Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 78(3): 411-422.e4, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220646

RESUMO

Metazoan microRNAs require specific maturation steps initiated by Microprocessor, comprising Drosha and DGCR8. Lack of structural information for the assembled complex has hindered an understanding of how Microprocessor recognizes primary microRNA transcripts (pri-miRNAs). Here we present a cryoelectron microscopy structure of human Microprocessor with a pri-miRNA docked in the active site, poised for cleavage. The basal junction is recognized by a four-way intramolecular junction in Drosha, triggered by the Belt and Wedge regions that clamp over the ssRNA. The belt is important for efficiency and accuracy of pri-miRNA processing. Two dsRBDs form a molecular ruler to measure the stem length between the two dsRNA-ssRNA junctions. The specific organization of the dsRBDs near the apical junction is independent of Drosha core domains, as observed in a second structure in the partially docked state. Collectively, we derive a molecular model to explain how Microprocessor recognizes a pri-miRNA and accurately identifies the cleavage site.


Assuntos
MicroRNAs/química , Proteínas de Ligação a RNA/química , Ribonuclease III/química , Microscopia Crioeletrônica , Humanos , MicroRNAs/metabolismo , Modelos Moleculares , Conformação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
2.
Nature ; 596(7873): 603-607, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381213

RESUMO

Single-particle cryogenic electron microscopy (cryo-EM) has become a standard technique for determining protein structures at atomic resolution1-3. However, cryo-EM studies of protein-free RNA are in their early days. The Tetrahymena thermophila group I self-splicing intron was the first ribozyme to be discovered and has been a prominent model system for the study of RNA catalysis and structure-function relationships4, but its full structure remains unknown. Here we report cryo-EM structures of the full-length Tetrahymena ribozyme in substrate-free and bound states at a resolution of 3.1 Å. Newly resolved peripheral regions form two coaxially stacked helices; these are interconnected by two kissing loop pseudoknots that wrap around the catalytic core and include two previously unforeseen (to our knowledge) tertiary interactions. The global architecture is nearly identical in both states; only the internal guide sequence and guanosine binding site undergo a large conformational change and a localized shift, respectively, upon binding of RNA substrates. These results provide a long-sought structural view of a paradigmatic RNA enzyme and signal a new era for the cryo-EM-based study of structure-function relationships in ribozymes.


Assuntos
Microscopia Crioeletrônica , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/ultraestrutura , Tetrahymena thermophila , Apoenzimas/química , Apoenzimas/ultraestrutura , Holoenzimas/química , Holoenzimas/ultraestrutura , Modelos Moleculares , Tetrahymena thermophila/enzimologia , Tetrahymena thermophila/genética
3.
Proc Natl Acad Sci U S A ; 121(10): e2320493121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427602

RESUMO

Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2), resolved at 4.7 Å resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T's "arms." Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4 to 6.9 Å resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across these human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9 to 8.0 Å resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4 to 9.0 Å resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped arms, but with a phylogenetically distinct crossing angle, an X-shape. As such, all SL5 domains studied herein fold into stable tertiary structures with cross-genus similarities and notable differences, with implications for potential protein-binding modes and therapeutic targets.


Assuntos
Alphacoronavirus , COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2/genética , RNA
4.
Proc Natl Acad Sci U S A ; 120(43): e2308870120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844242

RESUMO

E3 ubiquitin ligases determine the specificity of eukaryotic protein degradation by selective binding to destabilizing protein motifs, termed degrons, in substrates for ubiquitin-mediated proteolysis. The exposed C-terminal residues of proteins can act as C-degrons that are recognized by distinct substrate receptors (SRs) as part of dedicated cullin-RING E3 ubiquitin ligase (CRL) complexes. APPBP2, an SR of Cullin 2-RING ligase (CRL2), has been shown to recognize R-x-x-G/C-degron; however, the molecular mechanism of recognition remains elusive. By solving several cryogenic electron microscopy structures of active CRL2APPBP2 bound with different R-x-x-G/C-degrons, we unveiled the molecular mechanisms underlying the assembly of the CRL2APPBP2 dimer and tetramer, as well as C-degron recognition. The structural study, complemented by binding experiments and cell-based assays, demonstrates that APPBP2 specifically recognizes the R-x-x-G/C-degron via a bipartite mechanism; arginine and glycine, which play critical roles in C-degron recognition, accommodate distinct pockets that are spaced by two residues. In addition, the binding pocket is deep enough to enable the interaction of APPBP2 with the motif placed at or up to three residues upstream of the C-end. Overall, our study not only provides structural insight into CRL2APPBP2-mediated protein turnover but also serves as the basis for future structure-based chemical probe design.


Assuntos
Proteínas Culina , Ubiquitina , Ubiquitina/metabolismo , Proteínas Culina/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos
5.
Nucleic Acids Res ; 51(3): 1317-1325, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36660826

RESUMO

Tetrahymena ribozyme is a group I intron, whose self-splicing is the result of two sequential ester-transfer reactions. To understand how it facilitates catalysis in the first self-splicing reaction, we used cryogenic electron microscopy (cryo-EM) to resolve the structures of L-16 Tetrahymena ribozyme complexed with a 11-nucleotide 5'-splice site analog substrate. Four conformations were achieved to 4.14, 3.18, 3.09 and 2.98 Å resolutions, respectively, corresponding to different splicing intermediates during the first enzymatic reaction. Comparison of these structures reveals structural alterations, including large conformational changes in IGS/IGSext (P1-P1ext duplex) and J5/4, as well as subtle local rearrangements in the G-binding site. These structural changes are required for the enzymatic activity of the Tetrahymena ribozyme. Our study demonstrates the ability of cryo-EM to capture dynamic RNA structural changes, ushering in a new era in the analysis of RNA structure-function by cryo-EM.


Assuntos
RNA Catalítico , Tetrahymena , Sequência de Bases , Microscopia Crioeletrônica , Íntrons , Conformação de Ácido Nucleico , RNA , Splicing de RNA , RNA Catalítico/química , RNA Catalítico/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 119(37): e2209146119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067294

RESUMO

The Tetrahymena group I intron has been a key system in the understanding of RNA folding and misfolding. The molecule folds into a long-lived misfolded intermediate (M) in vitro, which has been known to form extensive native-like secondary and tertiary structures but is separated by an unknown kinetic barrier from the native state (N). Here, we used cryogenic electron microscopy (cryo-EM) to resolve misfolded structures of the Tetrahymena L-21 ScaI ribozyme. Maps of three M substates (M1, M2, M3) and one N state were achieved from a single specimen with overall resolutions of 3.5 Å, 3.8 Å, 4.0 Å, and 3.0 Å, respectively. Comparisons of the structures reveal that all the M substates are highly similar to N, except for rotation of a core helix P7 that harbors the ribozyme's guanosine binding site and the crossing of the strands J7/3 and J8/7 that connect P7 to the other elements in the ribozyme core. This topological difference between the M substates and N state explains the failure of 5'-splice site substrate docking in M, supports a topological isomer model for the slow refolding of M to N due to a trapped strand crossing, and suggests pathways for M-to-N refolding.


Assuntos
Dobramento de RNA , RNA Catalítico , Tetrahymena , Microscopia Crioeletrônica , Cinética , RNA Catalítico/química , Tetrahymena/genética
7.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078933

RESUMO

Protein nanocages (PNCs) in cells and viruses have inspired the development of self-assembling protein nanomaterials for various purposes. Despite the successful creation of artificial PNCs, the de novo design of PNCs with defined permeability remains challenging. Here, we report a prototype oxygen-impermeable PNC (OIPNC) assembled from the vertex protein of the ß-carboxysome shell, CcmL, with quantum dots as the template via interfacial engineering. The structure of the cage was solved at the atomic scale by combined solid-state NMR spectroscopy and cryoelectron microscopy, showing icosahedral assembly of CcmL pentamers with highly conserved interpentamer interfaces. Moreover, a gating mechanism was established by reversibly blocking the pores of the cage with molecular patches. Thus, the oxygen permeability, which was probed by an oxygen sensor inside the cage, can be completely controlled. The CcmL OIPNC represents a PNC platform for oxygen-sensitive or oxygen-responsive storage, catalysis, delivery, sensing, etc.


Assuntos
Oxigênio/metabolismo , Proteínas/metabolismo , Microscopia Crioeletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Permeabilidade
8.
J Biol Chem ; 299(2): 102833, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581207

RESUMO

Nitrate is one of the major nitrogen sources for most plants. Chloride channel (CLC) proteins mediate the transport and vacuole storage of nitrate in plants, but the structural basis of nitrate transport by plant CLC proteins remains unknown. Here, we solved the cryo-EM structure of ATP-bound Arabidopsis thaliana CLCa (AtCLCa) at 2.8 Å resolution. Structural comparison between nitrate-selective AtCLCa and chloride-selective CLC-7 reveals key differences in the central anion-binding site. We observed that the central nitrate is shifted by ∼1.4 Å from chloride, which is likely caused by a weaker interaction between the anion and Pro160; the side chains of aromatic residues around the central binding site are rearranged to accommodate the larger nitrate. Additionally, we identified the ATP-binding pocket of AtCLCa to be located between the cytosolic cystathionine ß-synthase domains and the N-terminus. The N-terminus may mediate the ATP inhibition of AtCLCa by interacting with both ATP and the pore-forming transmembrane helix. Together, our studies provide insights into the nitrate selectivity and ATP regulation of plant CLCs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Canais de Cloreto , Transportadores de Nitrato , Trifosfato de Adenosina/metabolismo , Ânions/metabolismo , Arabidopsis/metabolismo , Sítios de Ligação , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Microscopia Crioeletrônica , Transportadores de Nitrato/metabolismo , Nitratos/metabolismo , Proteínas de Arabidopsis/metabolismo
9.
Br J Dermatol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752336

RESUMO

BACKGROUND: Psoriasis is a prevalent chronic inflammatory dermatosis characterized by excessive proliferation of keratinocytes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly identified post-translational modification that regulates various biological processes. Abnormal Khib modification has been closely associated with the development of autoimmune diseases. OBJECTIVE: To investigate the abnormal Khib profile and its pathogenic role in psoriasis. METHODS: We utilized liquid chromatography-tandem mass spectrometry to analyze Khib-modified proteins in the epidermis of psoriasis and healthy controls. Mutated cells and mice with downregulated Ebp1Khib210 were generated to investigate its functional effects in psoriasis. RESULTS: The omic analysis revealed dysregulation of Khib modification in psoriatic lesions, exhibiting a distinct profile compared to controls. We observed the downregulation of Ebp1Khib210 in psoriatic lesions and IMQ-induced psoriatic mice. Notably, the expression of Ebp1Khib210 was upregulated in psoriatic patients following effective treatment. Decreased Ebp1Khib210 enhanced keratinocyte viability, proliferation, and survival while inhibiting apoptosis in vitro. Additionally, Pa2g4K210A mice with downregulated Ebp1Khib210 exhibited more severe psoriatic lesions and enhanced keratinocyte proliferation. Moreover, we found that Ebp1K210A mutation increased the interaction between Ebp1 and nuclear Akt, thereby inhibiting MDM2-mediated TIF-IA ubiquitination, and resulting to increased rRNA synthesis and keratinocyte proliferation. The downregulation of Ebp1Khib210 was attributed to inflammation-induced increases in HDAC2 expression. CONCLUSION: Our findings demonstrate that downregulation of Ebp1Khib210 promotes keratinocyte proliferation through modulation of Akt signaling and TIF-IA-mediated rRNA synthesis. These insights into Khib modification provide a better understanding of the pathogenesis of psoriasis and suggest potential therapeutic targets.

10.
Cell Biol Int ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884348

RESUMO

ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.

11.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785601

RESUMO

Cis-acting RNA elements are crucial for the regulation of polyadenylated RNA stability. The element for nuclear expression (ENE) contains a U-rich internal loop flanked by short helices. An ENE stabilizes RNA by sequestering the poly(A) tail via formation of a triplex structure that inhibits a rapid deadenylation-dependent decay pathway. Structure-based bioinformatic studies identified numerous ENE-like elements in evolutionarily diverse genomes, including a subclass containing two ENE motifs separated by a short double-helical region (double ENEs [dENEs]). Here, the structure of a dENE derived from a rice transposable element (TWIFB1) before and after poly(A) binding (∼24 kDa and ∼33 kDa, respectively) is investigated. We combine biochemical structure probing, small angle X-ray scattering (SAXS), and cryo-electron microscopy (cryo-EM) to investigate the dENE structure and its local and global structural changes upon poly(A) binding. Our data reveal 1) the directionality of poly(A) binding to the dENE, and 2) that the dENE-poly(A) interaction involves a motif that protects the 3'-most seven adenylates of the poly(A). Furthermore, we demonstrate that the dENE does not undergo a dramatic global conformational change upon poly(A) binding. These findings are consistent with the recently solved crystal structure of a dENE+poly(A) complex [S.-F. Torabi et al., Science 371, eabe6523 (2021)]. Identification of additional modes of poly(A)-RNA interaction opens new venues for better understanding of poly(A) tail biology.


Assuntos
Poliadenilação , Estabilidade de RNA , RNA/química , Elementos de DNA Transponíveis , Células HEK293 , Humanos , Motivos de Nucleotídeos , Oryza/genética , RNA/metabolismo
12.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611839

RESUMO

Geopolymers show great potential in complex wastewater treatment to improve water quality. In this work, general geopolymers, porous geopolymers and geopolymer microspheres were prepared by the suspension curing method using three solid waste products, coal gangue, fly ash and blast furnace slag. The microstructure, morphology and surface functional groups of the geopolymers were studied by SEM, XRD, XRF, MIP, FTIR and XPS. It was found that the geopolymers possess good adsorption capacities for both organic and inorganic pollutants. With methylene blue and potassium dichromate as the representative pollutants, in order to obtain the best removal rate, the effects of the adsorbent type, dosage of adsorbent, concentration of methylene blue and potassium dichromate and pH on the adsorption process were studied in detail. The results showed that the adsorption efficiency of the geopolymers for methylene blue and potassium dichromate was in the order of general geopolymers < porous geopolymers < geopolymer microspheres, and the removal rates were up to 94.56% and 79.46%, respectively. Additionally, the competitive adsorption of methylene blue and potassium dichromate in a binary system was also studied. The mechanism study showed that the adsorption of methylene blue was mainly through pore diffusion, hydrogen bond formation and electrostatic adsorption, and the adsorption of potassium dichromate was mainly through pore diffusion and redox reaction. These findings demonstrate the potential of geopolymer microspheres in adsorbing organic and inorganic pollutants, and, through five cycles of experiments, it is demonstrated that MGP exhibits excellent recyclability.

13.
Proteins ; 91(12): 1600-1615, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37466021

RESUMO

The first RNA category of the Critical Assessment of Techniques for Structure Prediction competition was only made possible because of the scientists who provided experimental structures to challenge the predictors. In this article, these scientists offer a unique and valuable analysis of both the successes and areas for improvement in the predicted models. All 10 RNA-only targets yielded predictions topologically similar to experimentally determined structures. For one target, experimentalists were able to phase their x-ray diffraction data by molecular replacement, showing a potential application of structure predictions for RNA structural biologists. Recommended areas for improvement include: enhancing the accuracy in local interaction predictions and increased consideration of the experimental conditions such as multimerization, structure determination method, and time along folding pathways. The prediction of RNA-protein complexes remains the most significant challenge. Finally, given the intrinsic flexibility of many RNAs, we propose the consideration of ensemble models.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Proteínas/química , Modelos Moleculares , Biologia Computacional/métodos , Difração de Raios X
14.
Nat Methods ; 17(3): 328-334, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32042190

RESUMO

Cryogenic electron microscopy (cryo-EM) maps are now at the point where resolvability of individual atoms can be achieved. However, resolvability is not necessarily uniform throughout the map. We introduce a quantitative parameter to characterize the resolvability of individual atoms in cryo-EM maps, the map Q-score. Q-scores can be calculated for atoms in proteins, nucleic acids, water, ligands and other solvent atoms, using models fitted to or derived from cryo-EM maps. Q-scores can also be averaged to represent larger features such as entire residues and nucleotides. Averaged over entire models, Q-scores correlate very well with the estimated resolution of cryo-EM maps for both protein and RNA. Assuming the models they are calculated from are well fitted to the map, Q-scores can be used as a measure of resolvability in cryo-EM maps at various scales, from entire macromolecules down to individual atoms. Q-score analysis of multiple cryo-EM maps of the same proteins derived from different laboratories confirms the reproducibility of structural features from side chains down to water and ion atoms.


Assuntos
Apoferritinas/química , Microscopia Crioeletrônica , Algoritmos , Animais , Análise de Fourier , Humanos , Ligação de Hidrogênio , Ligantes , Substâncias Macromoleculares/química , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Distribuição Normal , Estrutura Secundária de Proteína , RNA/química , Solventes/química
15.
Nat Methods ; 17(7): 699-707, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32616928

RESUMO

The discovery and design of biologically important RNA molecules is outpacing three-dimensional structural characterization. Here, we demonstrate that cryo-electron microscopy can routinely resolve maps of RNA-only systems and that these maps enable subnanometer-resolution coordinate estimation when complemented with multidimensional chemical mapping and Rosetta DRRAFTER computational modeling. This hybrid 'Ribosolve' pipeline detects and falsifies homologies and conformational rearrangements in 11 previously unknown 119- to 338-nucleotide protein-free RNA structures: full-length Tetrahymena ribozyme, hc16 ligase with and without substrate, full-length Vibrio cholerae and Fusobacterium nucleatum glycine riboswitch aptamers with and without glycine, Mycobacterium SAM-IV riboswitch with and without S-adenosylmethionine, and the computer-designed ATP-TTR-3 aptamer with and without AMP. Simulation benchmarks, blind challenges, compensatory mutagenesis, cross-RNA homologies and internal controls demonstrate that Ribosolve can accurately resolve the global architectures of RNA molecules but does not resolve atomic details. These tests offer guidelines for making inferences in future RNA structural studies with similarly accelerated throughput.


Assuntos
Microscopia Crioeletrônica/métodos , RNA/química , Simulação por Computador , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Catalítico/química , Riboswitch
16.
RNA ; 27(9): 971-980, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34193550

RESUMO

In biological systems, conformational changes and allosteric modulation play pivotal roles in regulating biological functions, such as the dynamic change of protein molecules, in response to binding or interacting with other factors such as pH, voltage, salt, light, or ligand. RNA can be manipulated and tuned with a level of simplicity that is characteristic of DNA or polymers, while displaying versatility in structure, diversity in function, and adaptability in a configuration similar to proteins. In the past, the work on the investigation of conformational change mainly focused on protein. The induced-fit and conformational capture in RNA have also been explored, such as in the study of riboswitches. Herein, we report the engineering of three-dimensional RNA nanocubes and demonstrated the operation and regulation for its configuration. We demonstrate the operation of reconfigurable RNA nanocubes whose shapes change precisely and reversibly in response to a specific trigger strand. The shape, size, and conformation can be regulated precisely and reversibly in response to the specific triggering signals. The shape and conformational conversion were observed by cryo-EM and gel electrophoresis, respectively. Harnessing the size, shape, conformation, and self-assembly capabilities of the RNA nanocube can provide a new potential use of this technology as nanocarriers for the treatment of various diseases.


Assuntos
Imunomodulação/efeitos dos fármacos , Nanoestruturas/química , Nanotecnologia/métodos , Oligodesoxirribonucleotídeos/farmacologia , Riboswitch , Animais , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Engenharia Genética/métodos , Concentração de Íons de Hidrogênio , Interleucina-6/biossíntese , Interleucina-6/imunologia , Ligantes , Camundongos , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
17.
New Phytol ; 240(5): 2102-2120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537712

RESUMO

Maleae is one of the most widespread tribes of Rosaceae and includes several important fruit crops and ornamental plants. We used nuclear genes from 62 transcriptomes/genomes, including 26 newly generated transcriptomes, to reconstruct a well-supported phylogeny and study the evolution of fruit and leaf morphology and the possible effect of whole genome duplication (WGD). Our phylogeny recovered 11 well-supported clades and supported the monophyly of most genera (except Malus, Sorbus, and Pourthiaea) with at least two sampled species. A WGD was located to the most recent common ancestor (MRCA) of Maleae and dated to c. 54 million years ago (Ma) near the Early Eocene Climatic Optimum, supporting Gillenieae (x = 9) being a parental lineage of Maleae (x = 17) and including duplicate regulatory genes related to the origin of the fleshy pome fruit. Whole genome duplication-derived paralogs that are retained in specific lineages but lost in others are predicted to function in development, metabolism, and other processes. An upshift of diversification and innovations of fruit and leaf morphologies occurred at the MRCA of the Malinae subtribe, coinciding with the Eocene-Oligocene transition (c. 34 Ma), following a lag from the time of the WGD event. Our results provide new insights into the Maleae phylogeny, its rapid diversification, and morphological and molecular evolution.


Assuntos
Malus , Rosaceae , Malus/genética , Rosaceae/genética , Filogenia , Genoma , Evolução Molecular , Duplicação Gênica
18.
J Biol Inorg Chem ; 28(5): 473-483, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37140680

RESUMO

Two novel bis-tridentate imidazole derivatives were conveniently synthesized using a 'one-pot' method. Their dinuclear (Cu2L1Cl4, Cu2L2Cl4) and mononuclear (CuL1Cl2, CuL2Cl2∙H2O) copper (II) complexes were synthesized to comparably evaluate their reactivities in the hydrolytic cleavage of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) as a classic RNA model. Single crystals of Cu2L1Cl4 and Cu2L2Cl4 indicate that both of them are centrosymmetric, and each central copper ion is penta-coordinated. Regarding the transesterification of HPNP, both of dinuclear ones exhibited excess one order of magnitude rate enhancement in contrast with auto-hydrolysis reaction. Under comparable conditions, dinuclear complexes displayed no more than twofold increase in activity over their mononuclear analogues, which verifies the lack of binuclear cooperation effect due to long Cu-to-Cu space.


Assuntos
Cobre , Nitroimidazóis , Cobre/química , RNA/química , Imidazóis , Ligantes
19.
Nucleic Acids Res ; 49(19): 11367-11378, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614154

RESUMO

Bacterial chromosome replication is mainly catalyzed by DNA polymerase III, whose beta subunits enable rapid processive DNA replication. Enabled by the clamp-loading complex, the two beta subunits form a ring-like clamp around DNA and keep the polymerase sliding along. Given the essential role of ß-clamp, its inhibitors have been explored for antibacterial purposes. Similarly, ß-clamp is an ideal target for bacteriophages to shut off host DNA synthesis during host takeover. The Gp168 protein of phage Twort is such an example, which binds to the ß-clamp of Staphylococcus aureus and prevents it from loading onto DNA causing replication arrest. Here, we report a cryo-EM structure of the clamp-Gp168 complex at 3.2-Å resolution. In the structure of the complex, the Gp168 dimer occupies the DNA sliding channel of ß-clamp and blocks its loading onto DNA, which represents a new inhibitory mechanism against ß-clamp function. Interestingly, the key residues responsible for this interaction on the ß-clamp are well conserved among bacteria. We therefore demonstrate that Gp168 is potentially a cross-species ß-clamp inhibitor, as it forms complex with the Bacillus subtilis ß-clamp. Our findings reveal an alternative mechanism for bacteriophages to inhibit ß-clamp and provide a new strategy to combat bacterial drug resistance.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacteriófagos/química , DNA Bacteriano/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Proteínas Virais/química , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , DNA Polimerase III/antagonistas & inibidores , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia
20.
Proc Natl Acad Sci U S A ; 117(13): 7176-7182, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170016

RESUMO

Prokaryotes and viruses have fought a long battle against each other. Prokaryotes use CRISPR-Cas-mediated adaptive immunity, while conversely, viruses evolve multiple anti-CRISPR (Acr) proteins to defeat these CRISPR-Cas systems. The type I-F CRISPR-Cas system in Pseudomonas aeruginosa requires the crRNA-guided surveillance complex (Csy complex) to recognize the invading DNA. Although some Acr proteins against the Csy complex have been reported, other relevant Acr proteins still need studies to understand their mechanisms. Here, we obtain three structures of previously unresolved Acr proteins (AcrF9, AcrF8, and AcrF6) bound to the Csy complex using electron cryo-microscopy (cryo-EM), with resolution at 2.57 Å, 3.42 Å, and 3.15 Å, respectively. The 2.57-Å structure reveals fine details for each molecular component within the Csy complex as well as the direct and water-mediated interactions between proteins and CRISPR RNA (crRNA). Our structures also show unambiguously how these Acr proteins bind differently to the Csy complex. AcrF9 binds to key DNA-binding sites on the Csy spiral backbone. AcrF6 binds at the junction between Cas7.6f and Cas8f, which is critical for DNA duplex splitting. AcrF8 binds to a distinct position on the Csy spiral backbone and forms interactions with crRNA, which has not been seen in other Acr proteins against the Csy complex. Our structure-guided mutagenesis and biochemistry experiments further support the anti-CRISPR mechanisms of these Acr proteins. Our findings support the convergent consequence of inhibiting degradation of invading DNA by these Acr proteins, albeit with different modes of interactions with the type I-F CRISPR-Cas system.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Pseudomonas aeruginosa , Proteínas Virais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA