Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844788

RESUMO

FAK (focal adhesion kinase) is widely involved in cancer growth and drug resistance development. Thus, FAK inhibition has emerged as an effective strategy for tumor treatment both as a monotherapy or in combination with other treatments. But the current FAK inhibitors mainly concentrate on its kinase activity, overlooking the potential significance of FAK scaffold proteins. In this study we employed the PROTAC technology, and designed a novel PROTAC molecule F2 targeting FAK based on the FAK inhibitor IN10018. F2 exhibited potent inhibitory activities against 4T1, MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells with IC50 values of 0.73, 1.09, 5.84 and 3.05 µM, respectively. On the other hand, F2 also remarkably reversed the multidrug resistance (MDR) in HCT8/T, A549/T and MCF-7/ADR cells. Both the effects of F2 were stronger than the FAK inhibitor IN10018. To our knowledge, F2 was the first reported FAK-targeted PROTAC molecule exhibiting reversing effects on chemotherapeutic drug resistance, and its highest reversal fold could reach 158 times. The anti-tumor and MDR-reversing effects of F2 might be based on its inhibition on AKT (protein kinase B, PKB) and ERK (extracellular signal-regulated kinase) signaling pathways, as well as its impact on EMT (epithelial-mesenchymal transition). Furthermore, we found that F2 could reduce the protein level of P-gp in HCT8/T cells, thereby contributing to reverse drug resistance from another perspective. Our results will boost confidence in future research focusing on targeting FAK and encourage further investigation of PROTAC with potent in vivo effects.

2.
Acta Pharmacol Sin ; 41(2): 237-248, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31341256

RESUMO

Cancer cachexia is a multifactorial metabolic syndrome that affects ∼50%-80% of cancer patients, and no effective therapy for cancer cachexia is presently available. In traditional Chinese medicine, a large portion of patients with cancer cachexia was diagnosed as spleen deficiency syndrome and treated with tonifying TCMs that produce clinic benefits. In this study we established a new animal model of spleen deficiency and cancer cachexia in mice and evaluated the therapeutic effects of atractylenolide I, an active component of tonifying TCM BaiZhu, in the mouse model. Cancer cachexia was induced in male BALB/c mice by inoculation of mouse C26 colon adenocarcinoma cells, whereas spleen deficiency syndrome was induced by treating the mice with spleen deficiency-inducing factors, including limited feeding, fatigue, and purging. The mouse model was characterized by both cachexia and spleen deficiency characteristics, including significant body weight loss, cancer growth, muscle atrophy, fat lipolysis, spleen, and thymus atrophy as compared with healthy control mice, cancer cachexia mice, and spleen deficiency mice. Oral administration of atractylenolide I (20 mg· kg-1per day, for 30 days) significantly ameliorated the reduction in body weight and atrophy of muscle, fat, spleen, and thymus in mice with spleen deficiency and cachexia. The established model of spleen deficiency and cancer cachexia might be useful in the future for screening possible anticachexia TCMs and clarifying their mechanisms.


Assuntos
Caquexia/tratamento farmacológico , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Esplenopatias/tratamento farmacológico , Adenocarcinoma/complicações , Animais , Caquexia/etiologia , Neoplasias do Colo/complicações , Modelos Animais de Doenças , Lactonas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sesquiterpenos/administração & dosagem , Baço/patologia , Esplenopatias/patologia , Síndrome
3.
Acta Pharmacol Sin ; 39(3): 415-424, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29119969

RESUMO

BF211, a bufalin (BF) derivative, exhibits stronger anti-cancer activity than BF but with potential cardiotoxicity. Fibroblast activation protein-α (FAPα) is a membrane-bound protease specifically expressed by carcinoma-associated fibroblasts, thus has been used for the selective delivery of anticancer agents. In this study, we used a FAPα-based prodrug strategy to synthesize a dipeptide (Z-Gly-Pro)-conjugated BF211 prodrug named BF211-03. BF211-03 was hydrolyzed by recombinant human FAPα (rhFAPα) and cleaved by homogenates of human colon cancer HCT-116 or human gastric cancer MGC-803 xenografts. In contrast, BF211-03 showed good stability in plasma and in the homogenates of FAPα-negative normal tissues, such as heart and kidney. In HCT-116 and MGC-803 cells with low levels of FAPα expression, BF211-03 displayed a lower in vitro cytotoxicity than BF211 with approximately 30 to 40-fold larger IC50 values, whereas in human breast cancer MDA-MB-435 cells with high levels of FAPα expression, the IC50 value difference between BF211-03 and BF211 was small (approximately 4-fold). Although the cytotoxicity of BF211-03 against tumor cells was dramatically decreased by the chemical decoration, it was restored after cleavage of BF211-03 by rhFAPα or tumor homogenate. In HCT-116 tumor-bearing nude mice, doubling the dose of BF211-03, compared with BF211, caused less weight loss, but showing similar inhibitive effects on tumor growth. Our results suggest that BF211-03 is converted to active BF211 in tumor tissues and exhibits anti-tumor activities in tumor-bearing nude mice. FAPα-targeted BF211-03 displays tumor selectivity and may be useful as a targeting agent to improve the safety profile of cytotoxic natural products for use in cancer therapy.


Assuntos
Bufanolídeos/metabolismo , Dipeptídeos/metabolismo , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Piperazinas/metabolismo , Pró-Fármacos/metabolismo , Serina Endopeptidases/metabolismo , Animais , Bufanolídeos/química , Bufanolídeos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/farmacologia , Endopeptidases , Humanos , Hidrólise , Camundongos , Piperazinas/química , Piperazinas/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Cachexia Sarcopenia Muscle ; 14(5): 2098-2113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37439183

RESUMO

BACKGROUND: Corylifol A (CYA) is one of the main active components of Psoralea corylifolia L. CYA had been reported to have ameliorating effects on dexamethasone-induced atrophy of C2C12 mouse skeletal myotubes, but its effects on cancer cachexia were unclear. Here, we checked the influence of CYA on muscle atrophy in cancer cachexia mice and tried to clarify its mechanisms. METHODS: C26 tumour-bearing mice were applied as the animal model to examine the effects of CYA in attenuating cachexia symptoms. The in vitro cell models of TNF-α-induced C2C12 myotubes or ad-mRFP-GFP-LC3B-transfected C2C12 myotubes were used to check the influence of CYA on myotube atrophy based on both ubiquitin proteasome system (UPS) and autophagy-lysosome system. The possible direct targets of CYA were searched using the biotin-streptavidin pull-down assay and then confirmed using the Microscale thermophoresis binding assay. The levels of related signal proteins in both in vitro and in vivo experiments were examined using western blotting and immunocytochemical assay. RESULTS: The administration of CYA prevented body weight loss and muscle wasting in C26 tumour-bearing mice without affecting tumour growth. At the end of the experiment, the body weight of mice treated with 30 mg/kg of CYA (23.59 ± 0.94 g) was significantly higher than that of the C26 model group (21.66 ± 0.56 g) with P < 0.05. The values of gastrocnemius muscle weight/body weight of mice treated with 15 or 30 mg/kg CYA (0.53 ± 0.02% and 0.54 ± 0.01%, respectively) were both significantly higher than that of the C26 model group (0.45 ± 0.01%) with P < 0.01. CYA decreased both UPS-mediated protein degradation and autophagy in muscle tissues of C26 tumour-bearing mice as well as in C2C12 myotubes treated with TNF-α. The thousand-and-one amino acid kinase 1 (TAOK1) was found to be the direct binding target of CYA. CYA inhibited the activation of TAOK1 and its downstream p38-MAPK pathway thus decreased the level and nuclear location of FoxO3. siRNA knockdown of TAOK1 or regulation of the p38-MAPK pathway using activator or inhibitor could affect the ameliorating effects of CYA on myotube atrophy. CONCLUSIONS: CYA ameliorates cancer cachexia muscle atrophy by decreasing both UPS degradation and autophagy. The ameliorating effects of CYA on muscle atrophy might be based on its binding with TAOK1 and inhibiting the TAOK1/p38-MAPK/FoxO3 pathway.

5.
Front Pharmacol ; 14: 1291194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249348

RESUMO

Introduction: Carnosol exhibited ameliorating effects on muscle atrophy of mice developed cancer cachexia in our previous research. Method: Here, the ameliorating effects of carnosol on the C2C12 myotube atrophy result from simulated cancer cachexia injury, the conditioned medium of the C26 tumor cells or the LLC tumor cells, were observed. To clarify the mechanisms of carnosol, the possible direct target proteins of carnosol were searched using DARTS (drug affinity responsive target stability) assay and then confirmed using CETSA (cellular thermal shift assay). Furthermore, proteomic analysis was used to search its possible indirect target proteins by comparing the protein expression profiles of C2C12 myotubes under treatment of C26 medium, with or without the presence of carnosol. The signal network between the direct and indirect target proteins of carnosol was then constructed. Results: Our results showed that, Delta-1-pyrroline-5-carboxylate synthase (P5CS) might be the direct target protein of carnosol in myotubes. The influence of carnosol on amino acid metabolism downstream of P5CS was confirmed. Carnosol could upregulate the expression of proteins related to glutathione metabolism, anti-oxidant system, and heat shock response. Knockdown of P5CS could also ameliorate myotube atrophy and further enhance the ameliorating effects of carnosol. Discussion: These results suggested that carnosol might ameliorate cancer cachexia-associated myotube atrophy by targeting P5CS and its downstream pathways.

6.
Phytomedicine ; 95: 153858, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861585

RESUMO

BACKGROUND: Cancer cachexia is a serious metabolic disorder syndrome that is responsible for the deaths of approximately 30% of patients with cancer, but effective drugs for cancer cachexia are still lacking. Inflammatory cytokines such as TNF-α or IL-6 are involved in the induction of skeletal muscle atrophy and fat depletion in patients with cancer cachexia. PURPOSE: In this study, we assessed the therapeutic effects of the natural compound alantolactone (AL) on cancer cachexia and tried to clarify the mechanisms by which it ameliorates muscle atrophy. METHODS: The C26 tumor-bearing cancer cachexia mouse model was used to evaluate the efficacy of AL in alleviating cancer cachexia in vivo. The levels of IL-6 or TNF-α in mouse serum were detected using ELISA kits. Cultured C2C12 myotubes and 3T3-L1 adipocytes treated with conditioned medium of C26 tumor cells, IL-6 or TNF-α were employed as in vitro cancer cachexia models to examine the effects of AL in vitro. RESULTS: AL (5 or 10 mg/kg, qd, i.p.) protected mice with C26 tumors and cachexia from a loss of body weight and muscle wasting but only slightly ameliorated fat loss. The circulating level of IL-6 but not TNF-α was significantly decreased by AL. AL treatment significantly inhibited STAT3 activation in the gastrocnemius (GAS) muscle of cancer cachexia mice. AL (0.125, 0.25, 0.5 and 1 µM) dose-dependently ameliorated myotube atrophy and STAT3 activation in cultured C2C12 myotubes induced by conditioned medium from C26 tumor cells. AL also ameliorated C2C12 myotube atrophy induced by IL-6 and inhibited IL-6-mediated STAT3 activation. AL exhibited weak effects on ameliorating TNF-α-mediated myotube atrophy and NF-κB activation. Only AL at high doses of more than 5 µM ameliorated lipolysis and STAT3 activation induced in mature 3T3-L1 adipocytes by conditioned medium from C26 tumor cells. CONCLUSIONS: AL significantly ameliorated muscle atrophy in a cancer cachexia model mainly through the inhibition of the STAT3 pathway. AL might be a promising lead compound in the development of drug candidates for cancer cachexia therapy.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Humanos , Lactonas , Camundongos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fator de Transcrição STAT3 , Sesquiterpenos de Eudesmano , Transdução de Sinais
7.
Basic Clin Pharmacol Toxicol ; 131(6): 500-513, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150451

RESUMO

Cancer-derived exosomes are involved in the development of cancer cachexia. Carnosol, which exhibited ameliorating effects on cancer cachexia of C26 tumour-bearing mice in our previous study, alleviated atrophy of C2C12 myotubes induced by exosomes of C26 tumour cells in the present study. MiR-183-5p was found to be rich in C26 cells and C26 exosomes, and miR-183-5p mimic could directly induce atrophy of C2C12 myotubes. Carnosol at 5 to 20 µM could dose-dependently ameliorate the myotube atrophy induced by miR-183-5p. Four and a half LIM domain protein 1 (FHL1) was shown to be the direct target of miR-183-5p. Increase in myostatin, p-Smad3, MuRF-1, Atrogin-1, HIF-1α and p-STAT3 and decrease in mitochondrial respiration were also induced by miR-183-5p mimic in C2C12 myotubes. Carnosol could not affect the decrease in FHL-1 and the activation of STAT3 pathway but could significantly alleviate the increase in myostatin, p-Smad3, MuRF-1, Atrogin-1 and the decrease in mitochondrial respiration induced by miR-183-5p. The protective effects of carnosol on myotubes against atrophy of C2C12 myotubes induced by miR-183-5p, based on both its inhibiting effects on MuRF-1 and Atrogin-1-mediated protein degradation and its ability of keeping the mitochondrial respiration, might contribute to its ameliorating effects on cancer cachexia.


Assuntos
Abietanos , MicroRNAs , Fibras Musculares Esqueléticas , Neoplasias , Animais , Camundongos , Atrofia , Caquexia/etiologia , Caquexia/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miostatina , Neoplasias/metabolismo , Abietanos/farmacologia , Linhagem Celular Tumoral
9.
Mol Ther Nucleic Acids ; 21: 229-241, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32585630

RESUMO

Numerous studies have suggested that dysregulated long noncoding RNAs (lncRNAs) contributed to the development and progression of many cancers. lncRNA OIP5 antisense RNA 1 (OIP5-AS1) has been reported to be increased in several cancers. However, the roles of OIP5-AS1 in liver hepatocellular carcinoma (LIHC) remain to be investigated. In this study, we demonstrated that OIP5-AS1 was upregulated in LIHC tissue specimens and its overexpression was associated with the poor survival of patients with LIHC. Furthermore, loss-of function experiments indicated that OIP5-AS1 promoted cell proliferation and inhibited cell apoptosis both in vitro and in vivo. Moreover, binding sites between OIP5-AS1 and hsa-miR-26a-3p as well as between hsa-miR-26a-3p and EPHA2 were confirmed by luciferase assays. Finally, a rescue assay was performed to prove the effect of the OIP5-AS1/hsa-miR-26a-3p/EPHA2 axis on LIHC cell biological behaviors. Based on all of the above findings, our results suggested that OIP5-AS1 promoted LIHC cell proliferation and invasion via regulating the hsa-miR-26a-3p/EPHA2 axis.

10.
RSC Adv ; 9(30): 17440-17456, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35519898

RESUMO

SiBaoChongCao (SBCC) is a functional food product containing fermentation of Acremonium terricola belonging to the Cordyceps genus. SBCC at 1 and 2 g kg-1 for 20 days exhibited anti-fatigue activities such as increasing exhaustive swimming and running time of mice and increasing the strength of muscle. The increased muscle endurance in SBCC-treated mice might be related to enhancement of muscle cell growth and differentiation and improvement of muscle response to exercise training, as shown by an increase in muscle cross-sectional area and elevation of MHC, MyoD, MyoG and PGC-1α levels. And, SBCC at 1.5 g kg-1 could ameliorate cancer-related cachexia such as ameliorating decrease in body temperature and inhibiting fat tissue atrophy. The anti-cachexia effects of SBCC might be related to inhibition of inflammatory cytokine IL-6 secretion and suppression of over-lipolysis and lipid over-utilization through inhibiting the activation of AMPK and p38 MAPK and down-regulating the level of UCP1.

11.
Free Radic Biol Med ; 45(5): 627-35, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18582559

RESUMO

Glutathione (GSH), as the major small-molecule antioxidant in cells, has been implicated in the regulation of cell proliferation and apoptosis. Salvicine (SAL), a novel diterpenoid quinone compound, exhibits potent antitumor activities both in vitro and in vivo by poisoning topoisomerase II (Topo II) and has entered Phase II clinical trials for cancer therapy. Herein, we provide further evidence that SAL-induced DNA double-strand breaks (DSBs) and apoptosis by GSH depletion drives H2O2 generation and Topo II inhibition. Our data reveal that treatment with SAL results in a pronounced increase in intracellular H2O2 and is accompanied by the occurrence of DNA DSBs and apoptosis in epithelial HeLa cells. Furthermore, SAL was also noted to trigger a dramatic depletion of intracellular GSH via its direct reaction with GSH. Importantly, the introduction of GSH and overexpression of catalase antagonized SAL-mediated DNA DSBs and apoptosis, and the GSH synthesis inhibitor dl-buthionine-[S,R]-sulfoximine reduced SAL-mediated H2O2 generation, indicating that SAL-mediated H2O2 generation is derived from intracellular GSH depletion. Notably, SAL-mediated Topo II inhibition was also concentration-dependently reversed by GSH. Furthermore, we found that Topo II-defective HL-60/MX2 cells were almost completely resistant to SAL-induced DNA DSBs, suggesting that, in addition to its direct inhibitory effect on Topo II, SAL-mediated H2O2 generation may also trigger DNA DSBs via poisoning of Topo II. All these findings together suggest that GSH-depletion-driven H2O2 generation and Topo II inhibition are both critical for SAL-induced DNA DSBs and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Naftoquinonas/farmacologia , Inibidores da Topoisomerase II , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , Humanos
12.
Acta Pharmacol Sin ; 29(12): 1467-77, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19026166

RESUMO

AIM: To investigate the in vitro and in vivo activities and related mechanism of apogossypolone (ApoG2) alone or in combination with adriamycin (ADM) against human hepatocellular carcinoma (HCC). METHODS: The IC50 of ApoG2 in vitro was tested by WST assay, and the synergistic effect was analyzed using the CalcuSyn method. Cell apoptosis was determined using 4',6-diamidino-2- phenylindole staining and flow cytometric analysis. Western blotting was used to determine the expression of apoptosis-related proteins. In vivo activity was evaluated in the xenograft model in nude mice, and apoptosis in tumor tissues was determined by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay. RESULTS: The IC50 of ApoG2 in HCC cells was 17.28-30.63 micromol/L. When ApoG2 was combined with ADM, increased cytotoxicity and apoptosis were observed in SMMC-7721 cells compared to treatment with ApoG2 alone. The Western blotting results indicated that the ApoG2 induced apoptosis in SMMC-7721 cells by downregulating anti-apoptotic proteins Bcl-2, Mcl-1, and Bcl-XL, up-regulating pro-apoptotic protein Noxa, and promoting the activities of caspases-9 and -3. The tumor growth of xenograft SMMC-7721 was inhibited in nude mice when ApoG2 was administered orally without causing damage to the normal tissues. The in vivo study also indicated an increasing anti-tumoral effect when ApoG2 at 100 or 200 mg/kg dosages were used together with ADM at 5.5 mg/kg, with relative tumor proliferation rate (T/C) values of 0.456 and 0.323, respectively. Apoptosis induced in vivo by ApoG2 alone or combined with ADM was confirmed by TUNEL assay in tumor tissues. CONCLUSION: ApoG2 is a potential non-toxic target agent that induces apoptosis by upregulating Noxa, while inhibiting anti-apoptotic proteins and promoting the effect of chemotherapy agent ADM in HCC.


Assuntos
Antibióticos Antineoplásicos , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina , Gossipol/análogos & derivados , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Quimioterapia Combinada , Gossipol/farmacologia , Gossipol/uso terapêutico , Humanos , Marcação In Situ das Extremidades Cortadas , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Nus , Estrutura Molecular , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transplante Heterólogo
13.
Mol Cancer Ther ; 6(11): 3059-70, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18025289

RESUMO

14-Ethyl-2,5,11-trimethyl-4,13,19,20-tetraoxa-tricyclo[14.2.1.1(7,10)]eicosane-3,12-dione (MFTZ-1), a new macrolide compound isolated from Streptomyces sp. Is9131, displayed wide cytotoxicity in human tumor cell lines with an average IC(50) of 0.905 micromol/L. Notably, MFTZ-1 showed significant cytotoxicity in the three multidrug resistance cell lines with an average resistance factor of 2.08. The in vivo experiments showed that MFTZ-1 had inhibitory effects on the human ovarian carcinoma HO-8910 cell line xenotransplanted in nude mice. Further studies showed that MFTZ-1 induced DNA double-strand breaks and triggered mitochondria-dependent apoptosis in human leukemia HL-60 cells. Using a yeast genetic system, we found that topoisomerase (Topo) II rather than Topo I was the primary cellular target of MFTZ-1. Most importantly, MFTZ-1 functions as a novel nonintercalative Topo II poison via binding to ATPase of Topo II, characterized by its strong inhibition on the decatenation and relaxation of Topo II. The capacity of MFTZ-1 to stabilize Topo II-DNA covalent complexes was comparable with that of the classic Topo II poison, etoposide. Moreover, using a Topo II catalytic inhibitor aclarubicin and Topo II-deficient HL-60/MX2 cells, we further showed that MFTZ-1-triggered DNA double-strand breaks and apoptosis occurred in a Topo II-dependent manner. Together, the well-defined Topo II-poisoning function and the potent antitumor activity, with the appreciable anti-multidrug resistance action in particular, promises MFTZ-1 as a novel potential Topo II-targeted agent, which merits further research and development.


Assuntos
Actinobacteria/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Eicosanoides/isolamento & purificação , Eicosanoides/farmacologia , Macrolídeos/isolamento & purificação , Macrolídeos/farmacologia , Inibidores da Topoisomerase II , Adenosina Trifosfatases/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Eicosanoides/química , Feminino , Humanos , Substâncias Intercalantes/farmacologia , Macrolídeos/química , Camundongos , Mitocôndrias/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Eur J Med Chem ; 126: 1083-1106, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28039836

RESUMO

We present herein the discovery and development of novel and potent Nek2 inhibitors with distinctive in vitro and in vivo antitumor activity based on an imidazo[1,2-a]pyridine scaffold. Our studies identified a nonlinear SAR for activity against both Nek2 and cancer cells. Bioisostere and structure-based design techniques were employed to identify compounds 42c (MBM-17, IC50 = 3.0 nM) and 42g (MBM-55, IC50 = 1.0 nM), which displayed low nanomolar activity and excellent selectivity for Nek2. Both compounds effectively inhibited the proliferation of cancer cells by inducing cell cycle arrest and apoptosis. Importantly, the salts form of these two compounds (MBM-17S and MBM-55S) significantly suppressed tumor growth in vivo without apparent toxicity based on appearance and changes in body weight. In summary, MBM-17 and MBM-55 displayed the potential for substantial therapeutic application in cancer treatment.


Assuntos
Desenho de Fármacos , Quinases Relacionadas a NIMA/antagonistas & inibidores , Nitrazepam/química , Piridinas/síntese química , Piridinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Quinases Relacionadas a NIMA/química , Quinases Relacionadas a NIMA/metabolismo , Poliploidia , Conformação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Piridinas/química , Piridinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biochim Biophys Acta ; 1722(3): 254-61, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15715968

RESUMO

Vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen, can act in tumor-induced angiogenesis by binding to specific receptors on the surface of endothelial cells. One such receptor, VEGFR-2/KDR, plays a key role in VEGF-induced angiogenesis. Here, we expressed the catalytic domain of VEGFR-2 as a soluble active kinase using Bac-to-Bac expression system, and investigated correlations between VEGFR-2 activity and enzyme concentration, ATP concentration, substrate concentration and divalent cation type. We used these data to establish a convenient, effective and non-radioactive ELISA screening technique for the identification and evaluation of potential inhibitors for VEGFR-2 kinase. We screened 200 RTK target-based compounds and identified one (TKI-31) that potently inhibited VEGFR-2 kinase activity (IC50=0.596 microM). Treatment of NIH3T3/KDR cells with TKI-31 blocked VEGF-induced phosphorylation of KDR in a dose-dependent manner. Moreover, TKI-31 dose-dependently suppressed HUVEC tube formation. Thus, we herein report a novel, efficient method for identifying VEGFR-2 kinase inhibitors and introduce one, TKI-31, that may prove to be a useful new angiogenesis inhibitor.


Assuntos
Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Sequência de Bases , Domínio Catalítico , Linhagem Celular , Primers do DNA , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Fosforilação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
16.
Cancer Biol Ther ; 5(3): 323-30, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16575201

RESUMO

Tyrosine kinases have been strongly implicated as therapeutic targets that influence the angiogenic process in growing tumors. In this study, we revealed that TKI-31 is a potent broad spectrum tyrosine kinase inhibitor, which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor beta (PDGFRbeta) and also inhibits kinases of other class, such as c-Kit and c-Src on molecular base, but showed no activity against vascular endothelial growth factor receptor 1 (VEGFR1) and epidermal growth factor receptor (EGFR). TKI-31 inhibits VEGF-induced phosphorylation of VEGFR2 in endothelial cells as well as PDGF(BB)-induced phosphorylation in fibroblast cells, and leading to the inhibition of down-stream signaling triggered by these receptors such as PI3K/Akt/mTOR, MAPK42/44(ERK) and paxillin. TKI-31 also inhibited VEGF-induced endothelial cells proliferation, migration and their differentiation into capillary-like tube formation. Its anti-angiogenic property was further confirmed by the inhibition of neovascularization on CAM, in vivo. These results collectively highlight the therapeutic potential of this compound for the treatment of solid tumors and other diseases where angiogenesis plays an important role.


Assuntos
Inibidores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinonas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/química , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Inibidores Enzimáticos/química , Humanos , Immunoblotting , Camundongos , Células NIH 3T3 , Fosforilação , Piridinas/química , Pirimidinonas/química , Proteínas Recombinantes , Transdução de Sinais
17.
Br J Pharmacol ; 148(6): 741-51, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16715123

RESUMO

1. The antiangiogenic and antitumor properties of Grateloupia longifolia polysaccharide (GLP), a new type of polysaccharide isolated from the marine alga, were investigated with several in vitro and in vivo models. Possible mechanisms underlying its antiangiogenic activity were also assessed. 2. GLP dose-dependently inhibited proliferation of human microvascular endothelial cells (HMEC-1) and human umbilical vein endothelial cells (HUVEC), with IC50 values of 0.86 and 0.64 mg ml(-1), respectively. In tube formation and cell migration assays using HMEC-1 cells, noncytotoxic doses of GLP significantly inhibited formation of intact tube networks and reduced the number of migratory cells. Inhibition by GLP was VEGF-independent. 3. In the chick chorioallantoic membrane (CAM) assay, GLP (2.5 microg egg(-1)) reduced new vessel formation compared with the vehicle control. GLP (0.1 mg plug(-1)) also reduced the vessel density in Matrigel plugs implanted in mice. 4. The levels of pan and phosphorylated receptors for VEGF, VEGFR-1 (flt-1) and VEGFR-2 (KDR) were not significantly altered by 5 mg ml(-1) GLP treatment of HMEC-1, although tissue factor (TF) showed significant decreases at both mRNA and protein levels following GLP treatment. 5. In mice bearing sarcoma-180 cells, intravenous administration of GLP (200 mg kg(-1)) decreased tumor weight by 52% without obvious toxicity. Vascular density in sections of the tumor was reduced by 64% after GLP treatment. 6. Collectively, these results indicate that GLP has antitumor properties, associated at least, in part, with the antiangiogenesis induced by downregulation of TF.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Eucariotos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Polissacarídeos/farmacologia , Tromboplastina/genética , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/prevenção & controle , Sarcoma 180/irrigação sanguínea , Sarcoma 180/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/fisiologia
18.
Clin Cancer Res ; 11(9): 3455-64, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15867248

RESUMO

PURPOSE: Salvicine is a novel DNA topoisomerase II inhibitor with potent anticancer activity. In present study, the effect of salvicine against metastasis is evaluated using human breast carcinoma orthotopic metastasis model and its mechanism is further investigated both in animal and cellular levels. EXPERIMENTAL DESIGN: The MDA-MB-435 orthotopic xenograft model was applied to detect the antimetastatic effect of salvicine. Potential target candidates were detected and analyzed by microarray technology. Candidates were verified and explored by reverse transcription-PCR and Western blot. Salvicine activities on stress fiber formation, invasion, and membrane translocation were further investigated by immunofluorescence, invasion, and ultracentrifugal assays. RESULTS: Salvicine significantly reduced the lung metastatic foci of MDA-MB-435 orthotopic xenograft, without affecting primary tumor growth obviously. A comparison of gene expression profiles of primary tumors and lung metastatic focus between salvicine-treated and untreated groups using the CLOTECH Atlas human Cancer 1.2 cDNA microarray revealed that genes involved in tumor metastasis, particularly those closely related to cell adhesion and motility, were obviously down-regulated, including fibronectin, integrin alpha3, integrin beta3, integrin beta5, FAK, paxillin, and RhoC. Furthermore, salvicine significantly down-regulated RhoC at both mRNA and protein levels, greatly inhibited stress fiber formation and invasiveness of MDA-MB-435 cells, and markedly blocked translocation of both RhoA and RhoC from cytosol to membrane. CONCLUSION: The unique antimetastatic action of salvicine, particularly its specific modulation of cell motility in vivo and in vitro, is closely related to Rho-dependent signaling pathway.


Assuntos
Naftoquinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Lisofosfolipídeos/farmacologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Naftoquinonas/uso terapêutico , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fibras de Estresse/metabolismo , Proteínas ras , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
19.
Biochim Biophys Acta ; 1673(3): 186-93, 2004 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-15279890

RESUMO

Human cancers frequently express high levels of ErbB-2 tyrosine kinase, which is associated with aggressive tumor behavior and poor prognosis. ErbB-2 is thus a promising target for cancer therapy. Here we express the catalytic domain of ErbB-2 as a soluble active kinase, and investigate the correlations between its activity and kinase concentration, ATP concentration, substrate concentration and divalent cation type. A simple and effective screening model is established to identify and evaluate potential inhibitors of ErbB-2 kinase. ZH-4B, a naturally derived small molecule compound that potently inhibits ErbB-2 kinase activity with an IC50 value of 2.45+/-0.56 microM, is identified. In SK-OV-3 human ovarian cancer cells and SK-BR-3 human breast carcinoma cells, ZH-4B blocks epidermal growth factor (EGF)-induced phosphorylation of ErbB-2 in a dose-dependent manner. Our data collectively indicate that ZH-4B is a potential novel anti-cancer agent that deserves further investigation.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Receptor ErbB-2/metabolismo , Animais , Domínio Catalítico , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
20.
Cancer Biol Ther ; 4(10): 1125-32, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16096368

RESUMO

Tyrosine kinases are used as important biomarkers in many tumor types. Preclinical and clinical anti-tumor studies have shown that broadly acting tyrosine kinase inhibitors may be more useful than specific inhibitors, since the former might overcome redundancies and crosstalk in tumor cell growth signaling pathways. Here, we aim to identify a novel potent tyrosine kinase inhibitor. Computer modeling of the pyrido-pyrimidine class compound, TKI-28(6-(2,6-dichlorophenyl)-8-methyl-2-phenylamino-8H-pyrido[2,3-d]pyrimidine-7-one), predicted that the compound would dock well in the ATP pocket of the ErbB-2 tyrosine kinase, yielding a high binding affinity for ErbB receptors. Biochemical studies revealed that TKI-28 potently inhibited the activities of tyrosine kinases such as ErbB-2, EGFR, KDR, PDGFRbeta, c-kit and c-Src, but had little effect on Flt-1 in cell-free system. TKI-28 also efficiently blocked autophosphorylation of the listed receptor tyrosine kinases, and subsequently downregulated phosphorylation of many downstream signaling proteins at the cellular level. TKI-28 exhibited a more potent anti-proliferative activity against EGF- and neuregulin-stimulated SK-OV-3 cells versus serum-stimulated cells, accompanied by apparent induction of apoptosis. Finally, TKI-28 was found to possess anti-angiogenic effects, characterized by inhibition of cell proliferation driven by EGF, VEGF and PDGF, as well as decreased cell migration and tube formation in HMECs. These results collectively highlight the pharmacological characteristics of TKI-28 as a broad-spectrum tyrosine kinase inhibitor, suggesting that it has great potential as an anti-cancer and anti-angiogenesis agent.


Assuntos
Antineoplásicos/farmacologia , Endotélio Vascular/citologia , Neovascularização Patológica/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Ligação de Hidrogênio , Técnicas In Vitro , Camundongos , Modelos Moleculares , Conformação Molecular , Neovascularização Patológica/prevenção & controle , Neoplasias Ovarianas/patologia , Ligação Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/classificação , Proteínas Tirosina Quinases/metabolismo , Células Swiss 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA