Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.139
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38920342

RESUMO

Effective molecular representation learning is very important for Artificial Intelligence-driven Drug Design because it affects the accuracy and efficiency of molecular property prediction and other molecular modeling relevant tasks. However, previous molecular representation learning studies often suffer from limitations, such as over-reliance on a single molecular representation, failure to fully capture both local and global information in molecular structure, and ineffective integration of multiscale features from different molecular representations. These limitations restrict the complete and accurate representation of molecular structure and properties, ultimately impacting the accuracy of predicting molecular properties. To this end, we propose a novel multi-view molecular representation learning method called MvMRL, which can incorporate feature information from multiple molecular representations and capture both local and global information from different views well, thus improving molecular property prediction. Specifically, MvMRL consists of four parts: a multiscale CNN-SE Simplified Molecular Input Line Entry System (SMILES) learning component and a multiscale Graph Neural Network encoder to extract local feature information and global feature information from the SMILES view and the molecular graph view, respectively; a Multi-Layer Perceptron network to capture complex non-linear relationship features from the molecular fingerprint view; and a dual cross-attention component to fuse feature information on the multi-views deeply for predicting molecular properties. We evaluate the performance of MvMRL on 11 benchmark datasets, and experimental results show that MvMRL outperforms state-of-the-art methods, indicating its rationality and effectiveness in molecular property prediction. The source code of MvMRL was released in https://github.com/jedison-github/MvMRL.


Assuntos
Redes Neurais de Computação , Algoritmos , Aprendizado de Máquina , Modelos Moleculares , Desenho de Fármacos , Software , Estrutura Molecular , Inteligência Artificial
2.
J Biol Chem ; 300(7): 107405, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788853

RESUMO

Exogenous omega-3 fatty acids, particularly docosahexaenoic acid (DHA), have shown to exert beneficial effects on nonalcoholic fatty liver disease (NAFLD), which is characterized by the excessive accumulation of lipids and chronic injury in the liver. However, the effect of endogenous DHA biosynthesis on the lipid homeostasis of liver is poorly understood. In this study, we used a DHA biosynthesis-deficient zebrafish model, elovl2 mutant, to explore the effect of endogenously biosynthesized DHA on hepatic lipid homeostasis. We found the pathways of lipogenesis and lipid uptake were strongly activated, while the pathways of lipid oxidation and lipid transport were inhibited in the liver of elovl2 mutants, leading to lipid droplet accumulation in the mutant hepatocytes and NAFLD. Furthermore, the elovl2 mutant hepatocytes exhibited disrupted mitochondrial structure and function, activated endoplasmic reticulum stress, and hepatic injury. We further unveiled that the hepatic cell death and injury was mainly mediated by ferroptosis, rather than apoptosis, in elovl2 mutants. Elevating DHA content in elovl2 mutants, either by the introduction of an omega-3 desaturase (fat1) transgene or by feeding with a DHA-rich diet, could strongly alleviate NAFLD features and ferroptosis-mediated hepatic injury. Together, our study elucidates the essential role of endogenous DHA biosynthesis in maintaining hepatic lipid homeostasis and liver health, highlighting that DHA deficiency can lead to NAFLD and ferroptosis-mediated hepatic injury.

3.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38174583

RESUMO

Bioluminescence in beetles has long fascinated biologists, with diverse applications in biotechnology. To date, however, our understanding of its evolutionary origin and functional variation mechanisms remains poor. To address these questions, we obtained high-quality reference genomes of luminous and nonluminous beetles in 6 Elateroidea families. We then reconstructed a robust phylogenetic relationship for all luminous families and related nonluminous families. Comparative genomic analyses and biochemical functional experiments suggested that gene evolution within Elateroidea played a crucial role in the origin of bioluminescence, with multiple parallel origins observed in the luminous beetle families. While most luciferase-like proteins exhibited a conserved nonluminous amino acid pattern (TLA346 to 348) in the luciferin-binding sites, luciferases in the different luminous beetle families showed divergent luminous patterns at these sites (TSA/CCA/CSA/LVA). Comparisons of the structural and enzymatic properties of ancestral, extant, and site-directed mutant luciferases further reinforced the important role of these sites in the trade-off between acyl-CoA synthetase and luciferase activities. Furthermore, the evolution of bioluminescent color demonstrated a tendency toward hypsochromic shifts and variations among the luminous families. Taken together, our results revealed multiple parallel origins of bioluminescence and functional divergence within the beetle bioluminescent system.


Assuntos
Besouros , Animais , Humanos , Besouros/genética , Filogenia , Sequência de Aminoácidos , Luciferases/genética , Luciferases/química , Luciferases/metabolismo , Sítios de Ligação
4.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36533583

RESUMO

Many maternal mRNAs are translationally repressed during oocyte development and spatio-temporally activated during early embryogenesis, which is crucial for oocyte and early embryo development. By analyzing maternal mutants of nanog (Mnanog) in zebrafish, we demonstrated that Nanog tightly controls translation of maternal mRNA during oogenesis via transcriptional repression of eukaryotic translation elongation factor 1 alpha 1, like 2 (eef1a1l2). Loss of maternal Nanog led to defects of egg maturation, increased endoplasmic reticulum stress, and an activated unfold protein response, which was caused by elevated translational activity. We further demonstrated that Nanog, as a transcriptional repressor, represses the transcription of eefl1a1l2 by directly binding to the eef1a1l2 promoter in oocytes. More importantly, depletion of eef1a1l2 in nanog mutant females effectively rescued the elevated translational activity in oocytes, oogenesis defects and embryonic defects of Mnanog embryos. Thus, our study demonstrates that maternal Nanog regulates oogenesis and early embryogenesis through translational control of maternal mRNA via a mechanism whereby Nanog acts as a transcriptional repressor to suppress transcription of eef1a1l2.


Assuntos
RNA Mensageiro Estocado , Peixe-Zebra , Animais , Feminino , RNA Mensageiro Estocado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Desenvolvimento Embrionário/genética , Oócitos/metabolismo , Biossíntese de Proteínas , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Plant Physiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606940

RESUMO

Ginsenosides, the primary bioactive constituents in ginseng (Panax ginseng), possess substantial pharmacological potential and are in high demand in the market. The plant hormone methyl jasmonate (MeJA) effectively elicits ginsenoside biosynthesis in P. ginseng, though the regulatory mechanism remains largely unexplored. NAC transcription factors are critical in intricate plant regulatory networks and participate in numerous plant physiological activities. In this study, we identified a MeJA-responsive NAC transcription factor gene, PgNAC72, from a transcriptome library produced from MeJA-treated P. ginseng callus. Predominantly expressed in P. ginseng flowers, PgNAC72 localizes to the nucleus. Overexpressing PgNAC72 (OE-PgNAC72) in P. ginseng callus notably elevated total saponin levels, particularly dammarane-type ginsenosides, by upregulating dammarenediol synthase (PgDDS), encoding a key enzyme in the ginsenoside biosynthesis pathway. Electrophoretic mobility shift assays and dual-luciferase assays confirmed that PgNAC72 binds to the NAC-binding elements in the PgDDS promoter, thereby activating its transcription. Further RNA-seq and terpenoid metabolomic data in the OE-PgNAC72 line confirmed that PgNAC72 enhances ginsenoside biosynthesis. These findings uncover a regulatory role of PgNAC72 in MeJA-mediated ginsenoside biosynthesis, providing insights into the ginsenoside regulatory network and presenting a valuable target gene for metabolic engineering.

6.
J Neurosci ; 43(24): 4498-4512, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37188515

RESUMO

Two sensory neurons usually display trial-by-trial spike-count correlations given the repeated representations of a stimulus. The effects of such response correlations on population-level sensory coding have been the focal contention in computational neuroscience over the past few years. In the meantime, multivariate pattern analysis (MVPA) has become the leading analysis approach in functional magnetic resonance imaging (fMRI), but the effects of response correlations among voxel populations remain underexplored. Here, instead of conventional MVPA analysis, we calculate linear Fisher information of population responses in human visual cortex (five males, one female) and hypothetically remove response correlations between voxels. We found that voxelwise response correlations generally enhance stimulus information, a result standing in stark contrast to the detrimental effects of response correlations reported in empirical neurophysiological studies. By voxel-encoding modeling, we further show that these two seemingly opposite effects actually can coexist within the primate visual system. Furthermore, we use principal component analysis to decompose stimulus information in population responses onto different principal dimensions in a high-dimensional representational space. Interestingly, response correlations simultaneously reduce and enhance information on higher- and lower-variance principal dimensions, respectively. The relative strength of the two antagonistic effects within the same computational framework produces the apparent discrepancy in the effects of response correlations in neuronal and voxel populations. Our results suggest that multivariate fMRI data contain rich statistical structures that are directly related to sensory information representation, and the general computational framework to analyze neuronal and voxel population responses can be applied in many types of neural measurements.SIGNIFICANCE STATEMENT Despite the vast research interest in the effect of spike-count noise correlations on population codes in neurophysiology, it remains unclear how the response correlations between voxels influence MVPA in human imaging. We used an information-theoretic approach and showed that unlike the detrimental effects of response correlations reported in neurophysiology, voxelwise response correlations generally improve sensory coding. We conducted a series of in-depth analyses and demonstrated that neuronal and voxel response correlations can coexist within the visual system and share some common computational mechanisms. These results shed new light on how the population codes of sensory information can be evaluated via different neural measurements.


Assuntos
Neurofisiologia , Neurociências , Masculino , Animais , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Neurônios Aferentes
7.
Stroke ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920043

RESUMO

BACKGROUND: This study aimed to quantify the global stroke burden attributable to low physical activity and high body mass index in adults aged ≥55 years using data from the Global Burden of Disease 2019 study. METHODS: We extracted data on stroke mortality, disability-adjusted life years, and risk factor exposure from the Global Burden of Disease 2019 study for people aged ≥55 years. We calculated the population-attributable fraction and absolute number of stroke cases and disability-adjusted life years attributable to low physical activity and high body mass index by location, age group, sex, and year. RESULTS: Globally, body mass index and physical inactivity-attributable stroke burden have declined modestly since 1990, but with diverging escalatory regional trajectories. Population growth and aging drive this rising burden. CONCLUSIONS: Multidimensional, context-specific strategies focused on modifiable lifestyle risks are imperative to address the modest declines and escalatory regional trajectories in body mass index and physical inactivity-attributable stroke burden.

8.
Mol Carcinog ; 63(6): 1146-1159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477642

RESUMO

Acute myeloid leukemia (AML) is one of the most prevalent types of leukemia and is challenging to cure for most patients. Basic Leucine Zipper ATF-Like Transcription Factor (BATF) has been reported to participate in the development and progression of numerous tumors. However, its role in AML is largely unknown. In this study, the expression and prognostic value of BATF were examined in AML. Our results demonstrated that BATF expression was upregulated in AML patients, which was significantly correlated with poor clinical characteristics and survival. Afterward, functional experiments were performed after knocking down or overexpressing BATF by transfecting small interfering RNAs and overexpression plasmids into AML cells. Our findings revealed that BATF promoted the migratory and invasive abilities of AML cells in vitro and in vivo. Moreover, the target genes of BATF were searched from databases to explore the binding of BATF to the target gene using ChIP and luciferase assays. Notably, our observations validated that BATF is bound to the promoter region of TGF-ß1, which could transcriptionally enhance the expression of TGF-ß1 and activate the TGF-ß1/Smad/MMPs signaling pathway. In summary, our study established the aberrantly high expression of BATF and its pro-migratory function via the TGF-ß1-Smad2/3-MMP2/9 axis in AML, which provides novel insights into extramedullary infiltration of AML.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Leucemia Mieloide Aguda , Fator de Crescimento Transformador beta1 , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Feminino , Masculino , Animais , Camundongos , Movimento Celular , Prognóstico , Transdução de Sinais , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Regulação Leucêmica da Expressão Gênica , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Proteínas Smad/metabolismo , Proteínas Smad/genética , Invasividade Neoplásica , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética
9.
Ann Neurol ; 93(2): 244-256, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088542

RESUMO

OBJECTIVE: Despite the increasing number of genes associated with Charcot-Marie-Tooth (CMT) disease, many patients currently still lack appropriate genetic diagnosis for this disease. Autosomal dominant mutations in aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT. Here, we describe causal missense mutations in the gene encoding seryl-tRNA synthetase 1 (SerRS) for 3 families affected with CMT. METHODS: Whole-exome sequencing was performed in 16 patients and 14 unaffected members of 3 unrelated families. The functional impact of the genetic variants identified was investigated using bioinformatic prediction tools and confirmed using cellular and biochemical assays. RESULTS: Combined linkage analysis for the 3 families revealed significant linkage (Zmax LOD = 6.9) between the genomic co-ordinates on chromosome 1: 108681600-110300504. Within the linkage region, heterozygous SerRS missense variants segregated with the clinical phenotype in the 3 families. The mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation. INTERPRETATION: Our findings suggest the heterozygous SerRS variants identified represent a novel cause for autosomal dominant CMT. Mutant SerRS proteins are known to impact various molecular and cellular functions. Our findings provide significant advances on the current understanding of the molecular mechanisms associated with ARS-related CMT. ANN NEUROL 2023;93:244-256.


Assuntos
Doença de Charcot-Marie-Tooth , Serina-tRNA Ligase , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Serina-tRNA Ligase/genética , Mutação , Heterozigoto , Mutação de Sentido Incorreto/genética
10.
Opt Express ; 32(2): 2786-2803, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297799

RESUMO

Here, a scheme for a controllable nonreciprocal phonon laser is proposed in a hybrid photonic molecule system consisting of a whispering-gallery mode (WGM) optomechanical resonator and a χ(2)-nonlinear WGM resonator, by directionally quantum squeezing one of two coupled resonator modes. The directional quantum squeezing results in a chiral photon interaction between the resonators and a frequency shift of the squeezed resonator mode with respect to the unsqueezed bare mode. We show that the directional quantum squeezing can modify the effective optomechanical coupling in the optomechanical resonator, and analyze the impacts of driving direction and squeezing extent on the phonon laser action in detail. Our analytical and numerical results indicate that the controllable nonreciprocal phonon laser action can be effectively realized in this system. The proposed scheme uses an all-optical and chip-compatible approach without spinning resonators, which may be more beneficial for integrating and packaging of the system on a chip. Our proposal may provide a new route to realize integratable phonon devices for on-chip nonreciprocal phonon manipulations, which may be used in chiral quantum acoustics, topological phononics, and acoustical information processing.

11.
J Exp Bot ; 75(3): 979-1003, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877811

RESUMO

High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Temperatura , Carbono/metabolismo , Fotossíntese , Acetatos/metabolismo
12.
Cancer Cell Int ; 24(1): 33, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233848

RESUMO

BACKGROUND: Gastric cancer is a highly prevalent cancer type and the underlying molecular mechanisms are not fully understood. Ubiquitin-specific peptidase (USP) 29 has been suggested to regulate cell fate in several types of cancer, but its potential role in gastric carcinogenesis remains unclear. METHODS: The expression of USP29 in normal and gastric cancer tissues was analyzed by bioinformatics analysis, immunohistochemistry and immunoblot. Gene overexpression, CRISPR-Cas9 technology, RNAi, and Usp29 knockout mice were used to investigate the roles of USP29 in cell culture, xenograft, and benzo[a]pyrene (BaP)-induced gastric carcinogenesis models. We then delineated the underlying mechanisms using mass spectrometry, co-immunoprecipitation (Co-IP), immunoblot, ubiquitination assay, chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and luciferase assays. RESULTS: In this study, we found that USP29 expression was significantly upregulated in gastric cancers and associated with poor patient survival. Ectopic expression of USP29 promoted, while depletion suppressed the tumor growth in vitro and in vivo mouse model. Mechanistically, transcription factor far upstream element binding protein 1 (FUBP1) directly activates USP29 gene transcription, which then interacts with and stabilizes aurora kinase B (AURKB) by suppressing K48-linked polyubiquitination, constituting a FUBP1-USP29-AURKB regulatory axis that medicates the oncogenic role of USP29. Importantly, systemic knockout of Usp29 in mice not only significantly decreased the BaP-induced carcinogenesis but also suppressed the Aurkb level in forestomach tissues. CONCLUSIONS: These findings uncovered a novel FUBP1-USP29-AURKB regulatory axis that may play important roles in gastric carcinogenesis and tumor progression, and suggested that USP29 may become a promising drug target for cancer therapy.

13.
Anal Biochem ; 688: 115478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309680

RESUMO

In this study, a simple electrochemical sensor based on l-arginine membrane (P-L-arg/GCE) was developed for rapid and sensitive detection of MDMA and MDA. A polyarginine membrane was obtained through one-step direct electropolymerization, which provides more reaction sites for the analyte and improves the sensitivity of the sensor. Following the optimized selection parameters, the MDMA detection range was established at 1.0 × 10-7∼3.5 × 10-5 mol L-1, with a detection limit of 3.3 × 10-8 mol L-1. Similarly, the detection range for MDA was established at 1.0 × 10-7∼5.3 × 10-5 mol L-1 with a detection limit of 3.3 × 10-8 mol L-1. Additionally, the potential oxidation mechanism of MDMA and MDA during the REDOX process was analyzed by cyclic voltammetry. Furthermore, the proposed sensor exhibited superior selectivity, excellent reproducibility, and satisfactory stability. The proposed sensors can be used for reliable monitoring of MDMA or MDA in human urine and hair samples, respectively, and it has acceptable analytical reliability and enormous potential for practical applications.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina , Humanos , Reprodutibilidade dos Testes , Peptídeos , Oxirredução , Técnicas Eletroquímicas , Limite de Detecção , Eletrodos
14.
Mol Psychiatry ; 28(4): 1557-1570, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36750736

RESUMO

Dysregulated neurite outgrowth and synapse formation underlie many psychiatric disorders, which are also manifested by wolfram syndrome (WS). Whether and how the causative gene WFS1 deficiency affects synapse formation remain elusive. By mirroring human brain development with cerebral organoids, WFS1-deficient cerebral organoids not only recapitulate the neuronal loss in WS patients, but also exhibit significantly impaired synapse formation and function associated with reduced astrocytes. WFS1 deficiency in neurons autonomously delays neuronal differentiation with altered expressions of genes associated with psychiatric disorders, and impairs neurite outgrowth and synapse formation with elevated cytosolic calcium. Intriguingly, WFS1 deficiency in astrocytes decreases the expression of glutamate transporter EAAT2 by NF-κB activation and induces excessive glutamate. When co-cultured with wildtype neurons, WFS1-deficient astrocytes lead to impaired neurite outgrowth and increased cytosolic calcium in neurons. Importantly, disrupted synapse formation and function in WFS1-deficient cerebral organoids and impaired neurite outgrowth affected by WFS1-deficient astrocytes are efficiently reversed with Riluzole treatment, by restoring EAAT2 expression in astrocytes. Furthermore, Riluzole rescues the depressive-like behavior in the forced swimming test and the impaired recognition and spatial memory in the novel object test and water maze test in Wfs1 conditional knockout mice. Altogether, our study provides novel insights into how WFS1 deficiency affects synapse formation and function, and offers a strategy to treat this disease.


Assuntos
Células-Tronco Embrionárias Humanas , Síndrome de Wolfram , Animais , Camundongos , Humanos , Síndrome de Wolfram/tratamento farmacológico , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Riluzol/farmacologia , Riluzol/metabolismo , Cálcio/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Sinapses/metabolismo
15.
J Immunol ; 208(7): 1545-1553, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35277421

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating autoimmune disease with chronic inflammatory demyelination of the CNS. Experimental autoimmune encephalomyelitis (EAE) is an important animal model to study MS, with many pathological phenomena similar to MS. Th17 cells are important regulators of EAE and MS pathogenesis. Most cytokines needed for Th cell development are secreted by APCs, such as dendritic cells (DCs). Consequently, MS could be improved by inhibiting cytokine secretion from DCs. In this study, we reported that chlorzoxazone could ameliorate EAE pathogenesis via inhibiting IL-6 production by DCs. The EAE signs in the chlorzoxazone-treated group of mice were relieved, which was mainly manifested as lower clinical scores, a decrease in the number of immune cells, and a reduction of demyelination in the CNS. Moreover, the proportion of Th17 cells in the spleen and CNS decreased significantly. In vitro experiments showed that chlorzoxazone treatment significantly reduced DC-derived IL-6 production. In the DC-T cell coculture experiment, significantly decreased Th17 differentiation was observed after chlorzoxazone treatment. In addition, mass spectrometric analysis was performed to elucidate the mechanism by which chlorzoxazone affected EAE and DC function. We showed that the effect of chlorzoxazone on inhibiting the secretion of IL-6 by DCs may be mediated via the AMP-activated protein kinase pathway. Overall, our study elucidated the key role of chlorzoxazone in regulating EAE pathogenesis and suggested that it might be used as a new drug for MS patients.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Clorzoxazona/metabolismo , Clorzoxazona/farmacologia , Células Dendríticas , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Th17
16.
Kidney Blood Press Res ; 49(1): 480-489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38824919

RESUMO

INTRODUCTION: The present study investigated the role of long non-coding RNA (lncRNA) GABPB1-IT1 in ischemia-induced acute kidney injury (AKI). METHODS: The expression of GABPB1-IT1 in the plasma of patients with ischemia-induced AKI and healthy controls was detected by RT-qPCR. GABPB1-IT1 and miR-204-5p were overexpressed in human renal proximal tubular epithelial cells (HRPTEpCs), followed by RT-qPCR to assess the overexpression effect and the regulatory relationship between GABPB1-IT1 and miR-204-5p. Methylation-specific PCR was performed to assess the promoter methylation status of miR-204-5p. Additionally, a cell apoptosis assay was carried out to evaluate the correlation between miR-204-5p and GABPB1-IT1 in the context of hypoxia-induced apoptosis of HRPTEpCs. RESULTS: GABPB1-IT1 was upregulated in the plasma of patients with ischemia-induced AKI. In HRPTEpCs, hypoxia upregulated the expression of GABPB1-IT1. MiR-204-5p was downregulated in ischemia-induced AKI, and the expression of miR-204-5p was inversely correlated with GABPB1-IT1. In HRPTEpCs, overexpression of GABPB1-IT1 decreased the expression levels of miR-204-5p and increased miR-204-5p gene methylation. In addition, overexpression of GABPB1-IT1 reduced the inhibitory effects of miR-204-5p on the apoptosis of HRPTEpC induced by hypoxia. Furthermore, overexpression of GABPB1-IT1 promoted kidney injury, renal tissue injury scores, and the level of serum creatinine. However, miR-204-5p had the opposite effect. CONCLUSION: GABPB1-IT1 was upregulated in ischemia-induced AKI and may induce hypoxia-induced apoptosis of HRPTEpC by methylation of miR-204-5p.


Assuntos
Injúria Renal Aguda , Apoptose , Regulação para Baixo , Túbulos Renais Proximais , MicroRNAs , RNA Longo não Codificante , Regulação para Cima , MicroRNAs/genética , Humanos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , RNA Longo não Codificante/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Células Epiteliais/metabolismo , Feminino , Isquemia , Pessoa de Meia-Idade
17.
Environ Res ; 242: 117796, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040178

RESUMO

Anaerobic fermentation of organic waste to produce volatile fatty acids (VFAs) production is a relatively mature technology. VFAs can be used as a cheap and readily available carbon source by photosynthetic bacteria (PSB) to produce high value-added products, which are widely used in various applications. To better enhance the VFAs obtained from organic wastes for PSB to produce high value-added products, a comprehensive review is needed, which is currently not available. This review systematically summarizes the current status of microbial proteins, H2, poly-ß-hydroxybutyrate (PHB), coenzyme Q10 (CoQ10), and 5-aminolevulinic acid (ALA) production by PSB utilizing VFAs as a carbon resource. Meanwhile, the metabolic pathways involved in the H2, PHB, CoQ10, and 5-ALA production by PSB were deeply explored. In addition, a systematic resource utilization pathway for PSB utilizing VFAs from anaerobic fermentation of organic wastes to produce high value-added products was proposed. Finally, the current challenges and priorities for future research were presented, such as the screening of efficient PSB strains, conducting large-scale experiments, high-value product separation, recovery, and purification, and the mining of metabolic pathways for the VFA utilization to generate high value-added products by PSB.


Assuntos
Ácidos Graxos Voláteis , Bactérias Gram-Negativas , Ácidos Graxos Voláteis/metabolismo , Fermentação , Anaerobiose , Bactérias Gram-Negativas/metabolismo , Carbono/metabolismo , Reatores Biológicos , Concentração de Íons de Hidrogênio , Esgotos
18.
Cell Biochem Funct ; 42(1): e3928, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269503

RESUMO

Reversible protein ubiquitination is a key process for maintaining cellular homeostasis. Deubiquitinases, which can cleave ubiquitin from substrate proteins, have been reported to be deeply involved in disease progression ranging from oncology to neurological diseases. The human genome encodes approximately 100 deubiquitinases, most of which are poorly characterized. One of the well-characterized deubiquitases is ubiquitin-specific protease 29 (USP29), which is often upregulated in pathological tissues and plays important roles in the progression of different diseases. Moreover, several studies have shown that deletion of Usp29 in mice does not cause visible growth and developmental defects, indicating that USP29 may be an ideal therapeutic target. In this review, we provide a comprehensive summary of the important roles and regulatory mechanisms of USP29 in cancer and other diseases, which may help us better understand its biological functions and improve future studies to construct suitable USP29-targeted therapy systems.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Neoplasias/genética , Genoma Humano , Ubiquitina , Ubiquitinação , Enzimas Desubiquitinantes , Proteases Específicas de Ubiquitina/genética
19.
Scand J Med Sci Sports ; 34(1): e14530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909309

RESUMO

PURPOSES: Most adolescents worldwide do not meet 24-h movement guidelines, which recommend specific level of physical activity, sedentary behavior, and sleep for optimal health. Nevertheless, there remains a lack of understanding regarding how social cognitive and physical environmental factors influence adolescents' compliance with these guidelines. This prospective study aimed to examine the associations between perceived physical environments, constructs of the theory of planned behavior (TPB), habit strength, and adherence to 24-h movement guidelines in Chinese adolescents over a three-month period. METHODS: A total of 629 Chinese adolescents (Mage = 14.59 years, SD = 0.64) completed a set of questionnaires comprising perceived physical environmental characteristics, constructs of the TPB, habit strength, and 24-h movement behaviors at baseline and 3 months later. Data analysis was conducted using variance-based structural equation modeling. RESULTS: Attitude, subjective norm, and perceived behavioral control had a direct effect on intention and intention had a direct effect on number of the guidelines being met. Habit strength was a significant predictor of adherence to the guidelines, although its moderating effect on the intention-behavior relationship was not significant. Perceived neighborhood facility accessibility, school facility availability, and home physical activity equipment had significant indirect effects on intention through attitude, subjective norm, and perceived behavioral control. However, constructs of the TPB did not serve as mediators in the relationship between perceived physical environments and the number of guidelines being met. CONCLUSION: This study offers preliminary evidence supporting the integration of perceived physical environments and the TPB in predicting adolescents' adherence to 24-h movement guidelines. Future research should consider using experimental study designs with rigorous measures of 24-h movement behaviors to establish causal relationships.


Assuntos
Atitude , Intenção , Humanos , Adolescente , Estudos Prospectivos , Exercício Físico , Inquéritos e Questionários , China , Teoria Psicológica
20.
Nucleic Acids Res ; 50(16): 9072-9082, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979954

RESUMO

The static and dynamic structures of DNA duplexes affected by 5S-Tg (Tg, Thymine glycol) epimers were studied using MD simulations and Markov State Models (MSMs) analysis. The results show that the 5S,6S-Tg base caused little perturbation to the helix, and the base-flipping barrier was determined to be 4.4 kcal mol-1 through the use of enhanced sampling meta-eABF calculations, comparable to 5.4 kcal mol-1 of the corresponding thymine flipping. Two conformations with the different hydrogen bond structures between 5S,6R-Tg and A19 were identified in several independent MD trajectories. The 5S,6R-Tg:O6HO6•••N1:A19 hydrogen bond is present in the high-energy conformation displaying a clear helical distortion, and near barrier-free Tg base flipping. The low-energy conformation always maintains Watson-Crick base pairing between 5S,6R-Tg and A19, and 5S-Tg base flipping is accompanied by a small barrier of ca. 2.0 KBT (T = 298 K). The same conformations are observed in the MSMs analysis. Moreover, the transition path and metastable structures of the damaged base flipping are for the first time verified through MSMs analysis. The data clearly show that the epimers have completely different influence on the stability of the DNA duplex, thus implying different enzymatic mechanisms for DNA repair.


Assuntos
Reparo do DNA , DNA , Pareamento de Bases , DNA/química , Dano ao DNA , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA