Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34657153

RESUMO

Bacterial type IV secretion systems (T4SSs) are versatile and membrane-spanning apparatuses, which mediate both genetic exchange and delivery of effector proteins to target eukaryotic cells. The secreted effectors (T4SEs) can affect gene expression and signal transduction of the host cells. As such, they often function as virulence factors and play an important role in bacterial pathogenesis. Nowadays, T4SE prediction tools have utilized various machine learning algorithms, but the accuracy and speed of these tools remain to be improved. In this study, we apply a sequence embedding strategy from a pre-trained language model of protein sequences (TAPE) to the classification task of T4SEs. The training dataset is mainly derived from our updated type IV secretion system database SecReT4 with newly experimentally verified T4SEs. An online web server termed T4SEfinder is developed using TAPE and a multi-layer perceptron (MLP) for T4SE prediction after a comprehensive performance comparison with several candidate models, which achieves a slightly higher level of accuracy than the existing prediction tools. It only takes about 3 minutes to make a classification for 5000 protein sequences by T4SEfinder so that the computational speed is qualified for whole genome-scale T4SEs detection in pathogenic bacteria. T4SEfinder might contribute to meet the increasing demands of re-annotating secretion systems and effector proteins in sequenced bacterial genomes. T4SEfinder is freely accessible at https://tool2-mml.sjtu.edu.cn/T4SEfinder_TAPE/.


Assuntos
Biologia Computacional , Idioma , Bactérias/genética , Genoma Bacteriano , Proteínas/genética , Sistemas de Secreção Tipo IV/genética
2.
Inorg Chem ; 63(17): 7792-7798, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619892

RESUMO

Metallodrug-based photodynamic therapy (PDT) agents have demonstrated significant superiority against cancers, while their different chirality-induced biological activities remain largely unexplored. In this work, we successfully developed a pair of enantiopure mononuclear Ir(III)-based TLD-1433 analogues, Δ-Ir-3T and Λ-Ir-3T, and their enantiomer-dependent anticancer behaviors were investigated. Photophysical measurements revealed that they display high photostability and chemical stability, strong absorption at 400 nm with high molar extinction coefficients (ε = 5.03 × 104 M-1 cm-1), and good 1O2 relative quantum yields (ΦΔ ≈ 47%). Δ- and Λ-Ir-3T showed potent efficacy against MCF-7 cancer cells, with a photocytotoxicity index of ≤44 238. This impressive result, to the best of our knowledge, represents the highest value among reported mononuclear Ir(III)-based PDT agents. Remarkably, Λ-Ir-3T tended to be more potent than Δ-Ir-3T when tested against SK-MEL-28, HepG2, and LO2 cells, with consistent results across multiple test repetitions.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Irídio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Irídio/química , Irídio/farmacologia , Estereoisomerismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química
3.
Acta Pharmacol Sin ; 44(8): 1665-1675, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37016043

RESUMO

Acute lung injury (ALI) is an acute, progressive hypoxic respiratory failure that could develop into acute respiratory distress syndrome (ARDS) with very high mortality rate. ALI is believed to be caused by uncontrolled inflammation, and multiple types of immune cells, especially neutrophils, are critically involved in the development of ALI. The treatment for ALI/ARDS is very limited, a better understanding of the pathogenesis and new therapies are urgently needed. Here we discover that GPR84, a medium chain fatty acid receptor, plays critical roles in ALI development by regulating neutrophil functions. GPR84 is highly upregulated in the cells isolated from the bronchoalveolar lavage fluid of LPS-induced ALI mice. GPR84 deficiency or blockage significantly ameliorated ALI mice lung inflammation by reducing neutrophils infiltration and oxidative stress. Further studies reveal that activation of GPR84 strongly induced reactive oxygen species production from neutrophils by stimulating Lyn, AKT and ERK1/2 activation and the assembly of the NADPH oxidase. These results reveal an important role of GPR84 in neutrophil functions and lung inflammation and strongly suggest that GPR84 is a potential drug target for ALI.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Síndrome do Desconforto Respiratório , Animais , Camundongos , Neutrófilos/patologia , Pneumonia/patologia , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Lipopolissacarídeos/efeitos adversos
4.
Kidney Int ; 101(2): 315-330, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774556

RESUMO

Kidney tubular epithelial cells are high energy-consuming epithelial cells that depend mainly on fatty acid oxidation for an energy supply. AMP-activated protein kinase (AMPK) is a key regulator of energy production in most cells, but the function of AMPK in tubular epithelial cells in acute kidney disease is unclear. Here, we found a rapid decrease in Thr172-AMPKα phosphorylation after ischemia/reperfusion in both in vivo and in vitro models. Mice with kidney tubular epithelial cell-specific AMPKα deletion exhibited exacerbated kidney impairment and apoptosis of tubular epithelial cells after ischemia/reperfusion. AMPKα deficiency was accompanied by the accumulation of lipid droplets in the kidney tubules and the elevation of ceramides and free fatty acid levels following ischemia/reperfusion injury. Mechanistically, ischemia/reperfusion triggered ceramide production and activated protein phosphatase PP2A, which dephosphorylated Thr172-AMPKα. Decreased AMPK activity repressed serine/threonine kinase ULK1-mediated autophagy and impeded clearance of the dysfunctional mitochondria. Targeting the PP2A-AMPK axis by the allosteric AMPK activator C24 restored fatty acid oxidation and reduced tubular cell apoptosis during ischemia/reperfusion-induced injury, by antagonizing PP2A dephosphorylation and promoting the mitophagy process. Thus, our study reveals that AMPKα plays an important role in protecting against tubular epithelial cell injury in ischemia/reperfusion-induced acute kidney injury. Hence, activation of AMPK could be a potential therapeutic strategy for acute kidney injury treatment.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Proteínas Quinases Ativadas por AMP/metabolismo , Injúria Renal Aguda/induzido quimicamente , Animais , Apoptose , Isquemia/metabolismo , Rim/metabolismo , Camundongos , Mitocôndrias/metabolismo , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo
5.
Biochem Biophys Res Commun ; 632: 10-16, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191372

RESUMO

Paradoxical sleep deprivation (PSD) is prevalent in modern society, and impaired memory is one of its serious consequences. The pathogenic mechanism is still unclear, and the therapeutic strategies for PSD are limited. Here, we found that quercetin treatment ameliorated memory impairments caused by PSD in a dose-dependent manner in an animal model. Quercetin could restore the dynamic changes of the gamma band while the animals performed novel object recognition (NOR) tasks as determined by electroencephalogram analysis. Morphological analysis showed that quercetin, by targeting the hippocampal CA1 region, strikingly ameliorated the overactivation of microglia induced by PSD. Mechanistically, quercetin inhibited the toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa-b (NF-κB) cascade, which is critical for abnormal microglial activation following PSD stress. Our results provided experimental evidence for the therapeutic effects of quercetin on PSD-related memory impairments by suppressing TLR4/MyD88/NF-κB signaling that mediated abnormal microglia activation in the hippocampus.


Assuntos
Transtornos da Memória , Microglia , Quercetina , Animais , Camundongos , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Sono REM/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
6.
Acta Pharmacol Sin ; 43(8): 2042-2054, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34912006

RESUMO

The putative medium-chain free fatty acid receptor GPR84 is a G protein-coupled receptor primarily expressed in myeloid cells that constitute the innate immune system, including neutrophils, monocytes, and macrophages in the periphery and microglia in the brain. The fact that GPR84 expression in leukocytes is remarkably increased under acute inflammatory stimuli such as lipopolysaccharide (LPS) and TNFα suggests that it may play a role in the development of inflammatory and fibrotic diseases. Here we demonstrate that GPR84 is highly upregulated in inflamed colon tissues of active ulcerative colitis (UC) patients and dextran sulfate sodium (DSS)-induced colitis mice. Infiltrating GPR84+ macrophages are significantly increased in the colonic mucosa of both the UC patients and the mice with colitis. Consistently, GPR84-/- mice are resistant to the development of colitis induced by DSS. GPR84 activation imposes pro-inflammatory properties in colonic macrophages through enhancing NLRP3 inflammasome activation, while the loss of GPR84 prevents the M1 polarization and properties of proinflammatory macrophages. CLH536, a novel GPR84 antagonist discovered by us, suppresses colitis by reducing the polarization and function of pro-inflammatory macrophages. These results define a unique role of GPR84 in innate immune cells and intestinal inflammation, and suggest that GPR84 may serve as a potential drug target for the treatment of UC.


Assuntos
Colite Ulcerativa , Colite , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/toxicidade , Inflamassomos/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Acta Pharmacol Sin ; 43(4): 1091-1099, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34341512

RESUMO

HDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%-35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.


Assuntos
Inibidores de Histona Desacetilases , Mieloma Múltiplo , Acetilação , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Bortezomib/uso terapêutico , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia
8.
Acta Pharmacol Sin ; 42(4): 585-592, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32724176

RESUMO

Dyslipidemia is a chronic metabolic disease characterized by elevated levels of lipids in plasma. Recently, various studies demonstrate that the increased activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) causes health benefits in energy regulation. Thus, great efforts have been made to develop AMPK activators as a metabolic syndrome treatment. In the present study, we investigated the effects of the AMPK activator C24 on dyslipidemia and the potential mechanisms. We showed that C24 (5-40 µM) dose-dependently increased the phosphorylation of AMPKα and acetyl-CoA carboxylase (ACC), and inhibited lipogenesis in HepG2 cells. Using compound C, an AMPK inhibitor, or hepatocytes isolated from liver tissue-specific AMPK knockout AMPKα1α2fl/fl;Alb-cre mice (AMPK LKO), we demonstrated that the lipogenesis inhibition of C24 was dependent on hepatic AMPK activation. In rabbits with high-fat and high-cholesterol diet-induced dyslipidemia, administration of C24 (20, 40, and 60 mg · kg-1· d-1, ig, for 4 weeks) dose-dependently decreased the content of TG, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in plasma and played a role in protecting against hepatic dysfunction by decreasing lipid accumulation. A lipid-lowering effect was also observed in high-fat and high-cholesterol diet-fed hamsters. In conclusion, our results demonstrate that the small molecular AMPK activator C24 alleviates hyperlipidemia and represents a promising compound for the development of a lipid-lowering drug.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dislipidemias/tratamento farmacológico , Ativadores de Enzimas/uso terapêutico , Hipolipemiantes/uso terapêutico , Lipogênese/efeitos dos fármacos , Oxindóis/uso terapêutico , Animais , Dieta Hiperlipídica , Dislipidemias/enzimologia , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Masculino , Mesocricetus , Camundongos Endogâmicos C57BL , Coelhos
10.
Acta Pharmacol Sin ; 39(10): 1622-1632, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29795358

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a clinical syndrome characterized by hepatic steatosis. NAFLD is closely linked to obesity, insulin resistance and dyslipidemia. AMP-activated protein kinase (AMPK) functions as an energy sensor and plays a central role in regulating lipid metabolism. In this study, we identified a series of novel pyrazolone AMPK activators using a homogeneous time-resolved fluorescence assay (HTRF) based on the AMPKα2ß1γ1 complex. Compound 29 (C29) is a candidate compound that directly activated the kinase domain of AMPK with an EC50 value of 2.1-0.2 µmol/L and acted as a non-selective activator of AMPK complexes. Treatment of HepG2 cells with C29 (20, 40 µmol/L) dose-dependently inhibited triglyceride accumulation. Chronic administration of C29 (10, 30 mg/kg every day, po, for 5 weeks) significantly improved lipid metabolism in both the liver and the plasma of ob/ob mice. These results demonstrate that the AMPK activators could be part of a novel treatment approach for NAFLD and associated metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/uso terapêutico , Lipogênese/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Pirazolonas/uso terapêutico , Proteínas Quinases Ativadas por AMP/química , Animais , Cães , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Haplorrinos , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Domínios Proteicos/efeitos dos fármacos , Pirazolonas/química , Pirazolonas/metabolismo , Ratos , Relação Estrutura-Atividade
11.
Bioprocess Biosyst Eng ; 39(3): 381-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26684007

RESUMO

The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.


Assuntos
Antraquinonas/metabolismo , Ganoderma/metabolismo , Índigo Carmim/metabolismo , Compostos de Tritil/metabolismo , Oxirredução
12.
Mol Pharmacol ; 87(1): 31-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25319542

RESUMO

Retigabine (RTG, [ethyl N-[2-amino-4-[(4-fluorophenyl)methyl]amino] phenyl] carbamate]) is a first-in-class antiepileptic drug that acts by potentiating neuronal KCNQ potassium channels; however, it has less than optimal brain distribution. In this study, we report that P-RTG (ethyl N-[2-amino-4-((4-fluorobenzyl)(prop-2-ynyl)amino)phenyl]carbamate), an RTG derivative that incorporates a propargyl group at the N position of the RTG linker, exhibits an inverted brain distribution compared with RTG. The brain-to-plasma concentration ratio of P-RTG increased to 2.30 compared with 0.16 for RTG. However, the structural modification did not change the drug's potentiation potency, subtype selectivity, or RTG molecular determinants on KCNQ channels. In addition, in cultured hippocampal neurons, P-RTG exhibited a similar capability as RTG for suppressing both induced and spontaneous action potential firing. Notably, P-RTG antiepileptic activity in the maximal electroshock (MES)-induced mouse seizure model was significantly enhanced to a value 2.5 times greater than that of RTG. Additionally, the neurotoxicity of P-RTG in the rotarod test was comparable with that of RTG. Collectively, our results indicate that the incorporation of a propargyl group significantly improves the RTG brain distribution, supporting P-RTG as a promising antiepileptic drug candidate. The strategy for improving brain-to-plasma distribution of RTG might be applicable for the drug development of other central nervous system diseases.


Assuntos
Anticonvulsivantes/farmacocinética , Carbamatos/farmacocinética , Canais de Potássio KCNQ/metabolismo , Fenilenodiaminas/farmacocinética , Convulsões/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Células CHO , Carbamatos/administração & dosagem , Carbamatos/efeitos adversos , Células Cultivadas , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Fenilenodiaminas/administração & dosagem , Fenilenodiaminas/efeitos adversos , Convulsões/induzido quimicamente
13.
Acta Pharmacol Sin ; 35(3): 410-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487969

RESUMO

AIM: To investigate the action of isothiafludine (NZ-4), a derivative of bis-heterocycle tandem pairs from the natural product leucamide A, on the replication cycle of hepatitis B virus (HBV) in vitro and in vivo. METHODS: HBV replication cycle was monitored in HepG2.2.15 cells using qPCR, qRT-PCR, and Southern and Northern blotting. HBV protein expression and capsid assembly were detected using Western blotting and native agarose gel electrophoresis analysis. The interaction of pregenomic RNA (pgRNA) and the core protein was investigated by RNA immunoprecipitation. To evaluate the anti-HBV effect of NZ-4 in vivo, DHBV-infected ducks were orally administered NZ-4 (25, 50 or 100 mg·kg⁻¹·d⁻¹) for 15 d. RESULTS: NZ-4 suppressed intracellular HBV replication in HepG2.2.15 cells with an IC50 value of 1.33 µmol/L, whereas the compound inhibited the cell viability with an IC50 value of 50.4 µmol/L. Furthermore, NZ-4 was active against the replication of various drug-resistant HBV mutants, including 3TC/ETV-dual-resistant and ADV-resistant HBV mutants. NZ-4 (5, 10, 20 µmol/L) concentration-dependently reduced the encapsidated HBV pgRNA, resulting in the assembly of replication-deficient capsids in HepG2.2.15 cells. Oral administration of NZ-4 dose-dependently inhibited DHBV DNA replication in the DHBV-infected ducks. CONCLUSION: NZ-4 inhibits HBV replication by interfering with the interaction between pgRNA and HBcAg in the capsid assembly process, thus increasing the replication-deficient HBV capsids. Such mechanism of action might provide a new therapeutic strategy to combat HBV infection.


Assuntos
Antivirais/farmacologia , Infecções por Hepadnaviridae/tratamento farmacológico , Vírus da Hepatite B do Pato/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Hepatite Viral Animal/tratamento farmacológico , RNA Viral/efeitos dos fármacos , Tiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Farmacorresistência Viral Múltipla/genética , Patos , Células Hep G2 , Infecções por Hepadnaviridae/virologia , Vírus da Hepatite B do Pato/genética , Vírus da Hepatite B do Pato/crescimento & desenvolvimento , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Hepatite Viral Animal/virologia , Humanos , Mutação , Nucleocapsídeo/metabolismo , RNA Viral/biossíntese , Fatores de Tempo , Transfecção
14.
J Pharm Biomed Anal ; 243: 116056, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428245

RESUMO

BGT-002, a new type of ATP-citrate lyase inhibitor, is a promising therapeutic for treatment of hypercholesterolemia. After an oral administration of BGT-002 to subjects, it underwent extensive metabolism and an acyl monoglucuronide (ZM326E-M2) on 1- carboxylic acid group was the major circulating metabolite. In this study, an LC-MS/MS method was developed and validated for the simultaneous determination of BGT-002 and ZM326E-M2 in plasma and the evaluation of their pharmacokinetic characteristics in humans. After extraction from the plasma by acetonitrile-induced protein precipitation, the analytes were separated on a Waters ACQUITY UPLC® BEH C18 column using acetonitrile and 2 mM ammonium acetate containing 0.1% formic acid as the mobile phase for gradient elution. Negative electrospray ionization was performed using multiple reaction monitoring (MRM) of m/z 501.3→325.4 for ZM326E-M2 and m/z 507.3→331.2 for D6-ZM326E-M2, and pseudo-MRM of m/z 325.3→325.3 for BGT-002 and m/z 331.3→331.3 for D6-ZM326E, respectively. The method was validated with respect to accuracy, precision, linearity, stability, selectivity, matrix effect, and recovery. The analytical range in human plasma was linear over a concentration range of 0.0500-50.0 µg/mL for BGT-002 and 0.0100-10.0 µg/mL for ZM326E-M2. The pharmacokinetic results showed that after a single oral administration of 100 mg BGT-002, the parent drug was rapidly absorbed with a mean time to peak concentration (tmax) of 1.13 h, compared with BGT-002, the tmax (4.00 h) of ZM326E-M2 was significantly delayed. The peak concentration and plasma exposure of ZM326E-M2 were about 14.1% and 19.5% of the parent drug, suggesting that attention should be paid to the safety and efficacy of ZM326E-M2 in clinical research.


Assuntos
Glucuronídeos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Administração Oral , Acetonitrilas
15.
Orthop Surg ; 16(6): 1292-1299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644512

RESUMO

OBJECTIVES: There is still controversy over the choice of treatment for end-stage spinal metastases. With the continuous development of microwave technology in spinal tumors, related studies have reported that microwave combined with techniques such as pedicle screw fixation and percutaneous vertebroplasty can achieve the purpose of tumor ablation, relieving spinal cord compression, enhancing spinal stability, effectively relieving pain, and reducing recurrence rates. This study aimed to analyze the effectiveness of microwave ablation combined with decompression and pedicle screw fixation in the palliative management of spinal metastases with pathological fractures. METHODS: This retrospective study enrolled 82 patients with spinal metastases and pathological fractures treated between January 2016 and July 2020, with 44 patients undergoing pedicle screw fixation along with laminectomy (fixation group) and the remaining 38 receiving microwave ablation in addition to the treatment provided to group fixation (MWA group). Before surgery, all patients underwent pain assessment using the visual analogue scale (VAS) and evaluation of spinal cord injury using the Frankel classification. After surgery, the patients' prognoses were assessed using the Tomita score, modified Tokuhashi score system, and progression-free survival. Additionally, we compared operative time and blood loss between the two groups. Survival analysis utilized the Kaplan-Meier method with a log-rank test for group comparisons. Paired t-tests and the Mann-Whitney U test were applied to metric and non-normally distributed data, respectively. Neurological function improvement across groups was evaluated using the χ2 test. RESULTS: All patients were followed up for a median duration of 18 and 20 months in the fixation and MWA groups, respectively, with follow-up periods ranging from 6 to 36 months. Statistically significant reductions in postoperative VAS scores were observed in all patients compared with their preoperative scores. The MWA group exhibited reduced blood loss (t = 2.74, p = 0.01), lower VAS scores at the 1- and 3-month follow-ups (t = 2.34, P = 0.02; t = 2.83, p = 0.006), and longer progression-free survival than the fixation group (p = 0.03). Although the operation times in the MWA group were longer than those in the fixation group, this difference was not statistically significant (t = 6.06, p = 0.12). No statistically significant differences were found regarding improvements in spinal cord function between the two groups (p = 0.77). CONCLUSION: Compared with decompression and pedicle screw fixation for treating spinal metastases with pathological fractures, microwave ablation combined with decompression and pedicle screw fixation showed better outcomes in terms of pain control, longer progression-free survival, and lower blood loss without increasing operative time, which has favorable implications for clinical practice.


Assuntos
Descompressão Cirúrgica , Micro-Ondas , Parafusos Pediculares , Neoplasias da Coluna Vertebral , Humanos , Neoplasias da Coluna Vertebral/secundário , Neoplasias da Coluna Vertebral/cirurgia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Micro-Ondas/uso terapêutico , Descompressão Cirúrgica/métodos , Idoso , Adulto , Cuidados Paliativos/métodos , Medição da Dor , Laminectomia/métodos , Terapia Combinada , Técnicas de Ablação/métodos
16.
Neuron ; 112(3): 441-457.e6, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37992714

RESUMO

Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.


Assuntos
Canabinoides , Giro do Cíngulo , Animais , Masculino , Camundongos , Canabinoides/metabolismo , Canabinoides/farmacologia , Giro do Cíngulo/metabolismo , Interneurônios/fisiologia , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Isolamento Social , Sinapses/fisiologia
17.
Adv Mater ; : e2405953, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101293

RESUMO

Implant-associated infections (IAIs) are the main cause of prosthetic implant failure. Bacterial biofilms prevent antibiotic penetration, and the unique metabolic conditions in hypoxic biofilm microenvironment may limit the efficacy of conventional antibiotic treatment. Escaping survival bacteria may not be continually eradicated, resulting in the recurrence of IAIs. Herein, a sonosensitive metal-organic framework of Cu-TCPP (tetrakis(4-carboxyphenyl) porphyrin) nanosheets and tinidazole doped probiotic-derived membrane vesicles (OMVs) with high-penetration sonodynamic therapy (SDT), bacterial metabolic state interference, and bacterial cuproptosis-like death to eradicate IAIs is proposed. The Cu-TCPP can convert O2 to toxic 1O2 through SDT in the normoxic conditions, enhancing the hypoxic microenvironment and activating the antibacterial activity of tinidazole. The released Cu(II) under ultrasound can be converted to Cu(I) by exogenous poly(tannic acid) (pTA) and endogenous glutathione. The disruption of the bacterial membrane by SDT can enhance the Cu(I) transporter activity. Transcriptomics indicate that the SDT-enhanced Cu(I) overload and hypoxia-activated therapy hinder the tricarboxylic acid cycle (TCA), leading to bacterial cuproptosis-like death. Moreover, the OMVs-activated therapy can polarize macrophages to a M2-like phenotype and facilitate bone repair. The sonodynamic biofilm microenvironment modulation strategy, whereby the hypoxia-enhanced microenvironment is potentiated to synergize SDT with OMVs-activated therapy, provides an effective strategy for antibacterial and osteogenesis performance.

18.
Nat Metab ; 6(5): 933-946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609677

RESUMO

Streptomyces has the largest repertoire of natural product biosynthetic gene clusters (BGCs), yet developing a universal engineering strategy for each Streptomyces species is challenging. Given that some Streptomyces species have larger BGC repertoires than others, we proposed that a set of genes co-evolved with BGCs to support biosynthetic proficiency must exist in those strains, and that their identification may provide universal strategies to improve the productivity of other strains. We show here that genes co-evolved with natural product BGCs in Streptomyces can be identified by phylogenomics analysis. Among the 597 genes that co-evolved with polyketide BGCs, 11 genes in the 'coenzyme' category have been examined, including a gene cluster encoding for the cofactor pyrroloquinoline quinone. When the pqq gene cluster was engineered into 11 Streptomyces strains, it enhanced production of 16,385 metabolites, including 36 known natural products with up to 40-fold improvement and several activated silent gene clusters. This study provides an innovative engineering strategy for improving polyketide production and finding previously unidentified BGCs.


Assuntos
Produtos Biológicos , Família Multigênica , Streptomyces , Produtos Biológicos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Policetídeos/metabolismo , Evolução Molecular , Vias Biossintéticas/genética , Filogenia , Engenharia Metabólica/métodos
19.
Aging Dis ; 14(5): 1583-1605, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196115

RESUMO

Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.

20.
Acta Pharm Sin B ; 13(2): 739-753, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873173

RESUMO

Hepatic cholesterol accumulation is an important contributor to hypercholesterolemia, which results in atherosclerosis and cardiovascular disease (CVD). ATP-citrate lyase (ACLY) is a key lipogenic enzyme that converts cytosolic citrate derived from tricarboxylic acid cycle (TCA cycle) to acetyl-CoA in the cytoplasm. Therefore, ACLY represents a link between mitochondria oxidative phosphorylation and cytosolic de novo lipogenesis. In this study, we developed the small molecule 326E with an enedioic acid structural moiety as a novel ACLY inhibitor, and its CoA-conjugated form 326E-CoA inhibited ACLY activity with an IC50 = 5.31 ± 1.2 µmol/L in vitro. 326E treatment reduced de novo lipogenesis, and increased cholesterol efflux in vitro and in vivo. 326E was rapidly absorbed after oral administration, exhibited a higher blood exposure than that of the approved ACLY inhibitor bempedoic acid (BA) used for hypercholesterolemia. Chronic 326E treatment in hamsters and rhesus monkeys resulted in remarkable improvement of hyperlipidemia. Once daily oral administration of 326E for 24 weeks prevented the occurrence of atherosclerosis in ApoE-/- mice to a greater extent than that of BA treatment. Taken together, our data suggest that inhibition of ACLY by 326E represents a promising strategy for the treatment of hypercholesterolemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA