Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 328: 116998, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516705

RESUMO

Soil Phosphorous (P) availability is a limiting factor for plant growth and regulates biological metabolism in plantation ecosystems. The effect of variations in soil microbial P cycling potential on the availability of soil P during succession in plantation ecosystems is unclear. In this study, a metagenomics approach was used to explore variations in the composition and diversity of microbial P genes along a 45-year recovery sequence of Robinia pseudoacacia on the Loess Plateau, as well soil properties were measured. Our results showed that the diversity of P cycling genes (inorganic P solubilization and organic P mineralization genes) increased significantly after afforestation, and the community composition showed clear differences. The gcd and ppx genes were dominant in inorganic P transformation, whereas phnM gene dominated the transformation of organic P. The abundance of genes involved in inorganic P solubilization and organic P mineralization was significantly positively correlated with P availability, particularly for phnM, gcd, ppx, and phnI genes, corresponding to the phyla Gemmatimonadetes, Acidobacteria, Bacteroidetes, and Planctomycetes. The critical drivers of the microbial main genes of soil P cycling were available P (AP) and total N (TN) in soil. Overall, these findings highlight afforestation-induced increases in microbial P cycling genes enhanced soil P availability. and help to better understand how microbial growth metabolism caused by vegetation restoration in ecologically fragile areas affects the soil P cycling.


Assuntos
Ecossistema , Robinia , Solo , Microbiologia do Solo , Bactérias/genética , China
2.
Glob Chang Biol ; 28(4): 1516-1528, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807491

RESUMO

Soil priming is a microbial-driven process, which determines key soil-climate feedbacks in response to fresh carbon inputs. Despite its importance, the microbial traits behind this process are largely undetermined. Knowledge of the role of these traits is integral to advance our understanding of how soil microbes regulate carbon (C) emissions in forests, which support the largest soil carbon stocks globally. Using metagenomic sequencing and 13 C-glucose, we provide unprecedented evidence that microbial traits explain a unique portion of the variation in soil priming across forest biomes from tropical to cold temperature regions. We show that microbial functional profiles associated with the degradation of labile C, especially rapid simple sugar metabolism, drive soil priming in different forests. Genes involved in the degradation of lignin and aromatic compounds were negatively associated with priming effects in temperate forests, whereas the highest level of soil priming was associated with ß-glucosidase genes in tropical/subtropical forests. Moreover, we reconstructed, for the first time, 42 whole bacterial genomes associated with the soil priming effect and found that these organisms support important gene machinery involved in priming effect. Collectively, our work demonstrates the importance of microbial traits to explain soil priming across forest biomes and suggests that rapid carbon metabolism is responsible for priming effects in forests. This knowledge is important because it advances our understanding on the microbial mechanisms mediating soil-climate feedbacks at a continental scale.


Assuntos
Carbono , Solo , Ecossistema , Florestas , Microbiologia do Solo
3.
Nat Commun ; 15(1): 6269, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054311

RESUMO

Understanding the large-scale pattern of soil microbial carbon use efficiency (CUE) and its temperature sensitivity (CUET) is critical for understanding soil carbon-climate feedback. We used the 18O-H2O tracer method to quantify CUE and CUET along a north-south forest transect. Climate was the primary factor that affected CUE and CUET, predominantly through direct pathways, then by altering soil properties, carbon fractions, microbial structure and functions. Negative CUET (CUE decreases with measuring temperature) in cold forests (mean annual temperature lower than 10 °C) and positive CUET (CUE increases with measuring temperature) in warm forests (mean annual temperature greater than 10 °C) suggest that microbial CUE optimally operates at their adapted temperature. Overall, the plasticity of microbial CUE and its temperature sensitivity alter the feedback of soil carbon to climate warming; that is, a climate-adaptive microbial community has the capacity to reduce carbon loss from soil matrices under corresponding favorable climate conditions.


Assuntos
Carbono , Florestas , Microbiologia do Solo , Solo , Temperatura , Carbono/metabolismo , Solo/química , Mudança Climática , Ciclo do Carbono
4.
Sci Total Environ ; 788: 147807, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34034176

RESUMO

Leaf nutrient resorption is one of the important mechanisms for nutrient conservation in plants. Element stoichiometry is crucial to characterizing nutrient limitations and terrestrial ecosystem function. Here, we use nitrogen (N) and phosphorus (P) resorption efficiencies (NRE and PRE) and their stoichiometry to evaluate the response patterns of leaf nutrient resorption efficiency (NuRE) to plant functional groups, species traits, climate, and soil nutrients on the global scale. In light of the findings from the global data set of published literature on N and P resorption by woody plants, we revisit the commonly held views that: The strong N fixation ability of N-fixers weakened the NRE, which was consistent with the general views. The NuRE was linearly negatively correlated with plant growth rate. The higher NuRE of evergreen species than deciduous plants revealed how leaf life span constrains nutrient conservation. From the perspective of NRE, PRE and their ratios, woody plants were limited by P in the tropical zone and the limiting nutrient gradually transformed into N in the temperate zone (23.43-66.57°). The NuRE of woody plants in the frigid zone was the largest than that of others implied that low temperature may limit the nutrient absorption by plant roots, thereby enhancing the retranslocation of nutrients by senesced leaves. Furthermore, Akaike weights analysis found that mean annual precipitation (MAP) and temperature (MAT), N-fixers, soil nutrients, and leaf life span have significant effects on nutrient resorption patterns, sequentially. Overall, these results showed that the plasticity of plant nutrient resorption patterns was strongly sensitive to plant functional groups and soil nutrients, but the regularity of NuRE on a global scale was controlled by temperature and precipitation. And the resorption stoichiometry pattern better interprets plant nutrient limitation and the synergy effect of N and P in plant and soil on multiple scales.


Assuntos
Nitrogênio , Fósforo , Ecossistema , Nitrogênio/análise , Folhas de Planta/química , Plantas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA