Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(5): 990-1006, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36582119

RESUMO

Elevated ozone (O3 ) can affect the susceptivity of plants to rust pathogens. However, the collective role of microbiomes involved in such interaction remains largely elusive. We exposed two cultivated poplar clones exhibiting differential O3 sensitivities, to non-filtered ambient air (NF), NF + 40 ppb or NF + 60 ppb O3 -enriched air in field open-top chambers and then inoculated Melampsora larici-populina urediniospores to study their response to rust infection and to investigate how microbiomes inhabiting four compartments (phyllosphere, rhizosphere, root endosphere, bulk soil) are involved in this response. We found that hosts with higher O3 sensitivity had significantly lower rust severity than hosts with lower sensitivity. Furthermore, the effect of increased O3 on the diversity and composition of microbial communities was highly dependent on poplar compartments, with the microbial network complexity patterns being completely opposite between the two clones. Notably, microbial source analysis estimated that phyllosphere fungal communities predominately derived from root endosphere and vice versa, suggesting a potential transmission mechanism between plant above- and below-ground systems. These promising results suggest that further investigations are needed to better understand the interactions of abiotic and biotic stresses on plant performance and the role of the microbiome in driving these changes.


Assuntos
Microbiota , Micobioma , Populus , Consórcios Microbianos , Rizosfera , Populus/microbiologia
2.
Proc Biol Sci ; 290(1990): 20221658, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629113

RESUMO

Human-induced biodiversity loss negatively affects ecosystem function, but the interactive effects of biodiversity change across trophic levels remain insufficiently understood. We sampled arboreal spiders and lepidopteran larvae across seasons in 2 years in a subtropical tree diversity experiment, and then disentangled the links between tree diversity and arthropod predator diversity by deconstructing the pathways among multiple components of diversity (taxonomic, phylogenetic and functional) with structural equation models. We found that herbivores were major mediators of plant species richness effects on abundance, species richness, functional and phylogenetic diversity of predators, while phylogenetic, functional and structural diversity of trees were also important mediators of this process. However, the strength and direction differed between functional, structural and phylogenetic diversity effects, indicating different underlying mechanisms for predator community assembly. Abundance and multiple diversity components of predators were consistently affected by tree functional diversity, indicating that the variation in structure and environment caused by plant functional composition might play key roles in predator community assembly. Our study highlights the importance of an integrated approach based on multiple biodiversity components in understanding the consequences of biodiversity loss in multitrophic communities.


Assuntos
Artrópodes , Aranhas , Animais , Humanos , Ecossistema , Filogenia , Biodiversidade , Plantas
3.
Glob Chang Biol ; 29(8): 2242-2255, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36630490

RESUMO

Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while ß diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.


Assuntos
Biodiversidade , Ecossistema , Florestas , Plantas , Mudança Climática
4.
J Neuroinflammation ; 19(1): 160, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725619

RESUMO

BACKGROUND: Spinal cord injury (SCI) causes devastating neurological damage, including secondary injuries dominated by neuroinflammation. The role of Apelin, an endogenous ligand that binds the G protein-coupled receptor angiotensin-like receptor 1, in SCI remains unclear. Thus, our aim was to investigate the effects of Apelin in inflammatory responses and activation of endogenous neural stem cells (NSCs) after SCI. METHODS: Apelin expression was detected in normal and injured rats, and roles of Apelin in primary NSCs were examined. In addition, we used induced pluripotent stem cells (iPSCs) as a carrier to prolong the effective duration of Apelin and evaluate its effects in a rat model of SCI. RESULTS: Co-immunofluorescence staining suggested that Apelin was expressed in both astrocytes, neurons and microglia. Following SCI, Apelin expression decreased from 1 to 14 d and re-upregulated at 28 d. In vitro, Apelin promoted NSCs proliferation and differentiation into neurons. In vivo, lentiviral-transfected iPSCs were used as a carrier to prolong the effective duration of Apelin. Transplantation of transfected iPSCs in situ immediately after SCI reduced polarization of M1 microglia and A1 astrocytes, facilitated recovery of motor function, and promoted the proliferation and differentiation of endogenous NSCs in rats. CONCLUSION: Apelin alleviated neuroinflammation and promoted the proliferation and differentiation of endogenous NSCs after SCI, suggesting that it might be a promising target for treatment of SCI.


Assuntos
Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Apelina/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Ratos , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
5.
Cell Tissue Bank ; 22(3): 419-430, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34115245

RESUMO

Decellularized nerve extracellular matrix (NECM) composited with chitosan are moldable materials suitable for spinal cord repair. But the rapid biodegradation of the materials may interrupt neural tissue reconstruction in vivo. To improve the stability of the materials, the materials produced by NECM and chitosan hydrogels were crosslinked by genipine, glutaraldehyde or ultraviolet ray. Physicochemical property, degradation and biocompatibility of materials crosslinked by genipin, glutaraldehyde or ultraviolet ray were evaluated. The scaffold crosslinked by genipin possessed a porous structure, and the porosity ratio was 89.07 + 4.90%, the average diameter of pore was 85.32 + 5.34 µm. The crosslinked degree of the scaffold crosslinked by genipin and glutaraldehyde was 75.13 ± 4.87%, 71.25 ± 5.06% respectively; Uncrosslinked scaffold disintegrated when immerged in distilled water while the scaffold crosslinked by genipin and glutaraldehyde group retained their integrity. The scaffold crosslinked by genipin has better water absorption, water retention and anti-enzymatic hydrolysis ability than the other three groups. Cell cytotoxicity showed that the cytotoxicity of scaffold crosslinked by genipin was lower than that crosslinked by glutaraldehyde. The histocompatibility of scaffold crosslinked by genipin was also better than glutaraldehyde group. More cells grew well in the scaffold crosslinked by genipin when co-cultured with L929 cells. The decellularized nerve extracellular matrix/chitosan scaffold crosslinked by the genipin has good mechanical properties, micro structure and biocompatibility, which is an ideal scaffold for the spinal cord tissue engineering.


Assuntos
Quitosana , Resinas Acrílicas , Materiais Biocompatíveis , Reagentes de Ligações Cruzadas , Matriz Extracelular , Iridoides , Engenharia Tecidual , Alicerces Teciduais
6.
Mar Drugs ; 18(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218368

RESUMO

Collagen plays an important role in the formation of extracellular matrix (ECM) and development/migration of cells and tissues. Here we report the preparation of collagen and collagen hydrogel from the skin of tilapia and an evaluation of their potential as a wound dressing for the treatment of refractory wounds. The acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted and characterized using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), differential scanning calorimetry (DSC), circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) analysis. Both ASC and PSC belong to type I collagen and have a complete triple helix structure, but PSC shows lower molecular weight and thermal stability, and has the inherent low antigenicity. Therefore, PSC was selected to prepare biomedical hydrogels using its self-aggregating properties. Rheological characterization showed that the mechanical strength of the hydrogels increased as the PSC content increased. Scanning electron microscope (SEM) analysis indicated that hydrogels could form a regular network structure at a suitable PSC content. Cytotoxicity experiments confirmed that hydrogels with different PSC content showed no significant toxicity to fibroblasts. Skin repair experiments and pathological analysis showed that the collagen hydrogels wound dressing could significantly accelerate the healing of deep second-degree burn wounds and the generation of new skin appendages, which can be used for treatment of various refractory wounds.


Assuntos
Bandagens , Queimaduras/terapia , Ciclídeos , Colágeno Tipo I/farmacologia , Proteínas de Peixes/farmacologia , Animais , Colágeno Tipo I/isolamento & purificação , Colágeno Tipo I/ultraestrutura , Modelos Animais de Doenças , Feminino , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/ultraestrutura , Humanos , Hidrogéis/farmacologia , Masculino , Microscopia Eletrônica de Varredura , Ratos , Pele/química , Pele/lesões , Cicatrização/efeitos dos fármacos
7.
Cell Mol Neurobiol ; 39(3): 341-353, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30684112

RESUMO

The present study aimed to investigate the efficacy of transplantation of bone marrow neural tissue-committed stem cell-derived sensory neuron-like cells for the repair of peripheral nerve sensory impairments in rats. Bone marrow was isolated and cultured to obtain the neural tissue-committed stem cells (NTCSCs), and the differentiation of these cells into sensory neuron-like cells was induced. Bone marrow mesenchymal stem cells (BMSCs), bone marrow NTCSCs, and bone marrow NTCSC-derived sensory neurons (NTCSC-SNs) were transplanted by microinjection into the L4 and L5 dorsal root ganglions (DRGs) in an animal model of sensory defect. On the 2nd, 4th, 8th, and 12th week after the transplantation, the effects of the three types of stem cells on the repair of the sensory functional defect were analyzed via behavioral observation, sensory function evaluation, electrophysiological examination of the sciatic nerve, and morphological observation of the DRGs. The results revealed that the transplanted BMSCs, NTCSCs, and NTCSC-SNs were all able to repair the sensory nerves. In addition, the effect of the NTCSC-SNs was significantly better than that of the other two types of stem cells. The general posture and gait of the animals in the sensory defect model exhibited evident improvement over time. Plantar temperature sensitivity and pain sensitivity gradually recovered, and the sensation latency was reduced, with faster sensory nerve conduction velocity. Transplantation of NTCSC-SNs can improve the repair of peripheral nerve sensory defects in rats.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa , Tecido Nervoso/citologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/terapia , Células Receptoras Sensoriais/transplante , Potenciais de Ação , Animais , Comportamento Animal , Separação Celular , Forma Celular , Sobrevivência Celular , Modelos Animais de Doenças , Masculino , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa , Neurônios/citologia , Traumatismos dos Nervos Periféricos/patologia , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Esferoides Celulares/citologia
8.
Cell Physiol Biochem ; 49(4): 1352-1363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30205395

RESUMO

BACKGROUND: Intestinal mucositis is a common side-effect after anti-cancer therapy, which may greatly restrict the therapeutic effects. We aimed to explore the functional role of octreotide (OCT) in lipopolysaccharide (LPS)-induced autophagy of human intestinal epithelial cells as well as the underlying mechanisms. METHODS: Cell viability and expression of proteins related to autophagy, AMPK and the mTOR pathway in LPS-treated Caco-2 cells were determined by CCK-8 assay and Western blot analysis, respectively. Effects of OCT on LPS-induced alterations as well as miR-101 expression were measured. Then, miR-101 was aberrantly expressed, and whether OCT alleviated LPS-induced autophagy through miR-101 was tested. Next, whether TGF-ß-activated kinase 1 (TAK1) was involved in the regulation of miR-101 in LPS-induced autophagy was studied. Effects of OCT on monolayer permeability and tight junction level were analyzed via measuring transepithelial electrical resistance (TEER) and expression of tight junction proteins. RESULTS: LPS reduced cell viability and increased autophagy through activating AMPK and inhibiting the mTOR pathway in Caco-2 cells. OCT alleviated LPS-induced alterations and repressed degradation of autophagosome. Then, we found that OCT affected autophagy through up-regulating miR-101 in LPS-treated cells. Moreover, miR-101-induced inactivation of AMPK and activation of the mTOR pathway in LPS-treated cells were reversed by inhibition of TAK1 phosphorylation. Finally, we found miR-101 was up-regulated in differentiated cells, and OCT protected the monolayer permeability and tight junction level. CONCLUSION: OCT repressed autophagy through miR-101-mediated inactivation of TAK1, along with inactivation of AMPK and activation of the mTOR pathway in LPS-treated Caco-2 cells.


Assuntos
Autofagia/efeitos dos fármacos , MicroRNAs/metabolismo , Octreotida/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Antagomirs/metabolismo , Autofagossomos/metabolismo , Células CACO-2 , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Intestinos/citologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Fosforilação/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Junções Íntimas/metabolismo
9.
Cell Tissue Bank ; 19(4): 591-601, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29974309

RESUMO

The demineralized bone matrix (DBM) putty is a traditional bone graft utilized to facilitate the repair and reconstruction of bone. Recent studies indicated the DBM putties with the various carriers were different in bone repairing ability. In order to prepare a kind of DBM putty with a good biocompatibility and bioactivity, the DBM gel was processed from the DBM and the feasibility as a carrier for the DBM putty was evaluated. After the bovine DBM gel was prepared, the BMPs content as well as the ability to promote osteogenic differentiation of MC3T3-E1 cells in vitro were investigated. Then the DBM putty was prepared and filled into the rat calvarial defect model to evaluate the bone repairing ability by micro-CT and histology. The result showed there was 2.953 ± 0.054 ng BMP contained in per gram of the DBM gel. And the ALP production of MC3T3-E1 cells in the DBM gels group increased with prolonged culturing, the mineralized nodules formed in MC3T3-E1 cells on 14th day after co-culture. The putty prepared by DBM gel was easy to handle without loss of DBM particles at room temperature. In the rat calvarial bone defect experiment, histological observation showed more mature bone formed in the DBM putty group than that in the type I collagen group at 12 weeks, which indicated the bone putty prepared by DBM gel exhibited a better bone repair capability.


Assuntos
Técnica de Desmineralização Óssea , Osso e Ossos/química , Hidrogéis/farmacologia , Animais , Bioensaio , Matriz Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Bovinos , Linhagem Celular , Camundongos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Microtomografia por Raio-X
10.
New Phytol ; 212(1): 220-31, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27214646

RESUMO

Plant-soil feedback (PSF) is an important driver of plant community dynamics. Many studies have emphasized the role of pathogens and symbiotic mutualists in PSFs; however, less is known about the contribution of decomposing litter, especially that of roots. We conducted a PSF experiment, where soils were conditioned by living early- and mid-successional grasses and forbs with and without decomposing roots of conspecific species (conditioning phase). These soils were used to test growth responses of conspecific and heterospecific plant species (feedback phase). The addition of the roots of conspecifics decreased the biomass of both early- and mid-successional plant species in the conditioning phase. In the feedback phase, root addition had positive effects on the biomass of early-successional species and neutral effects on mid-successional species, except when mid-successional grasses were grown in soils conditioned by conspecifics, where effects were negative. Biomass of early- and mid-successional forbs was generally reduced in soils conditioned by conspecifics. We conclude that root decomposition may increase short-term negative PSF effects, but that the effects can become neutral to positive over time, thereby counteracting negative components of PSF. This implies that root decomposition is a key element of PSF and needs to be included in future studies.


Assuntos
Retroalimentação , Raízes de Plantas/fisiologia , Plantas/metabolismo , Solo/química , Bactérias/metabolismo , Biomassa , Fungos/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/fisiologia , Especificidade da Espécie
11.
J Orthop Sci ; 19(4): 627-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733182

RESUMO

BACKGROUND: Research and clinical applications have demonstrated that the effects of tendon allografts are comparable to those of autografts when reconstructing injured tendons or ligaments, but allograft safety remains problematic. Sterilisation could eliminate or decrease the possibility of disease transmission, but current methods seldom achieve satisfactory sterilisation without affecting the mechanical properties of the tendon. HYPOTHESIS: Peracetic acid-ethanol in combination with low-dose gamma irradiation (PE-R) would inactivate potential deleterious microorganisms without affecting mechanical and biocompatible properties of tendon allograft. STUDY DESIGN: Controlled laboratory design. METHODS: HIV, PPV, PRV and BVDV inactivation was evaluated. After verifying viral inactivation, the treated tendon allografts were characterised by optical microscopy, scanning electron microscopy and tensile testing, and the cytocompatibility was assessed with an MTT assay and by subcutaneous implantation. RESULTS: Effective and efficient inactivation of HIV, PPV, PRV and BVDV was observed. Histological structure and ultrastructure were unchanged in the treated tendon allograft, which also exhibited comparable biomechanical properties and good biocompatibility. CONCLUSION: The preliminary results confirmed our hypothesis and demonstrated that the PE-R tendon allograft has significant potential as an alternative to ligament/tendon reconstruction. CLINICAL RELEVANCE: Tendon allografts have been extensively used in ligament reconstruction and tendon repair. However, current sterilisation methods have various shortcomings, so PE-R has been proposed. This study suggests that PE-R tendon allograft has great potential as an alternative for ligament/tendon reconstruction. WHAT IS KNOWN ABOUT THIS SUBJECT: Sterilisation has been a great concern for tendon allografts. However, most sterilisation methods cannot inactivate viruses and bacteria without impairing the mechanical properties of the tendon allograft. WHAT THIS STUDY ADDS TO EXISTING KNOWLEDGE: Peracetic acid/ethanol with gamma irradiation can effectively inactivate viruses and bacteria. Meanwhile, tendon allografts sterilised by this method maintain their physiological tendon structure, biomechanical integrity and good compatibility.


Assuntos
Aloenxertos , Etanol , Raios gama , Ácido Peracético , Esterilização/métodos , Tendões/transplante , Aloenxertos/efeitos dos fármacos , Aloenxertos/efeitos da radiação , Etanol/farmacologia , Humanos , Ácido Peracético/farmacologia
12.
Cell Tissue Bank ; 15(3): 291-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23959505

RESUMO

Before 1986, the development of tissue banking in China has been slow and relatively uncoordinated. Under the support of International Atomic Energy Agency (IAEA), Tissue Banking in China experienced rapid development. In this period, China Institute for Radiation Protection tissue bank mastered systematic and modern tissue banking technique by IAEA training course and gradually developed the first regional tissue bank (Shanxi Provincial Tissue Bank, SPTB) to provide tissue allograft. Benefit from training course, SPTB promoted the development of tissue transplantation by ways of training, brochure, advertisement and meeting. Tissue allograft transplantation acquired recognition from clinic and supervision and administration from government. Quality system gradually is developing and perfecting. Tissue allograft transplantation and tissue bank are developing rapidly and healthy.


Assuntos
Agências Internacionais/organização & administração , Energia Nuclear/legislação & jurisprudência , Bancos de Tecidos/legislação & jurisprudência , Coleta de Tecidos e Órgãos/legislação & jurisprudência , China , Humanos , Agências Internacionais/legislação & jurisprudência , Esterilização/legislação & jurisprudência , Bancos de Tecidos/organização & administração , Transplante Homólogo/legislação & jurisprudência
13.
Cell Tissue Bank ; 15(3): 357-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955020

RESUMO

Defatting is an important procedure for the preparation of bone grafts because lipids in bone grafts strongly influence the osteointegration. Lipases have been widely used in different fields. However, study on the application to defatting process for bone grafts preparation has never been found so far. In this study, bone samples were treated respectively by lipase, NaHCO(3)/Na(2)CO(3), acetone and deionized water. The lipids content of processed bone grafts was calculated in Soxhlet extractor method. Surface morphology of the bone grafts was observed under scanning electron microscope (SEM). DNA content of processed bone grafts was measured. Cytocompatibility was evaluated by co-culturing mouse preosteoblasts (MC3T3-E1) on defatted bone cubes. Proliferation rates of MC3T3-E1 were examined by cell counting kit-8 (CCK-8) assay. No statistically significant difference was found between lipids amount of bone processed by lipase (0.46 ± 0.16 %) and acetone (1.11 ± 0.13 %) (P > 0.05). Both of them were significantly lower than that in groups processed by Na(2)CO(3)/NaHCO(3) (3.46 ± 0.69 %) and deionized water (8.88 ± 0.18 %) (P = 0.000). Only cell debris were discovered over the surface of bone processed by lipase or acetone, while lipid droplets were observed on bone processed by Na(2)CO(3)/NaHCO(3) or water by SEM. The difference of DNA concentration between the bone processed by lipase (3.16 ± 0.81 ng/µl) and acetone (4.14 ± 0.40 ng/µl) is not statistically significant (P > 0.05). Both of them are significantly lower than that groups processed by Na(2)CO(3)/NaHCO(3) (5.22 ± 0.38 ng/µl) and water (7.88 ± 0.55 ng/µl) (P < 0.05). MC3T3-E1 cells maintained their characteristic spreading on the trabecular surfaces of bone processed by lipase. There were no statistically significant differences among absorbance of lipase, acetone groups in CCK-8 assay. The application of lipase to bone tissue defatting appears to be a very promising technique for bone grafts preparation.


Assuntos
Transplante Ósseo , Osso e Ossos/ultraestrutura , Lipase/metabolismo , Metabolismo dos Lipídeos , Animais , Osso e Ossos/metabolismo , Osso e Ossos/cirurgia , Células Cultivadas , Camundongos , Microscopia Eletroquímica de Varredura , Suínos
14.
Cell Tissue Bank ; 15(4): 531-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24442821

RESUMO

The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are recommended.


Assuntos
Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/ultraestrutura , Reagentes de Ligações Cruzadas/farmacologia , Iridoides/farmacologia , Temperatura , Alicerces Teciduais , Animais , Adesão Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/ultraestrutura , Relação Dose-Resposta a Droga , Liofilização , Técnicas In Vitro , Teste de Materiais , Microscopia Eletrônica de Varredura , Modelos Animais , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
15.
Environ Sci Pollut Res Int ; 31(7): 11214-11227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217817

RESUMO

Cadmium (Cd) contamination is a widespread environmental issue. There is a lack of knowledge about the impacts of applying arbuscular mycorrhizal fungi (AMF) and biochar, either alone or in their combination, on alleviating Cd phytotoxicity in Ligustrum lucidum. Therefore, a pot experiment was conducted in a greenhouse, where L. lucidum seedlings were randomly subjected to four regimes of AMF treatments (inoculation with sterilized AMF, with Rhizophagus irregularis, Diversispora versiformis, alone or a mixture of these two fungi), and two regimes of biochar treatments (with or without rice-husk biochar), as well as three regimes of Cd treatments (0, 15, and 150 mg kg-1), to examine the responses of growth, photosynthetic capabilities, soil enzymatic activities, nutritional concentrations, and Cd absorption of L. lucidum plants to the interactive effects of AMF, biochar, and Cd. The results demonstrated that under Cd contaminations, AMF alone significantly increased plant total dry weight, soil pH, and plant nitrogen (N) concentration by 84%, 3.2%, and 13.2%, respectively, and inhibited soil Cd transferring to plant shoot by 42.2%; biochar alone significantly enhanced net photosynthetic rate, soil pH, and soil catalase of non-mycorrhizal plants by 16.4%, 9%, and 11.9%, respectively, and reduced the soil Cd transferring to plant shoot by 44.7%; the additive effect between AMF and biochar greatly enhanced plant total dry weight by 101.9%, and reduced the soil Cd transferring to plant shoot by 51.6%. Furthermore, dual inoculation with D. versiformis and R. irregularis conferred more benefits on plants than the single fungal species did. Accordingly, amending Cd-contaminated soil with the combination of mixed-fungi inoculation and biochar application performed the best than either AMF or biochar alone. These responses may have been attributed to higher mycorrhizal colonization, soil pH, biomass accumulation, and biomass allocation to the roots, as well as photosynthetic capabilities. In conclusion, the combined use of mixed-fungi involving D. versiformis and R. irregularis and biochar addition had significant synergistic effects on enhancing plant performance and reducing Cd uptake of L. lucidum plants in Cd-contaminated soil.


Assuntos
Carvão Vegetal , Ligustrum , Micorrizas , Poluentes do Solo , Micorrizas/fisiologia , Cádmio/análise , Plântula , Poluentes do Solo/análise , Raízes de Plantas , Solo
16.
CNS Neurosci Ther ; 30(2): e14585, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421133

RESUMO

INTRODUCTION: Serum response factor (SRF) is important in muscle development, tissue repair, and neuronal regulation. OBJECTIVES: This research aims to thoroughly examine the effects of SRF on spinal cord injury (SCI) and its ability to significantly impact the recovery and regeneration of neuronal axons. METHODS: The researchers created rat models of SCI and scratch injury to primary spinal cord neurons to observe the expression of relevant factors after neuronal injury. RESULTS: We found that the SRF, Ras, Raf, and cofilin levels increased after injury and gradually returned to normal levels. Afterward, researchers gave rats with SCI an SRF inhibitor (CCG1423) and studied the effects with nuclear magnetic resonance and transmission electron microscopy. The SRF inhibitor rodents had worse spinal cord recovery and axon regrowth than the control group. And the apoptosis of primary neurons after scratch injury was significantly higher in the SRF inhibitor group. Additionally, the researchers utilized lentiviral transfection to modify the SRF expression in neurons. SRF overexpression increased neuron migration while silencing SRF decreased it. Finally, Western blotting and RT-PCR were conducted to examine the expression changes of related factors upon altering SRF expression. The results revealed SRF overexpression increased Ras, Raf, and cofilin expression. Silencing SRF decreased Ras, Raf, and Cofilin expression. CONCLUSION: Based on our research, the SRF promotes axonal regeneration by activating the "Ras-Raf-Cofilin" signaling pathway.


Assuntos
Fatores de Despolimerização de Actina , Traumatismos da Medula Espinal , Ratos , Animais , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/farmacologia , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/farmacologia , Traumatismos da Medula Espinal/patologia , Neurônios/metabolismo , Axônios , Medula Espinal/metabolismo , Transdução de Sinais , Regeneração Nervosa , Recuperação de Função Fisiológica/fisiologia
17.
Heliyon ; 10(6): e26984, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509947

RESUMO

Background: Toll-like receptors (TLRs) are implicated in the pathogenesis and progression of inflammation-associated cancers, except their role in regulating innate immunity. Specifically, a berrant expression of TLR6 has been observed in colorectal cancers (CRC). However, the effect of abnormal TLR6 expression on CRC remians unclear. Therefore, the present study evaluated TLR6 expression in CRC, its effect on CRC proliferation, and its underlying mechanism. Methods: The expression of TLR6 in CRC was assessed using data from TCGA, GTEx, and HPA datasets and immunohistochemical assays of tumor tissues from patients with CRC. In human CRC cell lines, TLR6 signaling was activated using the TLR6 agonist Pam2CSK4 and was blocked using antiTLR6-IgG; subsequently, cell growth, migration, invasion, cell cycle, and apoptosis were compared in CRC cells. The levels of the anti-apoptotic protein Bcl-2 and the apoptotic protein Bax were identified using western blotting. In addition, the effect of TLR6 knockdown by shRNAs in CRC cells was observed both in vitro and in vivo. Nuclear factor κB (NF-κB) level was evaluated using immunofluorescence and western bolt. Results: TLR6 expression was significantly downregulated in CRC tissues. The activation of TLR6 by Pam2CSK4 (100 pg/mL to 10 ng/mL) inhibited the proliferation of CRC cells. Compared with blocking TLR6 signaling using antiTLR6-IgG, activating TLR6 signaling significantly inhibited CRC cell growth, migration, and invasion as well as decreased the proportion of cells in the S and G2/M phases and promoted apoptosis. Furthermore, the knockdown of TLR6 by shRNA promoted the biological activity of CRC cells both in vitro and in vivo. Moreover, the activation of TLR6 signaling by Pam2CSK4 significantly downregulated NF-κB and Bcl-2 levels but upregulated Bax levels. Conclusion: The findings of this study demonstrate that TLR6 may play a inhibitive role in CRC tumorigenesis by suppressing the activity of NF-κB signaling.

18.
Oecologia ; 173(3): 1125-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23736549

RESUMO

A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle-climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006-2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.


Assuntos
Aclimatação/fisiologia , Ciclo do Carbono/fisiologia , Ecossistema , Aquecimento Global , Chuva , Microbiologia do Solo , Análise de Variância , Bactérias/metabolismo , China
19.
Plant Physiol Biochem ; 195: 67-76, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603450

RESUMO

Mulberry is an economically important crop for sericulture in China. Mulberry plantations are shifting inland, where they face high salinity. Arbuscular mycorrhizal fungi (AMF) reportedly enhance mulberry's tolerance to salinity. Here, we assessed if additional adaptive advantages against salinity are provided by sex differences beyond those provided by mycorrhizal symbiosis. In a pot experiment, male and monoecious plants were exposed to three salinity regimes (0, 50, and 200 mM NaCl) and two mycorrhiza-suppressed conditions (with or without benomyl application) for more than 16 months. We noticed that salinity alone significantly decreased the mycorrhizal colonization rate, salinity tolerance, K+ concentrations, and the ionic ratios of all plants. Mycorrhizal association mildly ameliorated the salt-induced detrimental effects, especially for monoecious plants, and sex-specific responses were observed. Meanwhile, both sexes had adopted different strategies to enhance their salinity resistance. Briefly, mycorrhizal monoecious plants exhibited a higher net photosynthetic rate and lower translocation of Na+ from root to shoot compared with mycorrhizal males under saline conditions. Their salt tolerance was probably due to the Ca2+/Na+ in roots. In comparison, male plants exhibited lower Na+ acquisition, more Na+ translocated from root to shoot, higher root biomass allocation, and higher N concentrations under harsh saline conditions, and their salt tolerance was mainly related to the K+/Na+ in their shoots. In conclusion, our results highlight that AMF could be a promising candidate for improving plant performance under highest salinity, especially for monoecious plants. Cultivators must be mindful of applying fungicides, such as benomyl, in saline areas.


Assuntos
Morus , Micorrizas , Micorrizas/fisiologia , Tolerância ao Sal , Benomilo , Raízes de Plantas/fisiologia , Sódio , Plantas , Salinidade
20.
Microbiol Spectr ; : e0383122, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916990

RESUMO

Plants recruit beneficial microbes to enhance their ability to fight pathogens. However, the current understanding of microbial recruitment is largely limited to belowground systems (root exudates and the rhizosphere). It remains unclear whether the changes in leaf metabolites induced by infectious pathogens can actively recruit beneficial microbes to mitigate the growth of foliar pathogens. In this study, we integrated microbiome and metabolomic analyses to systematically explore the dynamics of phyllosphere fungal and bacterial communities and key leaf metabolites in two crabapple species (Malus sp. "Flame" and Malus sp. "Kelsey") at six stages following infection with Gymnosporangium yamadae. Our results showed that the phyllosphere microbiome changed during lesion expansion, as highlighted by a reduction in bacterial alpha-diversity and an increase in fungal alpha-diversity; a decreasing and then an increasing complexity of the microbial co-occurrence network was observed in Kelsey and a decreasing complexity occurred in Flame. In addition, nucleotide sugars, diarylheptanoids, and carboxylic acids with aromatic rings were more abundant in early stages of collection, which positively regulated the abundance of bacterial orders Pseudomonadales (in Kelsey), Acidimicrobiales, Bacillales, and Flavobacteriales (in Flame). In addition, metabolites such as flavonoids, lignin precursors, terpenoids, coumarins, and quaternary ammonium salts enriched with the expansion of lesions had a positive regulatory effect on fungal families Rhynchogastremataceae and Golubeviaceae (in Flame) and the bacterial order Actinomycetales (in Kelsey). Our findings highlight that plants may also influence phyllosphere microorganisms by adjusting leaf metabolites in response to biotic stress. IMPORTANCE Our findings demonstrate the response patterns of bacterial and fungal communities in the Malus phyllosphere to rust fungus G. yamadae infection, and they also reveal how the phyllosphere microbiome changes with the expansion of lesions. We identified several metabolites whose relative abundance varied significantly with lesion expansion. Using a framework for assessing the role of leaf metabolites in shaping the phyllosphere microbiome of the two Malus species, we identified several specific metabolites that have profoundly selective effects on the microbial community. In conclusion, our study provides new evidence of the ecological niche of the phyllosphere in supporting the "cry for help" strategy for plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA