with pIRES2-HBV-EGFP were also treated with the NF-kB inhibitor SN50 at various concentrations, and the effects on IL-32 protein expression 48 hrs later were evaluated by western blot. Significance of between-group differences was assessed by the Student's t-test. RESULTS: Transfection with pIRES2-HBV-EGFP led to significantly higher IL-23 expression than transfection with empty vector (mRNA: 2.8-fold higher and protein: 4.5-fold higher; both P less than 0.05). Transfection of p50 and p65 proteins led to significantly higher IL-32 expression (both P less than 0.05), and NF-kB activation was found to be required for HBV-induced IL-32 expression. CONCLUSION: IL-32 expression is induced by HBV in HepG2 cells. This host-encoded cytokine, and its downstream activation of NF-kB, may be involved in the pathogenesis of HBV, especially in the subsequent liver inflammation that accompanies HBV infection.


Assuntos
Vírus da Hepatite B , Interleucinas/metabolismo , Vetores Genéticos , Células Hep G2/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Transfecção
18.
Stem Cells Transl Med ; 12(6): 325-333, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133409

RESUMO

BACKGROUND: Previous studies have found that the production of platelets could enhance the therapeutic effects of stem cells. Nevertheless, there are still no articles reporting on the relationship between platelets and the clinical efficacy of umbilical cord mesenchymal stem cells (UCMSCs) for HBV-related acute-on-chronic liver failure (ACLF) and liver cirrhosis (LC). METHODS: In this retrospective observational study, patients who met the criteria were included. Patients were divided into subgroups according to the aims of this study. In the first part, the platelet count changes of ACLF and patients with LC after UCMSC therapy were compared and analyzed. Subgroup analysis based on UCMSC infusion times and patient age was also performed. In the second part, patients in the ACLF group and LC group were further divided into subgroups according to their platelet levels. Their clinical characteristics, demographics, and biochemical factors were compared. RESULTS: This study enrolled 64 patients with ACLF and 59 patients with LC. In both groups, platelet levels declined similarly. Compared with the short-course UCMSC treatment group (≤4 times), patients with ACLF and patients with LC with long-course UCMSC treatment (>4 times) showed an overall increasing trend. Younger patients with LC (<45 years) had significantly higher platelet levels than older patients with LC (≥45 years). However, this age difference was not present in the ACLF group. The median TBIL decrease and cumulative TBIL decrease were not significantly different between patients with high PLT and patients with low PLT after UCMSC transfusions. For patients with ACLF, the cumulative TBIL decrease and the median TBIL decrease were significantly greater than those of patients with LC at the same platelet level after UCMSC treatment. However, this difference was not observed at all time points. CONCLUSION: Trend of the platelet levels for HBV-related patients with ACLF and LC after UCMSC treatment did not parallel and varied according to treatment times and patients' age. Platelet levels did not affect the efficacy of MSCs for patients with ACLF or LC.


Assuntos
Insuficiência Hepática Crônica Agudizada , Células-Tronco Mesenquimais , Humanos , Insuficiência Hepática Crônica Agudizada/terapia , Vírus da Hepatite B , Plaquetas , Cirrose Hepática/complicações , Cirrose Hepática/terapia , Estudos Retrospectivos , Resultado do Tratamento , Cordão Umbilical
19.
Br J Pharmacol ; 180(17): 2266-2279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37005734

RESUMO

BACKGROUND AND PURPOSE: High-fat diet (HFD) induces dysregulated pathways in coronary artery endothelial cells (CAECs), which leads to altered regulation of vascular tone, tissue perfusion and increases the risk of coronary artery diseases. Ca2+ -activated K+ (KCa ) channels are known to be associated with transient receptor potential (TRP) channels, which are important for regulating endothelial function. But how TRPV4 channels interacts with KCa channels in regulating coronary vascular tone in HFD mice requires further exploration. EXPERIMENTAL APPROACH: TRPV4 channel activity was assessed by fluorescent Ca2+ imaging. Interactions between TRPV4 and KCa 3.1 channels were verified by co-immunoprecipitation and immunofluorescence resonance energy transfer (FRET), and their binding site was found by site-directed mutagenesis. Endothelium-specific TRPV4 knockout (TRPV4EC -/- ) mice were used to study the effect of the interactions between TRPV4-KCa 3.1 channels on coronary vascular tone. Coronary blood flow was measured by Doppler ultrasound device. KEY RESULTS: TRPV4 channels were involved in regulating coronary vascular tone, through coupling with a Ca2+ -sensitive K+ channel (KCa 3.1) in CAECs, affecting vasodilation and coronary blood flow. In mice fed a HFD diet, the coupling was damaged by a high concentration of plasma 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine. Using a bridging approach, we then identified folic acid as an effective drug to repair the uncoupled TRPV4-KCa 3.1 channels and to improve coronary arterial function. CONCLUSION AND IMPLICATIONS: Our data highlight the importance of coupling between TRPV4 and KCa 3.1 channels in the regulation of coronary vascular tone and provide a novel strategy for developing new drugs to reduce the incidence of cardiovascular events.


Assuntos
Vasos Coronários , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Vasos Coronários/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Células Endoteliais/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Vasodilatação , Endotélio/metabolismo , Endotélio Vascular
20.
Chem Commun (Camb) ; 59(32): 4750-4753, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36970999

RESUMO

Theoretical calculation results unveil that the reconstructed Co(Ni)OOH on FeNiCo-MOF during OER processes is beneficial to improve the OER activity. Experimentally, to achieve 2D trimetallic FeNiCo-MOF nanosheets, a facile room-temperature dispersion approach is employed. Such 2D nanosheets reveal an OER overpotential as low as 239 mV at 10 mA cm-2 and excellent long-term stability in 1M KOH. Undoubtedly, this work highlights the great potential of directly utilizing MOF nanosheets as OER electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA