RESUMO
The rhizosphere is an important place for material exchange between medicinal plants and soil. Root exudates are the medium of material and signal exchange between plants and soil and are the key factors in the regulation of rhizosphere microecology. Rhizosphere microorganisms are an important part of the rhizosphere microecology of medicinal plants, and the interaction between root exudates and rhizosphere microorganisms has an important influence on the growth and quality formation of medicinal plants. Rational utilization of the interaction between root exudates and rhizosphere microorganisms of medicinal plants is one of the important ways to ensure the healthy growth of medicinal plants and promote the development of ecological planting of Chinese medicinal materials. In the paper, the research status of root exudates and rhizosphere microorganisms of medicinal plants in recent years was summarized. The interaction mechanism between root exudates and rhizosphere microorganisms of medicinal plants, as well as the influence of rhizosphere microorganisms on the growth of medicinal plants, were analyzed. In addition, the advantages and promoting effects of intercropping ecological planting mode on rhizosphere microecology of medicinal plants and quality improvement of Chinese medicinal materials were explained, providing a good basis for the study of the interaction among medicinal plants, microorganisms, and soil. Furthermore, it could produce important theoretical and practical significance for the ecological planting and sustainable utilization of medicinal plants.
Assuntos
Raízes de Plantas , Plantas Medicinais , Rizosfera , Microbiologia do Solo , Plantas Medicinais/metabolismo , Plantas Medicinais/microbiologia , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/classificação , Exsudatos de Plantas/metabolismo , Exsudatos de Plantas/químicaRESUMO
OBJECTIVES: To investigate the risk factors for bronchopulmonary dysplasia (BPD) in twin preterm infants with a gestational age of <34 weeks, and to provide a basis for early identification of BPD in twin preterm infants in clinical practice. METHODS: A retrospective analysis was performed for the twin preterm infants with a gestational age of <34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020. According to their conditions, they were divided into group A (both twins had BPD), group B (only one twin had BPD), and group C (neither twin had BPD). The risk factors for BPD in twin preterm infants were analyzed. Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins. RESULTS: A total of 904 pairs of twins with a gestational age of <34 weeks were included in this study. The multivariate logistic regression analysis showed that compared with group C, birth weight discordance of >25% between the twins was an independent risk factor for BPD in one of the twins (OR=3.370, 95%CI: 1.500-7.568, P<0.05), and high gestational age at birth was a protective factor against BPD (P<0.05). The conditional logistic regression analysis of group B showed that small-for-gestational-age (SGA) birth was an independent risk factor for BPD in individual twins (OR=5.017, 95%CI: 1.040-24.190, P<0.05). CONCLUSIONS: The development of BPD in twin preterm infants is associated with gestational age, birth weight discordance between the twins, and SGA birth.
Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Gêmeos , Humanos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/epidemiologia , Fatores de Risco , Recém-Nascido , Feminino , Estudos Retrospectivos , Masculino , Idade Gestacional , Peso ao Nascer , Modelos LogísticosRESUMO
BACKGROUND: Cadmium (Cd) contamination in soil poses a serious safety risk for the development of medicine and food with ginseng as the raw material. Microorganisms are key players in the functioning and service of soil ecosystems, but the effects of Cd-contaminated ginseng growth on these microorganisms is still poorly understood. To study this hypothesis, we evaluated the effects of microorganisms and Cd (0, 0.25, 0.5, 1.0, 2.0, 5.0, and 10.0 mg kg-1 of Cd) exposure on the soil microbial community using Illumina HiSeq high-throughput sequencing. RESULTS: Our results indicated that Cd-contaminated soil affected the soil microbial diversity and composition, and bacterial diversity was affected more than fungal diversity in Cd-contaminated soil, especially according to Shannon indices. The abundance of the soil microbial community decreased and the composition changed according to the relative abundances at the phylum level, including those of Saccharibacteria and Gemmatimonadetes in bacteria and Mortierellomycota in fungi. The LEfSe algorithm was used to identify active biomarkers, and 45 differentially abundant bacterial taxonomic clades and 16 differentially abundant fungal taxonomic clades were identified with LDA scores higher than 4.0. Finally, a heatmap of Spearman's rank correlation coefficients and canonical discriminant analysis (CDA) indicated that some key biomarkers, Arenimonas, Xanthomonadales, Nitrosomonadaceae, Methylophilales, Caulobacterales, Aeromicrobium, Chitinophagaceae, Acidimicrobiales, Nocardioidaceae, Propionibacteriales, Frankiales, and Gemmatimonadaceae, were positively correlated with the total and available Cd (p<0.05) but negatively correlated with AK, AP, and pH (p<0.05) in the bacterial community. Similarly, in the fungal community, Tubaria, Mortierellaceae, and Rhizophagus were positively correlated with the total and available Cd but negatively correlated with AK, AP, TK, and pH. CONCLUSION: Cd contamination significantly affected microbial diversity and composition in ginseng-growing soil. Our findings provide new insight into the effects of Cd contamination on the microbial communities in ginseng-growing soil.
Assuntos
Microbiota , Micobioma , Panax , Poluentes do Solo , Bactérias , Biomarcadores , Cádmio/farmacologia , Panax/microbiologia , Solo/química , Microbiologia do SoloRESUMO
BACKGROUND: Acute lymphoblastic leukemia (ALL) is one of the most commonly diagnosed cancers in children. Despite enormous efforts to treat ALL over the past decade, the intensity of conventional chemotherapeutic strategies has reached the tolerance limit. Among various recently developed therapeutic approaches, antibody and cellular-based therapies showed less toxicity and better curative effect. SUMMARY: Due to advanced mechanistic actions, these innovative therapies have provided durable responses and long-term survival in eradicating pediatric ALL, especially patients with refractory/relapsed ALL. Owing to these aspects, herein, we emphasize the mechanisms of action and application status of antibodies targeting tumor antigens, antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells. KEY MESSAGES: The significant prospects and challenges are discussed, highlighting the innovative immunotherapies to deal with ALL. Together, this review will summarize the progress of antibody and cellular-based therapies for pediatric ALL, which may promote further research on antibody-based biopharmaceutics.
Assuntos
Anticorpos Biespecíficos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticorpos Biespecíficos/uso terapêutico , Criança , Humanos , Imunoterapia , Terapia de Alvo Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologiaRESUMO
The content of available phosphorus in soil is generally low worldwide. Phosphorus, one of the necessary macroelements for plant growth and development, plays an important role in cell structure, material composition and energy metabolism, and signal transduction in plants. Phosphate transporter(PHT) genes are important for plant growth and development, root morphogenesis, secondary metabolism, hormone response, and phosphorus balance. Most of the active components in medicinal plants are secondary metabolites. Thus, it is essential to reveal the relationship between the regulation of phosphorus and the accumulation of active components in medicinal plants, especially the effect of phosphorus starvation on root morphogenesis of root medicinal materials and its coupling with hormone response. With advancement of molecular biology, scholars gradually emphasize the mechanism of PHT regulating the secondary metabolism of medicinal plants. This study summarized the strategies of plants to adapt to low phosphorus environment, such as changing root morphogenesis, inhibiting taproot growth, forming cluster root and changing physiological metabolism, PHT, its regulatory network, phenotypic biological characteristics and key genes in medicinal plants related to phosphorus starvation, and the response mechanism. The findings are expected to lay a basis for the cultivation of medicinal plants with high quality, excellent shape, and high price.
Assuntos
Plantas Medicinais , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Desenvolvimento Vegetal , Fósforo , Hormônios/metabolismo , Morfogênese/genética , Raízes de PlantasRESUMO
This study aims to investigate the effects of different magnesium supply levels on the growth, nutrient absorption and distribution, and quality of Panax quinquefolium, and to determine the optimum content of exchangeable magnesium in soil. Three-year-old plants of P. quinquefolium were used in this study, and eight magnesium supply gradients(CK, Mg1-Mg7) were designed for indoor pot experiment(cultivation in soil). The plant growth indexes, nutrient element content in soil and plant, and root saponin content were determined at the end of the growth period. The correlation analysis of nutrient element content in aboveground and underground parts of P. quinquefolium showed significantly negative correlations of magnesium-calcium, magnesium-potassium, and magne-sium-manganese. With the increase in magnesium supply level, the biological absorption coefficient of magnesium increased, while that of total nitrogen, potassium, iron, and manganese decreased; the biological transfer coefficient of magnesium decreased, while that of nitrogen, phosphorus, calcium, iron, and manganese increased. The saponin content was analyzed by principal component analysis, which showed the comprehensive score in the order of Mg4(2.537), Mg2(1.001), Mg3(0.600), Mg1(0), Mg7(-0.765), CK(-0.825), Mg6(-0.922), and Mg5(-1.663). The partial least squares-path modeling(PLS-PM) showed that the correlation coefficients of exchangeable magnesium and pH with quality were-0.748 and-0.755, respectively, which were significant. Magnesium-calcium, magnesium-potassium, and magnesium-manganese showed antagonism in the nutritional physiology of P. quinquefolium. Excessive application of magnesium can lead to the imbalance of nutrient elements in P. quinquefolium. The content of exchangeable magnesium in soil suitable for the quality formation of P. quinquefolium was 193.34-293.34 mg·kg~(-1). In addition to exchangeable magnesium, pH was also important to the quality formation of P. quinquefolium. Therefore, exchangeable magnesium and pH could be regarded as monitoring factors for the quality formation of P. quinquefolium.
Assuntos
Panax , Magnésio , Nutrientes , Panax/química , Fósforo , Solo/químicaRESUMO
Panax ginseng, a perennial herb, is prone to diseases and insect pests in the growth process, which are primarily prevented and treated by pesticides. However, due to the lack of standardization in the types, frequencies, and doses of pesticides, pesticide residues have become the main exogenous pollutants of P. ginseng. To explore the risk of pesticide residues in P. ginseng, this paper summarized and analyzed the common pesticide residues in P. ginseng, detection techniques, and pesticide residue limit stan-dards based on the published literature in recent years. The results revealed that the main pesticide residues in P. ginseng were organochlorine pesticides, such as tetrachloronitrobenzene, pentachloronitrobenzene, and hexachlorobenzene, and the detection techniques were dominated by gas chromatography(GC), liquid chromatography(LC), or those combined with mass spectrometry(MS). Because of the long half-life and difficulty in degradation, organochlorine pesticides have become the main factor affecting the export of P. ginseng. It is worth mentioning that P. ginseng has been classified as food in Japan, South Korea, the European Union, and other countries, and the standards of pesticide residues and limits are stricter than those in China. The quality and safety of P. ginseng are prerequisites for the efficacy of Chinese medicine and the development of traditional Chinese medicine. The formulation of scientific and effective standards for pesticide application and limits would promote the high-quality development of the P. ginseng industry.
Assuntos
Hidrocarbonetos Clorados , Panax , Resíduos de Praguicidas , Praguicidas , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/análise , Panax/química , Resíduos de Praguicidas/análise , Praguicidas/análiseRESUMO
Panax notoginseng is a perennial Chinese medicinal plant, which has serious continuous cropping obstacles and is prone to a variety of diseases and insect pests during the growth process. At present, the prevention and control of pests and diseases is mainly carried out through chemical pesticides, and the consequent pesticide residues of P. notoginseng have attracted much attention. This study reviewed the types and detection methods of pesticide residues in P. notoginseng from 1981 to 2021, and compared the limits of pesticide residues in P. notoginseng in China and abroad to provide a reference for rational application of pesticides in P. notoginseng and quality control of medicinal materials, thereby promoting the sustainable development of the P. notoginseng industry in China. Currently, there are only 40 published papers on pesticide residues of P. notoginseng, which is indicative of a serious problem of insufficient research. At present, hundreds of pesticide residues in P. notoginseng can be detected simultaneously by using chromatography-tandem mass spectrometry. The pesticides detected have gradually changed from early prohibited ones, such as dichlorodiphenyl trichloroethane(DDT), benzene hexachloride(BHC), and parathion, to low toxic ones(e.g., dimethomorph, procymidone, propicona-zole, and difenoconazole). The dietary risk from pesticide residues in P. notoginseng is low, which would not cause harm to consu-mers. This study concluded that in the future, the development of the quality standard for pesticide residues of P. notoginseng should be actively carried out. To increase the pesticides used in actual production in the quality standard based on the existing ones and to guide farmers to use pesticides scientifically will be the focus of future work.
Assuntos
Panax notoginseng , Resíduos de Praguicidas , Praguicidas , Plantas Medicinais , China , Resíduos de Praguicidas/análise , Praguicidas/análiseRESUMO
OBJECTIVES: To investigate the incidence of extrauterine growth retardation (EUGR) and its risk factors in very preterm infants (VPIs) during hospitalization in China. METHODS: A prospective multicenter study was performed on the medical data of 2 514 VPIs who were hospitalized in the department of neonatology in 28 hospitals from 7 areas of China between September 2019 and December 2020. According to the presence or absence of EUGR based on the evaluation of body weight at the corrected gestational age of 36 weeks or at discharge, the VPIs were classified to two groups: EUGR group (n=1 189) and non-EUGR (n=1 325). The clinical features were compared between the two groups, and the incidence of EUGR and risk factors for EUGR were examined. RESULTS: The incidence of EUGR was 47.30% (1 189/2 514) evaluated by weight. The multivariate logistic regression analysis showed that higher weight growth velocity after regaining birth weight and higher cumulative calorie intake during the first week of hospitalization were protective factors against EUGR (P<0.05), while small-for-gestational-age birth, prolonged time to the initiation of total enteral feeding, prolonged cumulative fasting time, lower breast milk intake before starting human milk fortifiers, prolonged time to the initiation of full fortified feeding, and moderate-to-severe bronchopulmonary dysplasia were risk factors for EUGR (P<0.05). CONCLUSIONS: It is crucial to reduce the incidence of EUGR by achieving total enteral feeding as early as possible, strengthening breastfeeding, increasing calorie intake in the first week after birth, improving the velocity of weight gain, and preventing moderate-severe bronchopulmonary dysplasia in VPIs.
Assuntos
Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Feminino , Retardo do Crescimento Fetal , Idade Gestacional , Hospitalização , Humanos , Incidência , Lactente , Recém-Nascido , Estudos Prospectivos , Fatores de RiscoRESUMO
Panax ginseng and Panax quinquefolius can survive for long periods of time in iron toxicity-stressed environments, which cause rusty roots and reduced productivity. To reveal the proteomic changes in these two Panax species in response to iron toxicity stress, plants of these two species were divided into a control group and an iron toxicity-stress group. An isobaric tags for relative and absolute quantitation (iTRAQ) proteomics approach was used to explore the changes in protein accumulation and the potential mechanisms underlying the response to iron toxicity stress in the two Panax species. Proteomic analyses revealed approximately 725 differentially expressed proteins (DEPs) in the iron toxicity-stress and control groups, including 233 and 492 proteins whose expression was upregulated and downregulated, respectively. The expression of DEPs related to photosynthesis was significantly downregulated, and DEPs whose expression was significantly upregulated were associated with redox reactions. Many upregulated DEPs were also involved in pathways such as those involving phenylpropanoid, flavonoid, isoflavone and ginsenoside synthesis. The abundance of some ginsenoside monomers (Rg1 and Rb3) also significantly increased in P. ginseng and P. quinquefolius. Moreover, P. quinquefolius contained 455 DEPs whose expression was higher than that in P. ginseng, including many proteins related to the regulation of ion homeostasis, indicating that P. quinquefolius is more resistant to iron toxicity stress than P. ginseng is.
RESUMO
BACKGROUND: This study analyzed the effect of silicon (Si) application on the occurrence of ginseng black spot caused by Alternaria panax. We explored the differences in soil physical and chemical factors and microbial community structure following Si application as well as the key factors that affected the occurrence of ginseng black spot in soil. Potted Panax ginseng plants were used to assess the effect of Si treatment on ginseng black spot. Soil physical and chemical properties were comprehensively analyzed. Bacterial communities were analyzed using Illumina HiSeq sequencing targeting the 16S rRNA gene. RESULTS: After inoculation with A. panax, the morbidity (and morbidity index) of ginseng with and without Si was 52% (46) and 83% (77), respectively. Soil physical and chemical analysis showed that under the ginseng black spot inoculation, bacterial communities were mainly affected by pH and available potassium, followed by ammonium nitrogen and available Si. NMDS and PLS-DA analyses and the heat maps of relative abundance revealed that Si application elevated the resistance of ginseng black spot as regulated by the abundance and diversity of bacterial flora in rhizosphere soils. Heatmap analysis at the genus level revealed that A. panax + Si inoculations significantly increased the soil community abundance of Sandaracinus, Polycyclovorans, Hirschia, Haliangium, Nitrospira, Saccharothrix, Aeromicrobium, Luteimonas, and Rubellimicrobium and led to a bacterial community structure with relative abundances that were significantly similar to that of untreated soil. CONCLUSIONS: Short-term Si application also significantly regulated the structural impact on soil microorganisms caused by ginseng black spot. Our findings indicated that Si applications may possibly be used in the prevention and treatment of ginseng black spot.
Assuntos
Alternaria/patogenicidade , Bactérias/efeitos dos fármacos , Microbiota , Panax/microbiologia , Silício/farmacologia , Microbiologia do Solo , Bactérias/genética , Incidência , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética , Solo/químicaRESUMO
Chlorophyll content,leaf mass to per area,net photosynthetic rate and bioactive ingredients of Asarum heterotropoides var. mandshuricum,a skiophyte grown in four levels of solar irradiance were measured and analyzed in order to investigate the response of photosynthetic capability to light irradiance and other environmental factors. It suggested that the leaf mass to per area of plant was greatest value of four kinds of light irradiance and decreasing intensity of solar irradiance resulted in the decrease of leaf mass to per area at every phenological stage. At expanding leaf stage,the rate of Chla and Chlb was 3. 11 when A. heterotropoides var. mandshuricum grew in full light irradiance which is similar to the rate of heliophytes,however,the rate of Chla and Chlb was below to 3. 0 when they grew in shading environment. The content of Chla,Chlb and Chl( a+b) was the greatest value of four kinds of light irradiance and decreasing intensity of solar irradiance resulted in its decreasing remarkably( P<0. 05). The rate of Chla and Chlb decreased but the content of Chla,Chlb and Chl( a+b) increased gradually with continued shading. The maximum value of photosynthetically active radiation appeared at 10: 00-12: 00 am in a day. The maximum value of net photosynthetic rate appeared at 8: 30-9: 00 am and the minimum value appeared at 14: 00-14: 30 pm at each phenological stage if plants grew in full sunlight. However,when plants grew in shading,the maximum value of net photosynthetic rate appeared at about 10: 30 am and the minimum value appeared at 12: 20-12: 50 pm at each phenological stage. At expanding leaf stage and flowering stage,the average of net photosynthetic rate of leaves in full sunlight was remarkably higher than those in shading and it decreased greatly with decreasing of irradiance gradually( P < 0. 05). However,at fruiting stage,the average of net photosynthetic rate of leaves in full sunlight was lower than those in 50% and 28% full sunlight but higher than those in 12% full sunlight. All photosynthetic diurnal variation parameters of plants measured in four kinds of different irradiance at three stages were used in correlation analysis. The results suggested that no significant correlation was observed between net photosynthetic rate and photosynthetically active radiation,and significant negative correlation was observed between net photosynthetic rate and environmental temperature as well as vapor pressure deficit expect for 12% full sunlight. Positive correlation was observed between net photosynthestic rate and relative humidity expect for 12% full sunlight. Significant positive correlation was observed between net photosynthetic rate and stomatal conductance in the four light treatments. Only,in 12% full sunlight,the net photosynthetic rate was significantly related to photosynthetically active radiation rather than related to environmental temperature,vapor pressure deficit and relative humidity. In each light treatment,a significant positive correlation was observed between environmental temperature and vapor pressure deficit,relative humidity as well as stomatal conductance. Volatile oil content was 1. 46%,2. 16%,1. 56%,1. 30% respectively. ethanol extracts was 23. 44%,22. 45%,22. 18%,21. 12% respectively. Asarinin content was 0. 281%,0. 291%,0. 279% and 0. 252% respectively. The characteristic components of Asarum volatile oil of plant in different light treatments did not change significantly among different groups.
Assuntos
Asarum/fisiologia , Asarum/efeitos da radiação , Fotossíntese , Luz Solar , Clorofila/análise , Folhas de Planta/efeitos da radiaçãoRESUMO
OBJECTIVE: To detect and analyze the genetic variation in exon 7 of lung surfactant protein B (SP-B), and to investigate the relationship between the genetic variation and the incidence of neonatal respiratory distress syndrome (NRDS) in Han populations in western Inner Mongolia. METHODS: In the case-control study, 47 Han infants with NRDS were assigned to case group. All the 47 patients had the last three generations of their ancestors reside in western Inner Mongolia. Forty-seven Han newborns without NRDS were assigned to control group. PCR-based gene analysis was used to determine the mutation in exon 7 of SP-B gene and genotype and allele frequencies of the R236C site in exon 7 of SP-B gene. RESULTS: In Han newborns in western Inner Mongolia, there was no mutation in exon 7 of SP-B gene; two genotypes, CC and CT, were identified in the R236C site in exon 7 of SP-B gene. No TT genotype was found in the two groups. There were no significant differences in the genotype frequency of CC or CT as well as the allele frequency of C or T between the case and control groups (CC: 72% vs 85%, P>0.05; CT: 28% vs 15%, P>0.05; C: 85% vs 93%, P>0.05; T: 15% vs 7%, P>0.05). CONCLUSIONS: There is no mutation in exon 7 of SP-B gene in Han infants with NRDS in western Inner Mongolia. There is no significant association between the gene polymorphism of the R236C site in exon 7 of SP-B gene and the incidence of NRDS in Han populations in that region.
Assuntos
Éxons , Proteína B Associada a Surfactante Pulmonar/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Estudos de Casos e Controles , China , Feminino , Genótipo , Humanos , Recém-Nascido , Masculino , Polimorfismo GenéticoRESUMO
Objective: To systematically evaluate the effect of vitamin D deficiency during pregnancy on neonatal adverse outcomes, such as preterm infants, low birth weight infants (LBWI), and small for gestational age (SGA) infants. Methods: A comprehensive literature search was conducted across multiple databases including PubMed, Embase, Cochrane Library, SinoMed, Wanfang Data Knowledge Service Platform, China National Knowledge Internet (CNKI), and VIP Chinese Science and Technology Journal Database (VIP). Following predefined inclusion and exclusion criteria, two researchers independently screened, extracted data, and assessed the quality of the included studies. Meta-analysis was performed using RevMan 5.4 and Stata 14 software to synthesize the findings. Results: This study incorporated 13 cohort studies from 8 different countries and regions, encompassing a total of 55,162 pregnant women, among whom 28,155 were identified as having vitamin D deficiency. The Newcastle-Ottawa Scale (NOS) score ranged from 7-9 points. Meta-analysis results indicated a higher incidence of LBWI (OR = 5.52, 95% CI = 1.31-23.22. P = 0.02) in the group of pregnant women with vitamin D deficiency compared to those with adequate levels. However, there was no statistically significant difference in the likelihood of premature birth (OR = 1.25, 95% CI = 0.78-1.99. P = 0.36) or SGA (OR = 1.47, 95% CI = 0.81-2.68. P = 0.21) among newborns born to mothers with vitamin D deficiency vs. those with sufficient levels of vitamin D. Subgroup analysis based on the timing of maternal blood collection revealed that there was no statistically significant association between vitamin D levels during pregnancy and the incidence of preterm birth across all stages of pregnancy. Furthermore, vitamin D deficiency throughout the entire pregnancy was associated with an increased incidence of neonatal LBWI, whereas vitamin D levels during the first, second, and third trimesters did not demonstrate statistically differences on LBWI. Neonates born to mothers with vitamin D deficiency throughout pregnancy were found to have a higher likelihood of developing SGA. However, there was no statistically significant association between vitamin D levels and the development of SGA during the first and second trimesters. Conclusions: Adequate levels of vitamin D during pregnancy may decrease the incidence of LBWI, although further research is needed to determine its impact on the occurrence of preterm birth and SGA. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024535950, Identifier: (CRD42024535950).
RESUMO
Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids ("13S-hydroperoxy-9Z, 11E-octadecadionic acid", "9S-hydroxy-10E, 12Z-octadecadionic acid", "9S-oxo-10E, 12Z-octadecadionic acid", and "9,10,13-trihydroxy-11-octadecadionic acid"), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants' secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant's dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use.
RESUMO
Introduction: Ginseng (Panax ginseng C.A. Meyer) has multiple effects on human health; however, soil degradation seriously affects its yield. Trichoderma spp. play an important role in improving plant biomass by influencing the soil environment. Therefore, it is necessary to screen efficient Trichoderma strains that can increase ginseng biomass and determine their mechanisms. Methods: Herein, we selected six Trichoderma species (T. brevicompactum, T. velutinum, T. viridescens, T. atroviride, T. koningiopsis, and T. saturnisporum) isolated from ginseng rhizosphere soil, and evaluated their growth promoting effects on ginseng and their influence on the microbiome and chemical attributes of the ginseng rhizosphere soil. Results: Except for T. saturnisporum (F), compared with the control, the other five species increased ginseng biomass. In terms of chemical properties, the pH value, available potassium content, and available phosphorus content in the ginseng rhizosphere soil increased by 1.16-5.85%, 0.16-14.03%, and 3.92-38.64%, respectively, after root irrigation with spores of Trichoderma species. For the soil microbiome, fungal Chao1 and Ace richness indices decreased. Application of Trichoderma enhanced the relative level of Proteobacteria, but reduced the relative level of Ascomycota. At the genus level, application of Trichoderma enhanced the relative levels of Sphingomonas, Blastomonas, and Trichoderma, but reduced the relative level of Fusarium. Available K and available P were the most important elements that affected the structure of the bacterial community, while total K was the most influential element for the structure of the fungal community structure. Conclusion: The results indicated that the application of Trichoderma spp. could increase soil nutrients and regulate the structure and composition of the soil microbial community, thereby enhancing the biomass of ginseng. The results will provide guidance for soil improvement in ginseng cultivation.
RESUMO
Panax ginseng C.A. Meyer originates from old-growth forest environments, where the light intensity and spectrum reaching the forest bed are influenced by the canopy and humidity. In farmlands, suitable light intensity for cultivation is achieved by controlling the light transmission rate using shading nets, while light quality is regulated by a cover of yellow or blue transparent film. Such films have a light quality distinct from that produced by old-growth forests. Herein, a large composite film was developed by alternating small pieces of yellow and blue transparent film. An orthogonal array was used to evaluate the influence of the small transparent film area (STFA), yellow transparent film (YTF) number, and blue transparent film (BTF) number on the associated changes in ginseng in a range of fluorescence-, photosynthesis-, morphology-, and crop quality-related factors. Our results showed that light intensity was influenced primarily by STFA, which caused an overall decrease, while the light quality ratio was affected primarily by YTF number, which increased the proportion of red light and decreased that of blue light, with corresponding influence on different growth parameters. Based on these observations, an improved yellow and blue combination transparent film (YBCTF) with the following characteristics was established: STFA: 15 × 15 cm, YTF: two pieces, and BTF: three pieces. The improved YBCTF facilitated efficient light energy use by the plants, and led to an increase in leaf area, the per leaf photosynthetic rate, dry root weight, and the per root single ginsenoside yield. The findings present a relatively low-cost approach for optimising the light environment of ginseng cultivated in farmland and other crops in large-scale agricultural settings.
RESUMO
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%-25.94%, 30.12%-309.19%, 32.26%-38.82%, 7.81%-23.66%, and 4.68%-48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Assuntos
Ferro , Panax , Potássio , Silício , Silício/farmacologia , Panax/metabolismo , Panax/efeitos dos fármacos , Panax/genética , Ferro/metabolismo , Potássio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Antioxidantes/metabolismoRESUMO
Marine biological fouling is a widespread phenomenon encountered by various oceanic ships and naval vessels, resulting in enormous economic losses. Herein, novel 4,5-dichloro-2-octyl-isothiazolone@sodium alginate/chitosan microcapsules (DCOIT@ALG/CS) were prepared through composite gel method using DCOIT as core materials, ALG and CS as shells, and CaCl2 as the cross-linking agent. The formed microcapsules (MCs) with Ag nanoparticles (AgNPs) were then filled in UV-curable polysiloxane (UV-PDMS), followed by UV irradiation to yield UV-PDMS/microcapsules/AgNPs (UV-PDMS/MCs/Ag) composite coatings. The constructed micro-nano dual-scale surface using the MCs and AgNPs improved the antifouling and antibacterial properties of UV-PDMS/MCs/Ag coatings. The as-obtained UV-PDMS/MCs/Ag coatings exhibited a static contact angle of about 160°, shear strength of 2.24 MPa, tensile strength of 3.32 MPa and elongation at break of 212%. The synergistic bacteriostatic effects of DCOIT and AgNPs in UV-PDMS/MCs/Ag coatings resulted in a bactericidal rate of 200 µg ml-1 towards Escherichia coli and Staphylococcus aureus with saturation at 100% within 10 min. In sum, the proposed composite coatings look promising for future marine transportation, pipeline networks and undersea facilities.
RESUMO
Objective: To evaluate the efficacy and safety of oropharyngeal administration of colostrum (OAC) in preterm infants. Methods: We searched Embase, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), Cumulative Index to Nursing and Allied Health Literature (CINAHL), and the website of the clinical trials, search time was from the establishment of the databases or websites up to 1 February 2022. Preterm infants with gestational age (GA) ≤ 32 weeks or birth weight (BW) ≤ 1500 g were taken as the participants, collect randomized controlled trials (RCTs) of comparing OAC and placebo or no intervention in preterm infants. Two researchers independently screened the literature, extracted the data, and evaluated the quality of the literature, and we adopted Review Manager 5.3 software for meta-analysis. Results: In total, 11 RCTs (n = 1,173) were included in the review. A meta-analysis showed significant difference in the incidence of necrotizing enterocolitis [NEC; p = 0.009, relative ratio (RR) = 0.51, 95% confidence interval (CI) = 0.31-0.84], late-onset sepsis (LOS; p = 0.02, RR = 0.75, 95% CI = 0.59-0.95), ventilator-associated pneumonia (VAP; p = 0.03, RR = 0.48, 95% CI = 0.24-0.95), the time to reach full enteral feeds (p < 0.00001, mean difference (MD) = -3.40, 95% CI = -3.87 to -2.92), duration of hospital stay (p < 0.00001, MD = -10.00, 95% CI = -11.36 to -8.64), and the rate of weight gain (kg.d; p < 0.00001, MD = 2.63, 95% CI = 2.10-3.16) between the colostrum group and control group. Meanwhile, researchers found no significant difference between the colostrum group and control group in the incidence of bronchopulmonary dysplasia (BPD; p = 0.17, RR = 0.83, 95% CI = 0.64-1.08), intraventricular hemorrhage (IVH; grade ≥3; p = 0.05, RR = 0.44, 95% CI = 0.19-1.01), periventricular leukomalacia (PVL; p = 0.67, RR = 0.70, 95% CI = 0.14-3.49), retinopathy of prematurity (ROP; p = 0.29, RR = 1.25, 95% CI = 0.82-1.89), and patent ductus arteriosus (PDA; p = 0.17, RR = 1.22, 95% CI = 0.92-1.62). Conclusion: Oropharyngeal administration of colostrum can reduce the incidence of NEC, LOS, and VAP in preterm infants, shortening the time to reach full enteral feeds, and duration of hospital stay, and increasing the rate of weight gain (kg.d). Therefore, OAC can be used as part of routine care for preterm infants.