RESUMO
As a generally existing component in industrial streams, H2O usually inhibits the catalytic degradation efficiency of volatile organic compounds (VOCs) greatly. Here, we propose a novel strategy that accelerates the H2O dissociation and facilitates positive feedbacks during VOC oxidation by fabricating citric acid (CA)-assisted Pt(K)-Mn2O3/SiO2 (Pt-Mn/KS-xCA). Results reveal that the complexation of carboxyl groups of citric acid with Mn cations leads to the formation of small Mn2O3 (4.1 ± 0.2 nm) and further enhances the Mn-O-Pt interaction (strengthened by the Si-O-Mn interaction), which can transfer more electrons from Pt-Mn/KS-6CA to H2O, thus facilitating its breaking of covalent bonds. It subsequently produces abundant surface hydroxyl groups, improving the adsorption and activation abilities of acetone reactant and ethanol intermediate. Attributing to these, the acetone turnover frequency value of Pt-Mn/KS-6CA is 1.8 times higher than that of Pt-Mn/KS at 160 °C, and this multiple changes to 6.3 times in the presence of H2O. Remarkably, acetone conversion over Pt-Mn/KS-6CA increases by up to 14% in the presence of H2O; but it decreases by up to 26% for Pt-Mn/KS due to its weak dissociation ability and high adsorption capacity toward H2O. This work sheds new insights into the design of highly efficient catalytic materials for VOC degradation under humid conditions.
Assuntos
Compostos Orgânicos Voláteis , Água , Água/química , Acetona , Compostos Orgânicos Voláteis/química , Dióxido de Silício , Ácido CítricoRESUMO
The reaction rate of volatile organic compounds (VOCs) oxidation is controlled by the rate-limiting step in the total reaction process. This study proposes a novel strategy, by which the rate-limiting step of acetone oxidation is accelerated by enhanced chemical bond interaction with more electrons transfer through Al-substituted CeO2 loaded Pt (Pt/Al-CeO2). Results indicate that the rate-limiting step in the process of acetone oxidation is the decomposition of acetic acid. Al substitution enhances the Pt-O-Ce interaction that transfers more electrons from Pt/Al-CeO2 to acetic acid, promoting the breaking of its CC bond with a lower free energy barrier. Attributing to these, the reaction rate of Pt/Al-CeO2 is 13 times as high as that of Pt/CeO2 and its TOFPt value is 11 times as high as that of Pt/CeO2 at 150 °C. Moreover, the CO2 selectivity of Pt/Al-CeO2 also increases by 22 %. This work establishes the relationship between Pt-O-Ce interaction and acetone oxidation that provides novel perspectives on the development of efficient materials for VOCs oxidation.
RESUMO
In order to enhance the catalytic activity and improve the stability of Mn-Al oxides in acetone oxidation, it is interesting to have found that modulating and accelerating the rate-limiting step by Al substitution rather than just mixing of Mn and Al is crucial for hydrocarbon efficient catalytic destruction. Here, a series of Mn-Al oxides with different Al substitution ratios were prepared by a scalable and facile hydrothermal-redox strategy. The reaction rate, selectivity, and stability of the representative α-MnO2 catalyst in acetone oxidation can be remarkably promoted by simple replacing of the partial framework Mn with Al, which changes the rate-limiting step from acetic acid dissociation to ethanol decomposition accelerated by H2O molecules. Among them, MnAl0.5 displays the best catalytic performance with 90% of acetone converted at just 165 °C and a remarkable CO2 yield. DFT results suggest that the py and px orbitals of the O element take part in the formation of the carbonyl group when the intermediate of removing H* from ethanol reacts with the hydroxyl group of H2O. The dxz orbital of Mn with p-electron of Al plays a vital role in the rate-limiting step. The work provides new insights into engineering catalysts for industrial VOC efficient and economical mineralization.
RESUMO
In order to enhance the role of Al in the materials, Al-substituted MnAlO catalysts were synthesized via the hydrothermal-redox method at different calcination temperatures for acetone oxidation. There were Al-substituted α-MnO2 and amorphous aluminum oxide existed with homogeneous dispersion of elements in the catalysts. The surface property, reaction rate, CO2 yield and water resistance of MnAlO catalysts were greatly affected by calcination temperatures. MnAlO-450 catalyst exhibited the best catalytic performance (acetone conversion of 90% at 165 °C) with CO2 yield higher than 99.7%, which was mainly related to the weaker Mn-O bond strength, lower temperature reducibility and abundant Lewis acid sites. The acetone conversion of MnAlO-450 increased by as much as 16% in the presence of 1 vol% H2O compared to that in the absence of H2O at T50 (the temperature for 50% conversion of acetone). The acceleration consumption of ethanol as the main by-product by H2O improved the catalytic performance. This work would shed light on the Al substitution based catalysts for OVOC oxidation with highly efficient and water resistance.
RESUMO
Fabricating of economical transitional metal oxide-based materials with satisfied low-temperature catalytic performance and application perspective is still a challenge in deep degradation of VOCs. Here, Mn-Cu bimetallic oxides were facilely prepared by one-step hydrothermal-redox method, which displayed much higher catalytic activity in toluene oxidation than those synthesized by hydrolysis-driven redox-precipitation or co-precipitation approach. It is shown that the lattice defect and oxygen vacancy concentration over prepared materials can be tuned by controlling Cu/Mn molar ratio. Amongst, spinel structured MnCu0.5 exhibited the highest catalytic activity, superior durability and water resistance in toluene total oxidation owing to abundant surface adsorbed oxygen species, excellent low-temperature reducibility, and high amounts of Cu+ and Mn3+. In detail, the reaction rate of MnCu0.5 was over 9.0 times higher than that of MnCu0.75, MnCu0.75-P and MnCu0.75-H2O2 at relative low temperature of 210 °C. The cyclic redox process with easier oxygen species mobility played a key role in the catalytic oxidation of toluene. Typical reaction intermediates as benzyl alcohol, benzaldehyde, benzene, phenol, and benzoquinone could be detected by PTR-MS, which further decomposed to acetone, ethanol, ketone, acetic acid, methanol, formaldehyde and acetaldehyde species by ring opening before total mineralization.