Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795180

RESUMO

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Indóis , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Sulfonamidas , Neoplasias da Glândula Tireoide , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Humanos , Animais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Indóis/farmacologia , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sulfonamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Sorafenibe/farmacologia , Quinolinas/farmacologia , Mutação , Antígenos/metabolismo , Proteoglicanas/metabolismo , Proteínas de Membrana , Proteoglicanas de Sulfatos de Condroitina
2.
Cell Biol Toxicol ; 40(1): 14, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376606

RESUMO

BACKGROUND: RING Finger Protein 115 (RNF115), a notable E3 ligase, is known to modulate tumorigenesis and metastasis. In our investigation, we endeavor to unravel the putative function and inherent mechanism through which RNF115 influences the evolution of thyroid carcinoma (THCA). METHODS: We analyzed RNF115 expression in THCA using the Cancer Genome Atlas (TCGA) database. The influence of RNF115 on the progression of THCA was evaluated using both in vitro and in vivo experimental approaches. The protein regulated by RNF115 was identified through bioinformatics analysis, and its biological significance was further explored. RESULTS: In both THCA tissues and cells, RNF115 showed elevated expression levels. Enhanced expression of RNF115 fostered cell proliferation, tumor growth, and the exacerbation of epithelial-mesenchymal transition (EMT) in THCA, while also promoting tumor lung metastasis. Bioinformatics analysis identified cyclin-dependent kinase 10 (CDK10) as a downstream target of RNF115, which was found to be ubiquitinated and degraded by RNF115 in THCA cells. Functionally, overexpression of CDK10 was found to counteract the promotion of malignant phenotype in THCA induced by RNF115. From a mechanistic perspective, RNF115 activated the Raf-1 pathway and enhanced cancer cell cycle progression by degrading CDK10 in THCA cells. CONCLUSION: RNF115 triggers cell proliferation, EMT, and tumor metastasis by ubiquitinating and degrading CDK10. The regulation of the Raf-1 pathway and cell cycle progression in THCA may be profoundly influenced by this process.


Assuntos
Neoplasias Pulmonares , Neoplasias da Glândula Tireoide , Ubiquitina-Proteína Ligases , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Quinases Ciclina-Dependentes , Neoplasias da Glândula Tireoide/genética , Ubiquitina-Proteína Ligases/genética
3.
BMC Cancer ; 23(1): 1267, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129784

RESUMO

Head and neck squamous carcinoma (HNSC) poses a significant public health challenge due to its substantial morbidity. Nevertheless, despite advances in current treatments, the prognosis for HNSC remains unsatisfactory. To address this, single-cell RNA sequencing (RNA-seq) and bulk RNA-seq data combined with in vitro studies were conducted to examine the role of MYO5A (Myosin VA) in HNSC. Our investigation revealed an overexpression of MYO5A in HNSC that promotes HNSC migration in vitro. Remarkably, knockdown of MYO5A suppressed vimentin expression. Furthermore, analyzing the TCGA database evidenced that MYO5A is a risk factor for human papillomavirus positive (HPV+) HNSC (HR = 0.81, P < 0.001). In high MYO5A expression HNSC, there was a low count of tumor infiltrating lymphocytes (TIL), including activated CD4+ T cells, CD8+ T cells, and B cells. Of note, CD4+ T cells and B cells were positively associated with improved HPV+ HNSC outcomes. Correlation analysis demonstrated a decreased level of immunostimulators in high MYO5A-expressing HNSC. Collectively, these findings suggest that MYO5A may promote HNSC migration through vimentin and involve itself in the process of immune infiltration in HNSC, advancing the understanding of the mechanisms and treatment of HNSC.


Assuntos
Neoplasias de Cabeça e Pescoço , Miosina Tipo V , Infecções por Papillomavirus , Humanos , Vimentina/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Processos Neoplásicos , Prognóstico , Linfócitos do Interstício Tumoral , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética
4.
Adv Sci (Weinh) ; 11(29): e2308934, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38778573

RESUMO

Numerous single-cell transcriptomic datasets from identical tissues or cell lines are generated from different laboratories or single-cell RNA sequencing (scRNA-seq) protocols. The denoising of these datasets to eliminate batch effects is crucial for data integration, ensuring accurate interpretation and comprehensive analysis of biological questions. Although many scRNA-seq data integration methods exist, most are inefficient and/or not conducive to downstream analysis. Here, DeepBID, a novel deep learning-based method for batch effect correction, non-linear dimensionality reduction, embedding, and cell clustering concurrently, is introduced. DeepBID utilizes a negative binomial-based autoencoder with dual Kullback-Leibler divergence loss functions, aligning cell points from different batches within a consistent low-dimensional latent space and progressively mitigating batch effects through iterative clustering. Extensive validation on multiple-batch scRNA-seq datasets demonstrates that DeepBID surpasses existing tools in removing batch effects and achieving superior clustering accuracy. When integrating multiple scRNA-seq datasets from patients with Alzheimer's disease, DeepBID significantly improves cell clustering, effectively annotating unidentified cells, and detecting cell-specific differentially expressed genes.


Assuntos
RNA-Seq , Análise da Expressão Gênica de Célula Única , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Análise por Conglomerados , Aprendizado Profundo , RNA-Seq/métodos , Análise da Expressão Gênica de Célula Única/métodos , Transcriptoma/genética
5.
Biomolecules ; 14(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062480

RESUMO

Understanding the dynamics of gene regulatory networks (GRNs) across diverse cell types poses a challenge yet holds immense value in unraveling the molecular mechanisms governing cellular processes. Current computational methods, which rely solely on expression changes from bulk RNA-seq and/or scRNA-seq data, often result in high rates of false positives and low precision. Here, we introduce an advanced computational tool, DeepIMAGER, for inferring cell-specific GRNs through deep learning and data integration. DeepIMAGER employs a supervised approach that transforms the co-expression patterns of gene pairs into image-like representations and leverages transcription factor (TF) binding information for model training. It is trained using comprehensive datasets that encompass scRNA-seq profiles and ChIP-seq data, capturing TF-gene pair information across various cell types. Comprehensive validations on six cell lines show DeepIMAGER exhibits superior performance in ten popular GRN inference tools and has remarkable robustness against dropout-zero events. DeepIMAGER was applied to scRNA-seq datasets of multiple myeloma (MM) and detected potential GRNs for TFs of RORC, MITF, and FOXD2 in MM dendritic cells. This technical innovation, combined with its capability to accurately decode GRNs from scRNA-seq, establishes DeepIMAGER as a valuable tool for unraveling complex regulatory networks in various cell types.


Assuntos
Redes Reguladoras de Genes , RNA-Seq , Humanos , Biologia Computacional/métodos , Aprendizado Profundo , Mieloma Múltiplo/genética , RNA-Seq/métodos , Análise da Expressão Gênica de Célula Única , Software , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA