Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mamm Genome ; 33(1): 143-156, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35138443

RESUMO

Mouse models are essential for dissecting disease mechanisms and defining potential drug targets. There are more than 18,500 mouse strains available for research communities in National Resource Center for Mutant Mice (NRCMM) of China, affiliated with Model Animal Research Center of Nanjing University and Gempharmatech Company. In 2019, Gempharmatech launched the Knockout All Project (KOAP) aiming to generate null mutants and gene floxed strains for all protein-coding genes in mouse genome within 5 years. So far, KOAP has generated 8,004 floxed strains and 9,769 KO (knockout) strains (updated to Oct, 2021). NRCMM also created hundreds of Cre transgenic lines, mutant knock-in models, immuno-deficient models, and humanized mouse models. As a member of the international mouse phenotyping consortium (IMPC), NRCMM provides comprehensive phenotyping services for mouse models. In summary, NRCMM will continue to support biomedical community with new mouse models as well as related services.


Assuntos
Genoma , Animais , China , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Fenótipo
2.
Mamm Genome ; 33(1): 169-180, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34386878

RESUMO

Balancer chromosomes, primarily discovered and used in Drosophila melanogaster, are valuable tools to maintain lethal mutations in a particular genomic segment. Full-length balancer chromosomes would be particularly useful because of the capacity to maintain whole genomic traits. However, murine full-length balancer chromosomes generated via a single Cre/loxP recombination are still not demonstrated. In this study, we developed a novel mouse strain with full-length inverted chromosome 17 (Ch17Inv balancer) via a single Cre/loxP recombination event in mES cells. The Ch17Inv balancer mice are viable and phenotypically normal. When bred with other strains, the haplotype of chromosome 17 can be stably maintained as determined by the high throughput SNPs assay. Interestingly, we found that the recombination events were efficiently reduced within the inverted region but not eliminated. The method established in this study can be applied to generate other full-length balancer chromosomes. Moreover, the Ch17Inv balancer strain would be a valuable resource to maintain the entire chromosome 17 from different donor strains.


Assuntos
Inversão Cromossômica , Drosophila melanogaster , Animais , Cromossomos/genética , Drosophila melanogaster/genética , Integrases/genética , Camundongos , Recombinação Genética
3.
Opt Express ; 30(11): 19176-19184, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221702

RESUMO

In this paper, we observe the distinguishable modulation of the different eigenmodes by lattice mode in terahertz U-shaped metasurfaces, and a remarkable lattice induced suppression of the high order eigenmode resonance is demonstrated. With the quantitative analysis of Q factor and loss of the resonances, we clarify that the peculiar phenomenon of suppression is originated from the phase mismatch of the metasurfaces via introducing the phase difference between the neighboring structures. These results provide new insights into the phase mismatch mediated transmission amplitude of eigenmode resonance in metasurfaces and open a new path to developing terahertz multifunctional devices.

4.
Cancer Cell Int ; 22(1): 296, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175889

RESUMO

BACKGROUND: Thyroid carcinoma (THCA) is the most common endocrine-related malignant tumor. Despite the good prognosis, some THCA patients may deteriorate into more aggressive diseases, leading to poor survival. This may be alleviated by developing a novel model to predict the risk of THCA, including recurrence and survival. Ferroptosis is an iron-dependent, oxidative, non-apoptotic form of cell death initially described in mammalian cells, and plays an important role in various cancers. To explore the potential prognostic value of ferroptosis in THCA, ferroptosis-related long non-coding RNAs (FRLs) were used to construct model for risk prediction of THCA. METHODS: RNA-sequencing data of THCA patients and ferroptosis-related genes were downloaded from The Cancer Genome Atlas (TCGA) and FerrDb, respectively. A total of 502 patients with complete data were randomly separated into a training cohort and a validation cohort at the ratio of 2:1. The Pearson correlation coefficients were calculated to determine the correlation between ferroptosis-related genes (FRGs) and the corresponding lncRNAs, and those meeting the screening conditions were defined as FRLs. Gene Expression Omnibus (GEO) database and qRT-PCR were used to verify the expression level of FRLs in THCA tissues. Univariate and multivariate cox regression analysis were performed to construct a FRLs signature based on lowest Akaike information criterion (AIC) value in the training cohort, then further tested in the validation cohort and the entire cohort. Gene set enrichment analysis (GSEA) and functional enrichment analysis were used to analyze the biological functions and signal pathways related to differentially expressed genes between the high-risk and low-risk groups. Finally, the relative abundance of different tumor-infiltrating immune cells were calculated by CIBERSORT algorithm. RESULTS: The patients were divided into high-risk group and low-risk group based on a 5-FRLs signature (AC055720.2, DPP4-DT, AC012038.2, LINC02454 and LINC00900) in training cohort, validation cohort and entire cohort. Through Kaplan-Meier analysis and area under ROC curve (AUC) value, patients in the high-risk group exhibited worse prognosis than patients in the low-risk group. GEO database and qRT-PCR confirmed that LINC02454 and LINC00900 were up-regulated in THCA. Univariate and multivariate cox regression analyses showed that the risk score was an independent prognostic indicator. GSEA and functional enrichment analysis confirmed that immune-related pathways against cancer were significantly activated in the low-risk THCA patients. Further analysis showed that the immune cells such as plasma cells, T cells CD8 and macrophages M1, and the expression of immune checkpoint molecules, including PD-1, PD-L1, CTLA4, and LAG3, were remarkably higher in the low-risk group. CONCLUSION: Our study used the TCGA THCA dataset to construct a novel FRLs prognostic model which could precisely predict the prognosis of THCA patients. These FRLs potentially mediate anti-tumor immunity and serve as therapeutic targets for THCA, which provided the novel insight into treatment of THCA.

5.
J Craniofac Surg ; 33(4): e365-e368, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694764

RESUMO

RATIONALE: Non-missile penetrating injuries caused by foreign bodies, such as knives or sharp wood, are infrequent. We report a 49-year-old male suffering from severe craniocervical penetrating injury by a steel bar was successfully treated by surgery. CHIEF COMPLAINT: The male patient was a 49-year-old builder. Although working on the construction site, an approximately 60 cm steel bar penetrated the patient's brain vertically through the left top of the head presenting with unconsciousness and intermittent irritability. DIAGNOSIS: Computed tomography of the head showed the entrance and exit of the skull damaged by the steel bar. Three-dimensional reconstruction showed that the steel bar entered the skull from the posterior left coronal suture and penetrated the ipsilateral occipital bone, about 5 cm into the neck soft tissue. INTERVENTION: We successfully performed the operation and removed the steel bar. OUTCOMES: The patient was followed up for 5 years; muscle strength returned to normal. LESSONS: Penetrating injuries caused by steel bars are rare, which always cause severe intracranial injury combined with peripheral tissue injury, by sharing our experience in the treatment of this rare case, we hope to provide a reference for similar injuries in the future.


Assuntos
Traumatismos Craniocerebrais , Corpos Estranhos , Traumatismos Cranianos Penetrantes , Ferimentos Penetrantes , Traumatismos Craniocerebrais/etiologia , Corpos Estranhos/complicações , Corpos Estranhos/diagnóstico por imagem , Corpos Estranhos/cirurgia , Traumatismos Cranianos Penetrantes/diagnóstico por imagem , Traumatismos Cranianos Penetrantes/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Aço , Tomografia Computadorizada por Raios X/métodos , Ferimentos Penetrantes/complicações , Ferimentos Penetrantes/diagnóstico por imagem , Ferimentos Penetrantes/cirurgia
6.
Small ; 17(3): e2005814, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306275

RESUMO

Terahertz (THz) biological imaging has attracted intense attention due to its capability of acquiring physicochemical information in a label-free, noninvasive, and nonionizing manner. However, extending THz imaging to the single-molecule level remains a challenge, partly due to the weak THz reflectivity of biomolecules with low dielectric constants. Here, the development of graphene-mediated THz scattering-type scanning near-field optical microscope for direct imaging of single proteins is reported. Importantly, it is found that a graphene substrate with high THz reflectivity and atomic flatness can provide high THz contrast against the protein molecules. In addition, a platinum probe with an optimized shaft length is found enabling the enhancement of the amplitude of the scattered THz near-field signals. By coupling these effects, the topographical and THz scattering images of individual immunoglobulin G (IgG) and ferritin molecules with the size of a few nanometers are obtained, simultaneously. The demonstrated strategy thus opens new routes to imaging single biomolecules with THz.


Assuntos
Grafite , Imagem Terahertz , Proteínas
7.
Phys Chem Chem Phys ; 23(11): 6632-6640, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33709091

RESUMO

Single-atom catalysts (SACs) have received intense attention owing to their maximum utilization efficiency of metal atoms and high catalytic activity. Although SACs possess many merits, such as high activity, selectivity and stability in photocatalysis, the difficulty of fabricating atomically dispersed atom catalysts with a high level of metal loading limits their practical applications. Here, a sulphur-doping strategy was proposed to enhance the incorporation of single Pt atoms in monolayer graphitic carbon nitride (g-C3N4), and the structural, electronic and optical properties were investigated through density functional theory (DFT) calculations. This work verified that SACs based on sulphur-doped monolayer g-C3N4 (S-g-C3N4) exhibit a lower band gap energy, higher photocatalytic oxidation ability, easier charge separation, lower oxidation state of Pt atoms and wider light absorption range. This work provides a promising path for fabricating efficient g-C3N4-based photocatalytic SACs.

8.
Sensors (Basel) ; 19(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696003

RESUMO

Terahertz signature detection of biological samples in aqueous solution remains a great challenge due to the strong terahertz absorption of water. Here we propose a new preparation process for fabricating a microfluidic chip and use it as an effective sensor to probe the terahertz absorption signatures of microcystin aptamer (a linear single-stranded DNA with 60 nucleotides) dissolved in TE buffer with different concentrations. The microfluidic chip made of silicon includes thousands of 2.4 µm × 2.4 µm square-cross-section channels. One repeatable terahertz absorption signature is detected and recognized around 830 GHz, fitted to a Lorentz oscillator. This signature is theorized to originate from the bending of hydrogen bonds formed between adjacent hydrated DNA bases surrounded by water molecules. Furthermore, the low-lying vibrational modes are also investigated by molecular dynamics simulations which suggest that strong resonant oscillations are highly probable in the 815⁻830 GHz frequency band.

9.
BMC Neurosci ; 19(1): 75, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458729

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a complex condition and remains a prominent public and medical health issue in individuals of all ages. A rapid increase in extracellular glutamate occurs after TBI, leading to glutamate-induced excitotoxicity, which causes neuronal damage and further functional impairments. Although inhibition of glutamate carboxypeptidase II (GCP II) is considered a potential approach for reducing glutamate-induced excitotoxicity after TBI, further detailed evidence regarding its efficacy is required. Therefore, in this study, we examined the differences in the metabolite status between wild-type (WT) and GCP II gene-knockout (KO) mice after TBI using proton magnetic resonance spectroscopy (1H-MRS) and T2-weighted magnetic resonance (MR) imaging with a 7-tesla imaging system, and brain water-content analysis. RESULTS: Evaluation of glutamate and N-acetylaspartate concentrations revealed a decrease in both levels in the ipsilateral hippocampus at 24 h post-TBI; however, the reduction in glutamate and N-acetylaspartate levels was less marked in GCP II-KO mice than in WT mice (p < 0.05). T2 MR data and brain water-content analysis demonstrated that the extent of cortical edema and brain swelling was less in KO than in WT mice after TBI (p < 0.05). CONCLUSION: Using two non-invasive methods, 1H-MRS and T2 MR imaging, as well as in vitro brain-water content measurements, we demonstrated that the mechanism underlying the neuroprotective effects of GCP II-KO against brain swelling in TBI involves changes in glutamate and N-acetylaspartate levels. This knowledge may contribute towards the development of therapeutic strategies for TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Glutamato Carboxipeptidase II/deficiência , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Glutamato Carboxipeptidase II/genética , Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Knockout , Espectroscopia de Prótons por Ressonância Magnética
10.
BMC Neurosci ; 18(1): 42, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490320

RESUMO

BACKGROUND: Astaxanthin (ATX) is a carotenoid pigment with pleiotropic pharmacological properties that is seen as a possible drug for treating cerebral ischemic injury and subarachnoid hemorrhage. Na+-K+-2Cl- co-transporter-1 (NKCC1), an intrinsic membrane protein expressed by many cell types, is activated by various insults, leading to the formation of cell swelling and brain edema. We previously established that ATX attenuated brain edema and improved neurological outcomes by modulating NKCC1 expression after traumatic brain injury in mice. This paper explored the molecular mechanism of ATX-mediated inhibition of NKCC1 utilizing an in vitro astrocyte stretch injury model. RESULTS: Stretch injury in cultured astrocytes lowered cell viability time-dependently, which was substantially reducing by pretreating with ATX (50 µmol/L). Stretch injury increased Bax level and cleaved caspase-3 activity, and decreased Bcl-2 level and pro-caspase 3 activity, resulting in the apoptosis of astrocytes. Additionally, stretch injury substantially raised the gene and protein expressions of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α and prompted the expression and nuclear translocation of NF-κB. Pretreatment with ATX remarkably prevented the trauma-induced initiation of NF-κB, expressions of pro-inflammatory cytokines, and cell apoptosis. Moreover, stretch injury markedly elevated the gene and protein expression of NKCC1, which was partly blocked by co-treatment with ATX (50 µmol/L) or an NF-κB inhibitor (PDTC, 10 µmol/L). Cleaved caspase-3 activity was partially reduced by PDTC (10 µmol/L) or an NKCC1 inhibitor (bumetanide, 50 µmol/L). CONCLUSIONS: ATX attenuates apoptosis after stretch injury in cultured astrocytes by inhibiting NKCC1 expression, and it acts by reducing the expression of NF-κB-mediated pro-inflammatory factors.


Assuntos
Astrócitos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/biossíntese , Animais , Apoptose/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais , Membro 2 da Família 12 de Carreador de Soluto/efeitos dos fármacos , Xantofilas/farmacologia
11.
BMC Neurosci ; 17(1): 60, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581370

RESUMO

BACKGROUND: Astaxanthin is a carotenoid pigment that possesses potent antioxidative, anti-inflammatory, antitumor, and immunomodulatory activities. Previous studies have demonstrated that astaxanthin displays potential neuroprotective properties for the treatment of central nervous system diseases, such as ischemic brain injury and subarachnoid hemorrhage. This study explored whether astaxanthin is neuroprotective and ameliorates neurological deficits following traumatic brain injury (TBI). RESULTS: Our results showed that, following CCI, treatment with astaxanthin compared to vehicle ameliorated neurologic dysfunctions after day 3 and alleviated cerebral edema and Evans blue extravasation at 24 h (p < 0.05). Astaxanthin treatment decreased AQP4 and NKCC1 mRNA levels in a dose-dependent manner at 24 h. AQP4 and NKCC1 protein expressions in the peri-contusional cortex were significantly reduced by astaxanthin at 24 h (p < 0.05). Furthermore, we also found that bumetanide (BU), an inhibitor of NKCC1, inhibited trauma-induced AQP4 upregulation (p < 0.05). CONCLUSIONS: Our data suggest that astaxanthin reduces TBI-related injury in brain tissue by ameliorating AQP4/NKCC1-mediated cerebral edema and that NKCC1 contributes to the upregulation of AQP4 after TBI.


Assuntos
Aquaporina 4/metabolismo , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Bumetanida/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Distribuição Aleatória , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Xantofilas/farmacologia
12.
J Neurochem ; 134(2): 340-53, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25872793

RESUMO

Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors.


Assuntos
Comportamento Animal/fisiologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Glutamato Carboxipeptidase II/deficiência , Animais , Lesões Encefálicas/enzimologia , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout
13.
Histol Histopathol ; : 18762, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38826151

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play important roles in tumor microenvironments. Pyrroline-5-carboxylate reductase 1 (PYCR1) is a potential cancer therapy target. This study aimed to explore the expression of PYCR1 in glioma-associated CAFs and analyze the effects of PYCR1 expression in CAFs on the proliferation of C6 glioma. METHODS: A rat glioma model was induced by injecting C6 cells in the right caudate putamen via a microliter syringe. After 14 days, tumor tissues were collected, and the levels of COL1A1 and PYCR1 were measured by immunohistochemistry. The colocalization of fibroblast activation protein α (FAP) and PYCR1 in tissues was measured by double-immunofluorescence. The CAFs were labeled by FAP and isolated from the tumor tissues using a fluorescence-activated cell sorting (FACS) machine. The isolated CAFs were further separated into CAFs with different PYCR1 expressions using the FACS machine. CAFs with different PYCR1 expressions were respectively cocultured with C6 cells or MUVECs for 48h using a Transwell permeable support. The invasion and proliferation of C6 cells were measured using a Transwell assay and colony formation assay, and the angiogenesis of MUVECs was measured using a Tube formation assay. The expression of COL1A1 and PYCR1 proteins in C6 cells and VEGF-A and EGF proteins in MUVECs was measured by western blotting. PYCR1 silencing in C6 cells was induced by PYCR1 siRNA transfection, the effects of which on the proliferation of C6 cells were measured using a wound healing assay, a Transwell assay, and western blotting. RESULTS: The PYCR1 and COL1A1 upregulation co-occurred in the rat glioma, and PYCR1 was expressed in CAFs. The CAF coculture enhanced the invasion and proliferation of C6 cells and the angiogenesis of MUVECs. Meanwhile, the levels of COL1A1 protein in C6 cells, and the levels of VEGF-A and EGF proteins in MUVECs were increased after CAF coculture. Moreover, the effects of CAF coculture were increased with PYCR1 expression in the CAF. Silencing PYCR1 suppressed the migration and invasion of C6 cells, and decreased the levels of COL1A1 and VEGF-A proteins in C6 cells. CONCLUSIONS: PYCR1 is expressed in glioma-associated CAFs, and promotes the proliferation of C6 cells and angiogenesis of MUVECs, suggesting that targeting PYCR1 may be a therapeutic strategy for glioma.

14.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(7): 786-792, 2024 Jul 15.
Artigo em Zh | MEDLINE | ID: mdl-39013813

RESUMO

Objective: To investigate the effectiveness of endoscopic radical mastectomy for breast cancer combined with total pectoral muscle reconstruction with breast implants. Methods: The clinical data of 138 female patients with breast cancer who met the selection criteria between April 2019 and December 2023 were retrospectively analyzed. The mean age of the patients was 43.8 years (range, 27-61 years). The maximum diameter of the tumors ranged from 1.00 to 7.10 cm, with an average of 2.70 cm. Pathological examination showed that 108 cases were positive for both estrogen receptor and progesterone receptor, and 40 cases were positive for human epidermal growth factor receptor 2. All patients underwent endoscopic radical mastectomy for breast cancer combined with total pectoral muscle reconstruction with breast implants. The operation time, intraoperative blood loss, prosthesis size, and occurences of nipple-areola complex (NAC) ischemia, flap ischemia, infection, and capsular contracture were recorded. The Breast-Q2.0 score was used to evaluate breast aesthetics, patient satisfaction, and quality of life (including the social mental health score, breast satisfaction score, and chest pain score). Patients were divided into two groups based on the time of operation after the technique was implemented: group A (within 1 year, 25 cases) and group B (after 1 year, 113 cases). The above outcome indicators were compared between the two groups. Furthermore, based on the postoperative follow-up duration, patients were classified into a short-term group (follow-up time was less than 1 year) and a long-term group (follow-up time was more than 1 year). The baseline data and postoperative Breast-Q2.0 scores were compared between the two groups. Results: The average operation time was 120.76 minutes, the average intraoperative blood loss was 23.77 mL, and the average prosthesis size was 218.37 mL. Postoperative NAC ischemia occurred in 21 cases (15.22%), flap ischemia in 30 cases (21.74%), infection in 23 cases (16.67%), capsular contracture in 33 cases (23.91%), and prosthesis removal in 2 cases (1.45%). The operation time of group A was significantly longer than that of group B ( P<0.05), and there was no significant difference in intraoperative blood loss, prosthesis size, and related complications between the two groups ( P>0.05). All patients were followed up 3-48 months (mean, 20 months). There were 33 cases in the short-term group and 105 cases in the long-term group. There was no significant difference in baseline data such as age, body mass index, number of menopause cases, number of neoadjuvant chemotherapy cases, number of axillary lymph node dissection cases, breast cup size, degree of breast ptosis, and postoperative radiotherapy constituent ratio between the two groups ( P>0.05). At last follow-up, the breast satisfaction score in the patients' Breast-Q2.0 score ranged from 33 to 100, with an average of 60.9; the social mental health score ranged from 38 to 100, with an average of 71.3; the chest pain score ranged from 20 to 80, with an average of 47.3. The social mental health score of the long-term group was significantly higher than that of the short-term group ( P<0.05); there was no significant difference in breast satisfaction scores and chest pain scores between the two groups ( P>0.05). No patient died during the follow-up, and 2 patients relapsed at 649 days and 689 days postoperatively, respectively. The recurrence-free survival rate was 98.62%. Conclusion: Endoscopic radical mastectomy for breast cancer combined with total pectoral muscle reconstruction with breast implants has fewer complications and less damage, and the aesthetic effect of reconstructed breast is better.


Assuntos
Implantes de Mama , Neoplasias da Mama , Endoscopia , Mamoplastia , Satisfação do Paciente , Músculos Peitorais , Qualidade de Vida , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Adulto , Músculos Peitorais/cirurgia , Endoscopia/métodos , Mamoplastia/métodos , Mastectomia Radical/métodos , Mastectomia/métodos , Resultado do Tratamento , Duração da Cirurgia , Retalhos Cirúrgicos
15.
Int Immunopharmacol ; 139: 112722, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033663

RESUMO

The field of cancer immunotherapy has experienced significant progress, resulting in the emergence of numerous biological drug candidates requiring in vivo efficacy testing and a better understanding of their mechanism of action (MOA). Humanized immune system (HIS) models are valuable tools in this regard. However, there is a lack of systematic guidance on HIS modeling. To address this issue, the present study aimed to establish and optimize a variety of HIS models for immune-oncology (IO) study, including genetically engineered mouse models and HIS models with human immune components reconstituted in severely immunocompromised mice. The efficacy and utility of these models were tested with several marketed or investigational IO drugs according to their MOA, followed by immunophenotypic analysis and efficacy evaluation. The results of the present study demonstrated that the HIS models responded to various IO drugs as expected and that each model had unique niches, utilities and limitations. Researchers should carefully choose the appropriate models based on the MOA and the targeted immune cell populations of the investigational drug. The present study provides valuable methodologies and actionable technical guidance on designing, generating or utilizing appropriate HIS models to address specific questions in translational IO.

16.
Water Res ; 230: 119558, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603309

RESUMO

The global occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic systems has raised concerns about their adverse effects on ecosystems and human health. Adsorption is a promising technique for the remediation of PFAS, yet effective adsorbents with rapid uptake kinetics and high adsorption capacity are still in high demand, and molecular-level understanding of the interfacial adsorption mechanisms is lacking. In this study, we developed a superior layered rare-earth hydroxide (LRH) adsorbent, ultrathin Y2(OH)4.86Cl1.44·1·07H2O (namely YOHCl) nanosheets, to achieve the effective removal of perfluorooctanoic acid (PFOA). YOHCl nanosheets exhibited ultra-high adsorption capacity toward PFOA (up to 957.1 mg/g), which is 1.9 times and 9.3 times higher than the state-of-the-art layered double hydroxides (MgAl-LDH) and benchmark granular activated carbon (GAC) under the same conditions, respectively. Furthermore, YOHCl nanosheets pose stable performance on the removal of PFOA under various water matrices with robust reusability. We also developed YOHCl-based continuous-flow column, demonstrating its promise in simultaneously removing multiple PFAS with wide range of chain lengths at environmentally relevant concentrations. With the molecular-level investigations, we have revealed that multi-mechanism, including ion exchange, electrostatic attraction and bidentate/bridging coordination, contributed to the strong PFOA-YOHCl affinity, leading to the ultra-high adsorption capacity of PFOA. We have provided emerging LRHs-based adsorbents for the effective remediation of PFAS with molecular-level insights on the interfacial mechanisms.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/análise , Hidróxidos , Fluorocarbonos/análise , Adsorção
17.
Front Oncol ; 13: 1156015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503326

RESUMO

Purpose: We aimed at establishing a nomogram to accurately predict the overall survival (OS) of non-metastatic invasive micropapillary breast carcinoma (IMPC). Methods: In the training cohort, data from 429 patients with non-metastatic IMPC were obtained through the Surveillance, Epidemiology, and End Results (SEER) database. Other 102 patients were enrolled at the Xijing Hospital as validation cohort. Independent risk factors affecting OS were ascertained using univariate and multivariate Cox regression. A nomogram was established to predict OS at 3, 5 and 8 years. The concordance index (C-index), the area under a receiver operating characteristic (ROC) curve and calibration curves were utilized to assess calibration, discrimination and predictive accuracy. Finally, the nomogram was utilized to stratify the risk. The OS between groups was compared through Kaplan-Meier survival curves. Results: The multivariate analyses revealed that race (p = 0.047), surgery (p = 0.003), positive lymph nodes (p = 0.027), T stage (p = 0.045) and estrogen receptors (p = 0.019) were independent prognostic risk factors. The C-index was 0.766 (95% CI, 0.682-0.850) in the training cohort and 0.694 (95% CI, 0.527-0.861) in the validation cohort. Furthermore, the predicted OS was consistent with actual observation. The AUCs for OS at 3, 5 and 8 years were 0.786 (95% CI: 0.656-0.916), 0.791 (95% CI: 0.669-0.912), and 0.774 (95% CI: 0.688-0.860) in the training cohort, respectively. The area under the curves (AUCs) for OS at 3, 5 and 8 years were 0.653 (95% CI: 0.498-0.808), 0.683 (95% CI: 0.546-0.820), and 0.716 (95% CI: 0.595-0.836) in the validation cohort, respectively. The Kaplan-Meier survival curves revealed a significant different OS between groups in both cohorts (p<0.001). Conclusion: Our novel prognostic nomogram for non-metastatic IMPC patients achieved a good level of accuracy in both cohorts and could be used to optimize the treatment based on the individual risk factors.

18.
FEBS J ; 290(19): 4695-4711, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254632

RESUMO

As a known receptor-ligand pair for mediating cell-cell or cell-extracellular matrix adhesions, cluster of differentiation 44 (CD44)-hyaluronan (HA) interactions are not only determined by molecular weight (MW) diversity of HA, but also are regulated by external physical or mechanical factors. However, the coupling effects of HA MW and shear flow are still unclear. Here, we compared the differences between high molecular weight HA (HHA) and low molecular weight HA (LHA) binding to CD44 under varied shear stresses. The results demonstrated that HHA dominated the binding phase but LHA was in favour of the shear resistance phase, respectively, under shear stress range ≤ 1.0 dyne·cm-2 . This difference was attributed to the high binding strength of the CD44-HHA interaction, as well as the optimal distribution matching between both CD44 and HA sides. Activation of the intracellular signal pathway was sensitive to both HA MW and shear flow. Our findings also indicate that only CD44-HHA interaction under shear stress of 0.2 dyne·cm-2 could significantly enhance the clustering of CD44, as well as induce the increase in both CD44 and CD18 expression. The present study offers the basis for further quantification of the features of CD44-HA interactions and their biological functions.


Assuntos
Ácido Hialurônico , Transdução de Sinais , Ácido Hialurônico/metabolismo , Adesão Celular , Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo
19.
Front Bioeng Biotechnol ; 11: 1143443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994356

RESUMO

The integration of a microfluidic chip into terahertz time-domain attenuated total reflection (THz TD-ATR) spectroscopy is highly demanded for the accurate measurement of aqueous samples. Hitherto, however little work has been reported on this regard. Here, we demonstrate a strategy of fabricating a polydimethylsiloxane microfluidic chip (M-chip) suitable for the measurement of aqueous samples, and investigate the effects of its configuration, particularly the cavity depth of the M-chip on THz spectra. By measuring pure water, we find that the Fresnel formulae of two-interface model should be applied to analyze the THz spectral data when the depth is smaller than 210 µm, but the Fresnel formula of one-interface model can be applied when the depth is no less than 210 µm. We further validate this by measuring physiological solution and protein solution. This work can help promote the application of THz TD-ATR spectroscopy in the study of aqueous biological samples.

20.
Cancer Lett ; 553: 215971, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36257380

RESUMO

Ovarian cancer (OC) is a malignant tumor that seriously threatens women's health. Due to the difficulty of early diagnosis, most patients exhibit advanced disease or peritoneal metastasis at diagnosis. We discovered that IFFO1 is a novel tumor suppressor, but its role in tumorigenesis, development and chemoresistance is unknown. In this study, IFFO1 levels were downregulated across cancers, leading to the acceleration of tumor development, metastasis and/or cisplatin resistance. Overexpression of IFFO1 inhibited the translocation of ß-catenin to the nucleus and decreased tumor metastasis and cisplatin resistance. Furthermore, we demonstrated that IFFO1 was regulated at both the transcriptional and posttranscriptional levels. At the transcriptional level, the recruitment of HDAC5 inhibited IFFO1 expression, which is mediated by the transcription factor YY1, and the METTL3/YTHDF2 axis regulated the mRNA stability of IFFO1 in an m6A-dependent manner. Mice injected with IFFO1-overexpressing cells had lower ascites volumes and tumor weights throughout the peritoneal cavity than those injected with parental cells expressing the vector control. In conclusion, we demonstrated that IFFO1 is a novel tumor suppressor that inhibits tumor metastasis and reverses drug resistance in ovarian cancer. IFFO1 was downregulated at both the transcriptional level and posttranscriptional level by histone deacetylase and RNA methylation, respectively, and the IFFO1 signaling pathway was identified as a potential therapeutic target for cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Filamentos Intermediários , Metiltransferases , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adenosina/farmacologia , Carcinogênese , Cisplatino/farmacologia , Regulação para Baixo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA