RESUMO
Tumor microenvironment (TME)-responsive intelligent photodynamic therapy (PDT) systems have attracted increasing interest in anticancer therapy, due to their potential to address significant and unsatisfactory therapeutic issues, such as limited tissue penetration, inevitable normal tissue damage, and excessive impaired vessels. Here, an H2 O2 -triggered intelligent LCL/ZnO PDT nanodelivery system is elaborately designed. LCL/ZnO can selectively regulate tumor-derived endothelial cells (TECs) and specifically kill tumor cells, by responding to different H2 O2 gradients in TECs and tumor cells. The LCL/ZnO is able to normalize tumor vessels, thereby resulting in decreased metastases, and ameliorating the immunosuppressive TME. Further analysis demonstrates that singlet oxygen (1 O2 )-activated transient receptor potential vanilloid-4-endothelial nitric oxide synthase signals generated in TECs by LCL/ZnO induce tumor vascular normalization, which is identified as a novel mechanism contributing to the increased ability of PDT to promote cancer therapy. In conclusion, designing an intelligent PDT nanodelivery system response to the TME, that includes both selective TECs regulation and specific tumor-killing, will facilitate the development of effective interventions for future clinical applications.
Assuntos
Neoplasias , Fotoquimioterapia , Óxido de Zinco , Linhagem Celular Tumoral , Células Endoteliais , Humanos , Neoplasias/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/farmacologia , Óxido Nítrico Sintase Tipo III/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Canais de Cátion TRPV , Microambiente TumoralRESUMO
Cancer immunotherapy is a strategy that is moving to the frontier of cancer treatment in the current decade. In this study, we show evidence that 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs), act as immunogenic cell death (ICD) inducers, stimulating an antitumor response which results in synergistic antitumor activity by combining anti-PD-L1 antibody (aPD-L1) in vivo. To investigate the antitumor immunity induced by NPPA-PTX NPs, the expression of both ICD marker calreticulin (CRT) and high mobility group box 1 (HMGB1) were analyzed. In addition, the antitumor activity of NPPA-PTX NPs combined with aPD-L1 in vivo was also investigated. The immune response was also measured through quantitation of the infiltration of T cells and the secretion of pro-inflammatory cytokines. The results demonstrate that NPPA-PTX NPs induce ICD of MDA-MB-231 and 4T1 cells through upregulation of CRT and HMGB1, reactivating the antitumor immunity via recruitment of infiltrating CD3+, CD4+, CD8+ T cells, secreting IFN-γ, TNF-α, and the enhanced antitumor activity by combining with aPD-L1. These data suggest that the combined therapy has a synergistic antitumor activity and has the potential to be developed into a novel therapeutic regimen for cancer patients.
Assuntos
Albuminas/farmacologia , Antineoplásicos/farmacologia , Morte Celular Imunogênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Nanopartículas/química , Paclitaxel/farmacologia , Albuminas/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antígeno B7-H1/imunologia , Calreticulina/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Proteína HMGB1/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem , Propionatos/química , Regulação para Cima , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The antitumor immune response involves a cascade of cancer-immunity cycles. Developing a combination therapy aimed at the cancer-immunity cycle is of great importance. In this research, we designed and tested a combined therapeutic-Au nanorod (AuNR)/doxorubicin (DOX) gel (AuNR/DOX gel)-in which the sustained release of DOX was controlled by Pluronic gel. DOX served as an immunogenic tumor cell death (ICD) inducer, triggering the production of damage-associated molecular patterns (DAMPs). Mild photothermal therapy (Mild PTT) produced by 880 nm laser-irradiated AuNRs also generated tumor-associated antigens. Maleimide-modified liposomes (L-Mals), as antigen capturing agents, promoted tumor antigen uptake by DCs. Ultimately, more CD8+ T cells and fewer regulatory T cells (Tregs) infiltrated the tumor, eliciting antitumor responses from the PD-L1 antibody. Our results indicate that this combination strategy promotes a positive shift in the cancer-immunity cycle and holds much promise for combination strategy will lead to development of an antitumor drug delivery system. STATEMENT OF SIGNIFICANCE: Developing a combination therapy for cancer-immunity cycle is of great importance due to antitumor immune response involving a cascade of cancer-immunity cycles. Cancer-immunity cycle usually includes tumor antigen release, antigen presentation, immune activation, trafficking, infiltration, specific recognition of tumor cells by T cells, and finally cancer cell killing. In this research, we designed a combination strategy based on Au nanorod/doxorubicin gel via mild photothermal therapy combined with antigen-capturing liposomes and anti-PD-L1 agent promoting a positive shift in the cancer-immunity cycle. Our results indicate that this combination strategy promotes a positive shift in the cancer-immunity cycle and holds much promise for combination strategy will lead to development of an antitumor drug delivery system.
Assuntos
Antígeno B7-H1/antagonistas & inibidores , Doxorrubicina , Melanoma Experimental , Nanotubos , Terapia Fototérmica , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Lipossomos , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BLRESUMO
Background: Mesenchymal stem cell (MSC)-based therapies hold great promise for the treatment of inflammatory bowel disease (IBD). In order to optimize and maximize the therapeutic benefits of MSCs, we investigated whether cotransplantation of a chitosan (CS)-based injectable hydrogel with immobilized IGF-1 C domain peptide (CS-IGF-1C) and human placenta-derived MSCs (hP-MSCs) could ameliorate colitis in mice. Methods: IGF-1C hydrogel was generated by immobilizing IGF-1C to CS hydrogel. Colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. We initially applied hP-MSCs and CS-IGF-1C hydrogel for the treatment of colitis by in situ injection, and molecular imaging methods were used for real-time imaging of reactive oxygen species (ROS) and tracking of transplanted hP-MSCs by bioluminescence imaging (BLI). Furthermore, the effects of CS-IGF-1C hydrogel on prostaglandin E2 (PGE2) secretion of hP-MSCs and polarization of M2 macrophages were investigated as well. Results: The CS-IGF-1C hydrogel significantly increased hP-MSC proliferation and promoted the production of PGE2 from hP-MSCs in vitro. Moreover, in vivo studies indicated that the CS-IGF-1C hydrogel promoted hP-MSC survival as visualized by BLI and markedly alleviated mouse colitis, which was possibly mediated by hP-MSC production of PGE2 and interleukin-10 (IL-10) production by polarized M2 macrophages. Conclusions: The CS-IGF-1C hydrogel improved the engraftment of transplanted hP-MSCs, ameliorated inflammatory responses, and further promoted the functional and structural recovery of colitis through PGE2-mediated M2 macrophage polarization. Molecular imaging approaches and therapeutic strategies for hydrogel application provide a versatile platform for exploring the promising therapeutic potential of MSCs in the treatment of IBD.
Assuntos
Colite Ulcerativa/terapia , Dinoprostona/metabolismo , Portadores de Fármacos/química , Fator de Crescimento Insulin-Like I/administração & dosagem , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Células Cultivadas , Quitosana/química , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colo/efeitos dos fármacos , Colo/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Hidrogéis/química , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/imunologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Placenta/citologia , Gravidez , Cultura Primária de Células , Ácido Trinitrobenzenossulfônico/administração & dosagem , Ácido Trinitrobenzenossulfônico/toxicidadeRESUMO
INTRODUCTION: Because tumor-associated inflammation is a hallmark of cancer treatment, in the present study, sorafenib mesoporous silica nanomatrix (MSNM@SFN) co-administrated with flufenamic acid (FFA, a non-steroidal anti-inflammatory drug (NSAID)) was investigated to enhance the anti-tumor activity of MSNM@SFN. METHODS: Metastatic breast tumor 4T1/luc cells and hepatocellular carcinoma HepG2 cells were selected as cell models. The effects of FFA in vitro on cell migration, PGE2 secretion, and AKR1C1 and AKR1C3 levels in 4T1/luc and HepG2 cells were investigated. The in vivo anti-tumor activity of MSNM@SFN co-administrating with FFA (MSNM@SFN+FFA) was evaluated in a 4T1/luc metastatic tumor model, HepG2 tumor-bearing nude mice model, and HepG2 orthotopic tumor-bearing nude mice model, respectively. RESULTS: The results indicated that FFA could markedly decrease cell migration, PGE2 secretion, and AKR1C1 and AKR1C3 levels in both 4T1/luc and HepG2 cells. The enhanced anti-tumor activity of MSNM@SFN+FFA compared with that of MSNM@SFN was confirmed in the 4T1/luc metastatic tumor model, HepG2 tumor-bearing nude mice model, and HepG2 orthotopic tumor-bearing nude mice model in vivo, respectively. DISCUSSION: MSNM@SFN co-administrating with FFA (MSNM@SFN+FFA) developed in this study is an alternative strategy for improving the therapeutic efficacy of MSNM@SFN via co-administration with NSAIDs.
Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , 20-Hidroxiesteroide Desidrogenases/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Feminino , Ácido Flufenâmico/administração & dosagem , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Dióxido de Silício/química , Sorafenibe/administração & dosagem , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Lin28a is a pluripotent factor that promotes somatic cell reprogramming. Unlike other pluripotent factors, Lin28a expression is transient and accumulated in primed embryonic stem (ES) cells, but its exact function and mechanism in the conversion of ES cells from naïve to primed state remain unclear. Here, we present evidence for Dppa3, a protein originally known for its role in germ cell development, as a downstream target of Lin28a in naïve-primed conversion. Using rescue experiment, we demonstrate that Dppa3 functions predominantly downstream of Lin28a during naïve-primed state conversion. Higher level of Lin28a prevents let-7 maturation and results in Dnmt3a/b (target of let-7) upregulation, which in turn induces hypermethylation of the Dppa3 promoter. Dppa3 demarcates naïve versus primed pluripotency states. These results emphasize that Lin28a plays an important role during the naïve-primed state conversion of ES cells, which is partially mediated by a Lin28a-let-7-Dnmt3a/b-Dppa3 axis.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Animais , Proteínas Cromossômicas não Histona/genética , DNA (Citosina-5-)-Metiltransferases/biossíntese , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Regulação Enzimológica da Expressão Gênica , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas de Ligação a RNA/genética , Regulação para Cima , DNA Metiltransferase 3BRESUMO
Wound healing is regulated by a complex series of events and overlapping phases. A delicate balance of cytokines and mediators in tissue repair is required for optimal therapy in clinical applications. Molecular imaging technologies, with their versatility in monitoring cellular and molecular events in living organisms, offer tangible options to better guide tissue repair by regulating the balance of cytokines and mediators at injured sites. Methods: A murine cutaneous wound healing model was developed to investigate if incorporation of prostaglandin E2 (PGE2) into chitosan (CS) hydrogel (CS+PGE2 hydrogel) could enhance its therapeutic effects. Bioluminescence imaging (BLI) was used to noninvasively monitor the inflammation and angiogenesis processes at injured sites during wound healing. We also investigated the M1 and M2 paradigm of macrophage activation during wound healing. Results: CS hydrogel could prolong the release of PGE2, thereby improving its tissue repair and regeneration capabilities. Molecular imaging results showed that the prolonged release of PGE2 could ameliorate inflammation by promoting the M2 phenotypic transformation of macrophages. Also, CS+PGE2 hydrogel could augment angiogenesis at the injured sites during the early phase of tissue repair, as revealed by BLI. Furthermore, our results demonstrated that CS+PGE2 hydrogel could regulate the balance among the three overlapping phases-inflammation, regeneration (angiogenesis), and remodeling (fibrosis)-during cutaneous wound healing. Conclusion: Our findings highlight the potential of the CS+PGE2 hydrogel as a novel therapeutic strategy for promoting tissue regeneration via M2 macrophage polarization. Moreover, molecular imaging provides a platform for monitoring cellular and molecular events in real-time during tissue repair and facilitates the discovery of optimal therapeutics for injury repair by regulating the balance of cytokines and mediators at injured sites.
Assuntos
Dinoprostona/administração & dosagem , Portadores de Fármacos/administração & dosagem , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Fatores Imunológicos/administração & dosagem , Macrófagos Peritoneais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/terapia , Animais , Células Cultivadas , Quitosana/administração & dosagem , Modelos Animais de Doenças , Inflamação/patologia , Medições Luminescentes , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos , Imagem Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Resultado do TratamentoRESUMO
Transplantation of endothelial cells (ECs) holds great promise for treating various kinds of ischemic diseases. However, the major challenge in ECs-based therapy in clinical applications is to provide high quality and enough amounts of cells. In this study, we developed a simple and efficient system to direct endothelial differentiation of mouse embryonic stem cells (ESCs) using a controllable chitosan nitric oxide (NO)-releasing hydrogel (CS-NO). ESCs were plated onto the hydrogel culture system, and the expressions of differentiation markers were measured. We found that the expression of Flk-1 (early ECs marker) and VE-cadherin (mature ECs marker) increased obviously under the controlled NO releasing environment. Moreover, the Flk-1 upregulation was accompanied by the activation of the phospho-inositide-3 kinase (PI3K)/Akt signaling. We also found that in the presence of the PI3K inhibitor (LY294002), the endothelial commitment of ESCs was abolished, indicating the importance of Akt phosphorylation in the endothelial differentiation of ESCs. Interestingly, in the absence of NO, the activation of Akt phosphorylation alone by using AKT activator (SC-79) did not profoundly promote the endothelial differentiation of ESCs, suggesting an interdependent relationship between NO and the Akt phosphorylation in driving endothelial fate specification of ESCs. Taken together, we demonstrated that NO releasing in a continuous and controlled manner is a simple and efficient method for directing the endothelial differentiation of ESCs without adding growth factors. STATEMENT OF SIGNIFICANCE: Fascinating data continues to show that artificial stem cell niche not only serve as a physical supporting scaffold for stem cells proliferation, but also as a novel platform for directing stem cell differentiation. Because of the lack of proper microenvironment for generating therapeutic endothelial cells (ECs) in vitro, the source of ECs for transplantation is the major limitation in ECs-based therapy to clinical applications. The current study established a feeder cell-free, 2-dimensional culture system for promoting the differentiation processes of embryonic stem cells (ESCs) committed to the endothelial lineage via using a nitric oxide (NO) controlled releasing hydrogel (CS-NO). Notably, the NO releasing from the hydrogel could selectively up-regulate Flk-1 (early ECs marker) and VE-cadherin (mature ECs marker) in the absence of growth factors, which was of crucial importance in the endothelial differentiation of ESCs. In summary, the current study proposes a simple and efficient method for directing the endothelial differentiation of ESCs without extra growth factors.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Embrionárias Murinas/citologia , Óxido Nítrico/farmacologia , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genéticaRESUMO
Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.