Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2385-2392, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38812139

RESUMO

This study aims to investigate the mechanism of total saponins of Paridis Rhizoma in inducing the ferroptosis of MCF-7 cells and provide a theoretical basis for the clinical treatment of breast cancer with total saponins of Paridis Rhizoma. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the effects of different concentrations of total saponins of Paridis Rhizoma on the proliferation of MCF-7 cells. A phase contrast inverted microscope was used to observe the morphological changes of MCF-7 cells. The colony formation assay was employed to test the colony formation of MCF-7 cells. The lactate dehydrogenase(LDH) release test was conducted to determine the cell membrane integrity of MCF-7 cells. The cell scratch assay was employed to examine the migration of MCF-7 cells. After that, the level of reactive oxygen species(ROS) in MCF-7 cells was observed by an inverted fluorescence microscope, and the content of Fe~(2+) in MCF-7 cells was detected by the corresponding kit. Transmission electron microscopy was employed to observe the mitochondrial ultrastructure of MCF-7 cells. Western blot was employed to determine the expression of ferroptosis-related proteins, such as p53, solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long-chain family member 4(ACSL4), and transferrin receptor protein 1(TFR1) in MCF-7 cells. The results showed that 1.5, 3, 4.5, 6, 7.5, and 9 µg·mL~(-1) total saponins of Paridis Rhizoma significantly inhibited the proliferation of MCF-7 cells, with the IC_(50) of 4.12 µg·mL~(-1). Total saponins of Paridis Rhizoma significantly damaged the morphology of MCF-7 cells, leading to the formation of vacuoles and the gradual shrinkage and detachment of cells. Meanwhile, total saponins of Paridis Rhizoma inhibited the colony formation of MCF-7 cells, destroyed the cell membrane(leading to the release of LDH), and shortened the migration distance of MCF-7 cells. Total saponins of Paridis Rhizoma treatment significantly increased the content of ROS, induced oxidative damage, and led to the accumulation of Fe~(2+) in MCF-7 cells. Furthermore, total saponins of Paridis Rhizoma changed the mitochondrial structure, increased the mitochondrial membrane density, led to the decrease or even disappear of ridges, promoted the expression of p53 protein, down-regulated the expression of SLC7A11 and GPX4, and up-regulated the expression of ACSL4 and TFR1. In summary, total saponins of Paridis Rhizoma can significantly inhibit the proliferation and migration of MCF-7 cells and destroy the cell structure by inducing ferroptosis.


Assuntos
Neoplasias da Mama , Ferroptose , Espécies Reativas de Oxigênio , Rizoma , Saponinas , Humanos , Saponinas/farmacologia , Saponinas/química , Ferroptose/efeitos dos fármacos , Células MCF-7 , Rizoma/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Espécies Reativas de Oxigênio/metabolismo , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Proliferação de Células/efeitos dos fármacos , Primulaceae/química
2.
J Stroke Cerebrovasc Dis ; 32(5): 107061, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871437

RESUMO

BACKGROUND: Neuroinflammation after aneurysmal subarachnoid hemorrhage (aSAH) leads to poor outcome of patients. High mobility group box 1 (HMGB1) contributes to inflammation through binding to receptors for advanced glycation end-products (RAGE) in various diseases. We aimed to determine the production of these two factors after aSAH and their relationship with clinical features. METHODS: HMGB1 and soluble RAGE (sRAGE) levels in cerebrospinal fluid (CSF) of aSAH patients and controls were measured, and their temporal courses were observed. The correlation between early concentrations (days 1-3) and clinical symptoms assessed by disease severity scores, neuroinflammation estimated by CSF IL-6 levels, as well as prognosis evidenced by delayed cerebral ischemia (DCI) and 6-month adverse outcome was investigated. Finally, combined analysis of early levels for predicting prognosis was confirmed. RESULTS: CSF HMGB1 and sRAGE levels were higher in aSAH patients than in controls (P < 0.05), and the levels decreased from higher early to lower over time. Their early concentrations were positively associated with disease severity scores, IL-6 levels, DCI and 6-month poor outcome (P < 0.05). HMGB1 ≥ 6045.5 pg/ml (OR = 14.291, P = 0.046) and sRAGE ≥ 572.0 pg/ml (OR = 13.988, P = 0.043) emerged as independent predictors for DCI, while HMGB1 ≥ 5163.2 pg/ml (OR = 7.483, P = 0.043) and sRAGE ≥ 537.3 pg/ml (OR = 12.653, P = 0.042) were predictors for 6-month poor outcome. Combined analysis of them improved predictive values of adverse prognosis. CONCLUSION: CSF HMGB1 and sRAGE levels of aSAH patients were increased early and then varied dynamically, which might act as potential biomarkers for poor outcome, especially when co-analyzed.


Assuntos
Isquemia Encefálica , Proteína HMGB1 , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/complicações , Interleucina-6 , Doenças Neuroinflamatórias , Prognóstico , Biomarcadores/líquido cefalorraquidiano , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Isquemia Encefálica/etiologia , Isquemia Encefálica/complicações , Infarto Cerebral/complicações
3.
J Cell Biochem ; 122(1): 130-142, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32951268

RESUMO

Sorafenib (SOR) resistance remains a major obstacle in the effective treatment of hepatocellular carcinoma (HCC). A number of long noncoding RNAs (lncRNAs) are responsible for this chemoresistance. This study aimed to reveal the essential function of a recently defined lncRNA, lncRNA-POIR, in the epithelial-mesenchymal transition (EMT) and SOR sensitivity of HCC cells. SOR-induced cytotoxicity was analyzed via cell counting kit-8 and ethynyl-2'-deoxyuridine incorporation assays, whereas immunoblotting and confocal immunofluorescence were used to determine the expression levels of EMT markers. Furthermore, loss- or gain-of-function approaches were used to demonstrate the role of lncRNA-POIR/miR-182-5p on EMT and SOR sensitivity in HCC. The direct interaction between lncRNA-POIR and miR-182-5p was verified using a luciferase reporter assay. We found that knockdown of lncRNA-POIR sensitized HCC cells to SOR and simultaneously reversed EMT. As expected, miR-182-5p was confirmed as the downstream target of lncRNA-POIR. Moreover, miR-182-5p overexpression clearly reversed EMT and promoted SOR-induced cytotoxicity in representative HCC cells, whereas miR-182-5p downregulation played a contrasting role; miR-182-5p knockdown abolished the modulatory effects of lncRNA-POIR siRNA on EMT and SOR sensitivity. Together, these pieces of data suggest that lncRNA-POIR promotes EMT progression and suppresses SOR sensitivity simultaneously by sponging miR-182-5p. Thus, we proposed a compelling rationale for the use of lncRNA-POIR as a promising predictor of SOR response and as a potential therapeutic target for HCC treatment in the future.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/genética , RNA Longo não Codificante/genética , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Células Tumorais Cultivadas
4.
Virol J ; 16(1): 90, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319897

RESUMO

BACKGROUND: Nelson Bay orthoreovirus (NBV) was first isolated over 40 years ago from a fruit bat in Australia. Normally, NBV does not cause human diseases, but recently several NBV strains have been associated with human respiratory tract infections, thus attracting clinical attention. Autophagy, an evolutionarily conserved process in eukaryotic cells, degrades intracellular substrates, participates in multiple physiological processes, and maintains cellular homeostasis. In addition, autophagy is intimately involved in viral infection. METHODS: A new strain of NBV, isolated from a patient with a respiratory tract infection who returned to Japan from Bali, Indonesia, in 2007, was used in this study. NBV was rescued using a reverse genetics system involving cotransfection of BHK cells with 11 plasmids (pT7-L1 MB, pT7-L2 MB, pT7-L3 MB, pT7-M1 MB, pT7-M2 MB, pT7-M3 MB, pT7-S1 MB, pT7-S2 MB, pT7-S3 MB, pT7-S4 MB, and pcDNA3.1-T7), yielding NBV-MB. Recovered viruses were confirmed by immunofluorescence. The effect of NBV-MB on autophagy was evaluated by measuring the LC3-I/II proteins by immunoblot analysis after infection of BHK cells. Furthermore, after treatment with rapamycin (RAPA), 3-methyladenine (3-MA), chloroquine (CQ), or plasmid (GFP-LC3) transfection, the changes in expression of the LC3 gene and the amount of LC3-I/II protein were examined. In addition, variations in viral titer were assayed after treatment of BHK cells with drugs or after transfection with plasmids pCAGM3 and pCAGS3, which encode virus nonstructural proteins µNS and σNS, respectively. RESULTS: NBV-MB infection induced autophagy in host cells; however, the level of induction was dependent on viral replication. Induction of autophagy increased viral replication. By contrast, inhibiting autophagy suppressed NBV replication, albeit not significantly. The NBV-MB nonstructural protein µNS was involved in the induction of autophagy with viral infection. CONCLUSIONS: NBV-MB infection triggered autophagy. Also, the NBV nonstructural protein µNS may contribute to augmentation of autophagy upon viral infection.


Assuntos
Autofagia , Interações entre Hospedeiro e Microrganismos , Orthoreovirus/fisiologia , Replicação Viral , Linhagem Celular , Células HEK293 , Humanos , Infecções por Reoviridae/virologia , Genética Reversa , Carga Viral , Proteínas Virais/genética
5.
Opt Express ; 25(14): 15662-15675, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789080

RESUMO

It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W-1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

6.
Opt Express ; 24(6): A674-81, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136885

RESUMO

Flexible organic light-emitting diodes (OLEDs) are emerging as a leading technology for rollable and foldable display applications. For the development of high-performance flexible OLEDs on plastic substrate, we report a transparent nanocomposite electrode with superior mechanical, electrical, and optical properties, which is realized by integrating the nanoimprinted quasi-random photonic structures into the ultrathin metal/dielectric stack to collectively optimize the electrical conduction and light outcoupling capabilities. The resulting flexible OLEDs with green emission yield the enhanced device efficiency, reaching the maximum external quantum efficiency of 43.7% and luminous efficiency of 154.9 cd/A, respectively.

7.
Cell Biol Int ; 38(10): 1221-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24805111

RESUMO

Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. Proteasome inhibitors are emerging as a new class of anti-glioma agents; however, the mechanisms of their killing malignant cells are still unclear. We treated U87MG cells with the proteasome inhibitor MG132 and found that cell death correlated with caspase-8 activation and autophagy protein p62/SQSTM1.To explore the role of autophagy and p62/SQSTM1 in MG132-induced cancer cell death, we measured the alteration of MG132's cytotoxicity by autophagy inhibition, autophagy induction or variation of p62/SQSTM1 gene expression. Autophagy was activated upon MG132 treatment for short periods, while inhibition of autophagy aggravated MG132-induced cell death followed by high levels of p62/SQSTM1 and active caspase-8 (p18). Moreover, U87MG cell death was dependent on p62/SQSTM1, and its function required its C-terminus UBA domain to attenuate the MG132-induced cell death. The results suggest that p62/SQSTM1 is a potential contributor in determining the fate of U87MG cells deficient in proteolytic activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Leupeptinas/toxicidade , Inibidores de Proteases/toxicidade , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Sequestossoma-1
8.
Biomed Pharmacother ; 177: 116977, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901203

RESUMO

BACKGROUND: Pancreatic cancer (PanCa), ranked as the 4th leading cause of cancer-related death worldwide, exhibits an dismal 5-year survival rate of less than 5 %. Chronic pancreatitis (CP) is a known major risk factor for PanCa. Brusatol (BRT) possesses a wide range of biological functions, including the inhibition of PanCa proliferation. However, its efficacy in halting the progression from CP to pancreatic carcinogenesis remains unexplored. METHODS: We assess the effects of BRT against pancreatic carcinogenesis from CP using an experimentally induced CP model with cerulein, and further evaluate the therapeutic efficacy of BRT on PanCa by employing Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mouse model. RESULTS: Our finding demonstrated that BRT mitigated the severity of cerulein-induced pancreatitis, reduced pancreatic fibrosis and decreased the expression of α-smooth muscle actin (α-SMA), which is a biomarker for pancreatic fibrosis. In addition, BRT exerted effects against cerulein-induced pancreatitis via inactivation of NLRP3 inflammasome. Moreover, BRT significantly inhibited tumor growth and impeded cancer progression. CONCLUSIONS: The observed effect of BRT on impeding pancreatic carcinogenesis through targeting NLRP3 inflammasome suggests its good potential as a potential agent for treatment of PanCa.

9.
ACS Cent Sci ; 10(2): 358-366, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38435533

RESUMO

Encapsulating enzymes within metal-organic frameworks has enhanced their structural stability and interface tunability for catalysis. However, the small apertures of the frameworks restrict their effectiveness to small organic molecules. Herein, we present a green strategy directed by visible linker micelles for the aqueous synthesis of MAF-6 that enables enzymes for the catalytic asymmetric synthesis of chiral molecules. Due to the large pore aperture (7.6 Å), double the aperture size of benchmark ZIF-8 (3.4 Å), MAF-6 allows encapsulated enzyme BCL to access larger substrates and do so faster. Through the optimization of surfactants' effect during synthesis, BCL@MAF-6-SDS (SDS = sodium dodecyl sulfate) displayed a catalytic efficiency (Kcat/Km) that was 420 times greater than that of BCL@ZIF-8. This biocomposite efficiently catalyzed the synthesis of drug precursor molecules with 94-99% enantioselectivity and nearly quantitative yields. These findings represent a deeper understanding of de novo synthetic encapsulation of enzyme in MOFs, thereby unfolding the great potential of enzyme@MAF catalysts for asymmetric synthesis of organics and pharmaceuticals.

10.
Nurs Open ; 10(3): 1776-1784, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36289558

RESUMO

AIM: To explore the prevalence and related factors influencing diabetes stigma among Chinese young and middle-aged patients with type 2 diabetes. DESIGN: A cross-sectional, quantitative study was conducted through questionnaires. METHODS: A total of 453 young and middle-aged patients with type 2 diabetes were recruited. Questionnaire survey was conducted with convenience sampling from September 2019 to December 2020. This included demographic questionnaire, Type 2 Diabetes Stigma Assessment Scale (DSAS-2) and Connor-Davidson Resilience Scale (CD-RISC). The STROBE checklist was applied as the reporting guideline for this study. RESULTS: The scores of diabetes stigma and resilience of patients were 48.18 ± 14.52 and 66.02 ± 7.18, respectively. Diabetes stigma was negatively correlated with resilience, the correlation coefficient was -0.581. The results showed that the complications, diabetes year, monthly income and insulin treatment are important factors affecting stigma. In addition, it is resilience that was a protective factor of diabetes stigma, explaining 27.2% of the variance in diabetes stigma.


Assuntos
Diabetes Mellitus Tipo 2 , Resiliência Psicológica , Pessoa de Meia-Idade , Humanos , Estudos Transversais , Psicometria , Inquéritos e Questionários
11.
ACS Macro Lett ; 12(2): 201-207, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36695919

RESUMO

Galactosylated core-shell nanoparticles (NPs) with diameters of sub-50 nm were fabricated in one pot by reversible addition-fragmentation chain transfer (RAFT) soap-free emulsion polymerization. Their galactosylated shells and acidic cores endow them with high targeting and drug loading efficiencies, respectively. Morever, the physical shrinkage and cleavage of the disulfide cross-linked NPs can realize the rapid release of loaded doxorubicin (DOX) under pH 5.0 and reduced glutathione (GSH) conditions. The combination of these excellent properties resulted in an even lower IC50 of DOX-loaded NPs than free DOX, demonstrating that this platform would be promising in targeting the therapy of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Doxorrubicina/uso terapêutico , Nanopartículas/química , Concentração de Íons de Hidrogênio
12.
J Mater Chem B ; 11(19): 4308-4317, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37144625

RESUMO

The development of drug delivery systems with high drug loading capacity, low leakage at physiological pH, and rapid release at the lesion sites remains an ongoing challenge. In this work, core-shell poly(6-O-methacryloyl-D-galactose)@poly(tert-butyl methacrylate) (PMADGal@PtBMA) nanoparticles (NPs) of sub-50 nm are facilely synthesized by reversible addition-fragmentation chain transfer (RAFT) soap-free emulsion polymerization with the assistance of 12-crown-4. A hydrophilic poly(methacrylic acid) (PMAA) core can then be revealed after deprotection of the tert-butyl groups, which is negatively charged and can adsorb nearly 100% of incubated doxorubicin (DOX) from a solution at pH 7.4. The physical shrinkage of PMAA chains below pH 6.0 endows the core with the squeezing effect, therefore realizing rapid drug release. It is demonstrated that the DOX release rate of PMADGal@PMAA NPs at pH 5 was 4 times that at pH 7.4. Cellular uptake experiments confirm the high targeting ability of the galactose modified PMADGal shell to human hepatocellular carcinoma (HepG2) cells. The fluorescence intensity of DOX in HepG2 cells is 4.86 times that of HeLa cells after 3 h incubation. Moreover, 20% cross-linked NPs show the highest uptake efficiency by HepG2 cells due to their moderate surface charge, size and hardness. In summary, both the core and the shell of PMADGal@PMAA NPs promise the rapid site-specific release of DOX in HepG2 cells. This work provides a facile and an effective strategy to synthesize core-shell NPs for hepatocellular carcinoma targeting therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Células HeLa , Polímeros , Neoplasias Hepáticas/tratamento farmacológico , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio
13.
Front Neurosci ; 16: 982596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090271

RESUMO

GABAergic neurons in the vestibular nuclei (VN) participate in multiple vital vestibular sensory processing allowing for the maintenance and rehabilitation of vestibular functions. However, although the important role of GABA in the central vestibular system has been widely reported, the underlying neural circuits between VN GABAergic neurons and other brain functional regions remain elusive, which limits the further study of the underlying mechanism. Hence, it is necessary to elucidate neural connectivity based on outputs and inputs of GABAergic neurons in the VN. This study employed a modified rabies virus retrograde tracing vector and cre-dependent adeno-associated viruses (AAVs) anterograde tracing vector, combined with a transgenic VGAT-IRES-Cre mice, to map the inputs and outputs of VN GABAergic neurons in the whole brain. We found that 51 discrete brain regions received projections from VN GABAergic neurons in the whole brain, and there were 77 upstream nuclei innervating GABAergic neurons in the VN. These nuclei were mainly located in four brain regions, including the medulla, pons, midbrain, and cerebellum. Among them, VN GABAergic neurons established neural circuits with some functional nuclei in the whole brain, especially regulating balance maintenance, emotion control, pain processing, sleep and circadian rhythm regulation, and fluid homeostasis. Therefore, this study deepens a comprehensive understanding of the whole-brain neural connectivity of VN, providing the neuroanatomical information for further research on the neural mechanism of the co-morbidities with vestibular dysfunction.

14.
Transl Stroke Res ; 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36385451

RESUMO

M1 microglial activation is crucial for the pathogenesis of early brain injury (EBI) following subarachnoid hemorrhage (SAH), and there is growing evidence that glucose metabolism is frequently involved in microglial activation. However, the molecular mechanism of glycolysis and its role in M1 microglial activation in the context of EBI are not yet fully understood. In this study, firstly, the relationship between aerobic glycolysis and M1 microglial activation as well as SAH-induced EBI was researched in vivo. Then, intervention on mammalian target of rapamycin (mTOR) was performed to investigate the effects on glycolysis-dependent M1 microglial activation and EBI and its relationship with hypoxia-inducible factor-1α (HIF-1α) in vivo. Next, Hif-1α was inhibited to analyze its role in aerobic glycolysis, M1 microglial activation, and EBI in vivo. Lastly, both in vivo and in vitro, mTOR inhibition and Hif-1α enhancement were administered simultaneously, and the combined effects were further confirmed again. The results showed that aerobic glycolysis and M1 microglial polarization were increased after SAH, and glycolytic inhibition could attenuate M1 microglial activation and EBI. Inhibition of mTOR reduced glycolysis-dependent M1 microglial polarization and EBI severity by down-regulating HIF-1α expression, while enhancement had the opposite effects. Blockading HIF-1α had the similar effects as suppressing mTOR, while HIF-1α agonist worked against mTOR antagonist when administered simultaneously. In conclusion, the present study showed new evidence that aerobic glycolysis induced by mTOR/HIF-1α might promote EBI after SAH by activating M1 microglia. This finding provided new insights for the treatment of EBI.

15.
Eur Arch Otorhinolaryngol ; 268(4): 513-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21116643

RESUMO

Semicircular canal dehiscence (SCD) syndrome is rare, and its diagnosis is a significant challenge in clinical practice. Our aim was to explore application of the loud sound stimulation test for diagnosing SCD syndrome. Eight cases of superior semicircular canal dehiscence (SSCD), among them two patients had bilateral dehiscences and one case of lateral semicircular canal dehiscence (LSCD). A total of 11 dehiscences were studied retrospectively. Loud sounds (pure tones, 100 dB, 110 dB nHL) at frequencies of 500, 1,000, and 2,000 Hz were used to stimulate both ears for 5 s. A temporal bone computed tomography (CT) scan with semicircular canal reconstruction was performed in all patients. Vertigo was present in seven of nine cases following loud sound stimulation. In addition, the patient with LSCD demonstrated horizontal eye movement following loud sound stimulation, whereas six patients with SSCD showed rotational eye movement. Among them, two patients with bilateral superior canal dehiscence showed a positive response to the loud sound stimulation in only one ear. The diagnoses of all patients were confirmed with a high-resolution temporal bone CT with corresponding multi-planar reconstruction of the affected semicircular canals with various size dehiscences. We conclude that the characteristic eye movement following loud sound stimulation is valuable for diagnosing SCD syndrome. In addition, the loud sound stimulation test has unique advantages, especially for confirming the affected ear and the corresponding semicircular canal.


Assuntos
Estimulação Acústica/métodos , Doenças do Labirinto/diagnóstico , Canais Semicirculares/diagnóstico por imagem , Som , Adulto , Idoso , Audiometria de Tons Puros , Diagnóstico Diferencial , Seguimentos , Humanos , Doenças do Labirinto/fisiopatologia , Masculino , Estudos Retrospectivos , Canais Semicirculares/fisiopatologia , Índice de Gravidade de Doença , Síndrome , Osso Temporal/diagnóstico por imagem , Tomografia Computadorizada por Raios X
16.
Mitochondrial DNA B Resour ; 6(2): 562-563, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33628929

RESUMO

The complete mitochondrial genome of a predominant parasitoid, Necremnus tutae (Hymenoptera: Eulophidae) (GenBank accession number MT916846) is 15,252 bp in length, and contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes, and an A + T-rich region. The overall base composition is 38.86% for A, 7.14% for C, 8.57% for G, and 45.43% for T, with a high AT bias of 84.29%. ATA, ATT, ATG were initiation codons and TAA and T were termination codons. All the 22 tRNAs displayed a typical cloverleaf secondary structure, except for trnS1 and trnR which lacked the dihydrouracil (DHU) arm. Phylogenetic analyses were performed using 13 PCGs showed that N. tutae is closely related to Tenthredo tienmushana, which in accordance with the traditional classification.

17.
Zool Res ; 42(5): 592-605, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34387415

RESUMO

The large yellow croaker (Larimichthys crocea), which is an economically important mariculture fish in China, is often exposed to environmental hypoxia. Reactive oxygen species (ROS) homeostasis is essential for the maintenance of normal physiological conditions in an organism. Direct evidence that environmental hypoxia leads to ROS overproduction is scarce in marine fish. Furthermore, the sources of ROS overproduction in marine fish under hypoxic stress are poorly known. In this study, we investigated the effects of hypoxia on redox homeostasis in L. crocea and the impact of impaired redox homeostasis on fish. We first confirmed that hypoxia drove ROS production mainly via the mitochondrial electron transport chain and NADPH oxidase complex pathways in L. crocea and its cell line (large yellow croaker fry (LYCF) cells). We subsequently detected a marked increase in the antioxidant systems of the fish. However, imbalance between the pro-oxidation and antioxidation systems ultimately led to excessive ROS and oxidative stress. Cell viability showed a remarkable decrease while oxidative indicators, such as malondialdehyde, protein carbonylation, and 8-hydroxy-2 deoxyguanosine, showed a significant increase after hypoxia, accompanied by tissue damage. N-acetylcysteine (NAC) reduced ROS levels, alleviated oxidative damage, and improved cell viability in vitro. Appropriate uptake of ROS scavengers (e.g., NAC and elamipretide Szeto-Schiller-31) and inhibitors (e.g., apocynin, diphenylene iodonium, and 5-hydroxydecanoate) may be effective at overcoming hypoxic toxicity. Our findings highlight previously unstudied strategies of hypoxic toxicity resistance in marine fish.


Assuntos
Antioxidantes/metabolismo , Peixes/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/química , Oxigênio/metabolismo , Espécies Reativas de Oxigênio , Animais , Linhagem Celular , Sobrevivência Celular , Meio Ambiente , Homeostase , NADP
18.
Cancer Biol Ther ; 22(2): 164-174, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33612070

RESUMO

Stearoyl-CoA-desaturase 1 (SCD1) deficiency mediates apoptosis in colorectal cancer cells by promoting ceramide de novo synthesis. The mechanisms underlying the cross-talk between SCD1 and ceramide synthesis have not been explored. We treated colorectal cancer cells with an SCD1 inhibitor and examined the effects on gene expression, cell growth, and cellular lipid contents. The main effect of SCD1 inhibition on the fatty acid contents of colorectal cancer cells was a decrease in monounsaturated fatty acids (MUFAs). RNA sequencing (RNA-seq) showed that the most intense alteration of gene expression after SCD1 inhibition occurred in the NF-κB signaling pathway. Further experiments revealed that SCD1 inhibition resulted in increased levels of phosphorylated NF-κB p65 and increased nuclear translocation of NF-κB p65. Treatment with an NF-κB inhibitor eliminated several effects of SCD1 inhibition, mainly including overexpression of serine palmitoyltransferase1 (SPT1), elevation of dihydroceramide contents, and suppression of cell growth. Furthermore, treatment with supplemental oleate counteracted the SCD1-induced NF-κB activation and downstream effects. In summary, our data demonstrate that the NF-κB pathway plays a role in SCD1 deficiency-induced ceramide de novo synthesis in colorectal cancer cells, and that reduced MUFA levels contribute to the course.


Assuntos
Ceramidas/metabolismo , NF-kappa B/metabolismo , Estearoil-CoA Dessaturase/deficiência , Humanos
19.
Zool Res ; 42(6): 746-760, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34636194

RESUMO

Oxygen is an essential molecule for animal respiration, growth, and survival. Unlike in terrestrial environments, contamination and climate change have led to the frequent occurrence of hypoxia in aquatic environments, thus impacting aquatic animal survival. However, the adaptative mechanisms underlying fish responses to environmental hypoxia remain largely unknown. Here, we used large yellow croaker ( Larimichthys crocea) and large yellow croaker fry (LYCF) cells to investigate the roles of the Hif-1α/Hsf1/Hsp70 signaling pathway in the regulation of cellular redox homeostasis, and apoptosis. We confirmed that hypoxia induced the expression of Hif-1α, Hsf1, and Hsp70 in vivo and in vitro. Genetic Hsp70 knockdown/overexpression indicated that Hsp70 was required for maintaining redox homeostasis and resisting oxidative stress in LYCF cells under hypoxic stress. Hsp70 inhibited caspase-dependent intrinsic apoptosis by maintaining normal mitochondrial membrane potential, enhancing Bcl-2 mRNA and protein expression, inhibiting Bax and caspase3 mRNA expression, and suppressing caspase-3 and caspase-9 activation. Hsp70 suppressed caspase-independent intrinsic apoptosis by inhibiting nuclear translocation of apoptosis-inducing factor (AIF) and disturbed extrinsic apoptosis by inactivating caspase-8. Genetic knockdown/overexpression of Hif-1α and dual-luciferase reporter assay indicated that Hif-1α activated the Hsf1 DNA promoter and enhanced Hsf1 mRNA transcription. Hsf1 enhanced Hsp70 mRNA transcription in a similar manner. In summary, the Hif-1α/Hsf1/Hsp70 signaling pathway plays an important role in regulating redox homeostasis and anti-apoptosis in L. crocea under hypoxic stress.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Homeostase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/farmacologia , Perciformes/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose , Linhagem Celular , Clonagem Molecular , Biologia Computacional , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Homeostase/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxirredução , Oxigênio/química , Perciformes/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água/química
20.
Pest Manag Sci ; 77(12): 5475-5488, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34351686

RESUMO

BACKGROUND: In 2017 Tuta absoluta was identified as an invasive species in China. Due to its rapid geographic expansion and the severe crop damage it causes, T. absoluta poses a serious threat to China's tomato production industry. To determine its geographic distribution and host range, intensive surveys and routine monitoring were conducted across the Chinese mainland between 2018 and 2019. The population colonization coefficient (PCC; ratio of colonized sites and prefectures) and population occurrence index (POI; ratio of infested host species and PCCs) were calculated. RESULTS: In northwestern China, T. absoluta populations established in Xinjiang exhibited a medium PCC value (~0.03). In southwestern China, populations in Yunnan and its five neighboring provinces exhibited high (~0.50 in Yunnan and Guizhou), or low (<0.02 in Guangxi, Sichuan, Hunan, and Chongqing) PCC values. In the Chinese mainland, infestations of four crop plant species (tomato, eggplant, potato, and Chinese lantern) and two wild plant species (black nightshade and Dutch eggplant) were identified; tomatoes were infested in every colonized province. Chinese lantern and Dutch eggplant are potentially novel hosts. Yunnan, Guizhou, and Xinjiang experienced the most serious damage (POI). In southwestern China, observed damage significantly decreased with increased distance from the first discovery site of T. absoluta to the farthest county of an infested province increased. CONCLUSION: T. absoluta populations are well-established and could potentially spread to other regions of China. The present study helps to inform the establishment of better pest management guidelines and strategies in China and tomato-producing regions worldwide. © 2021 Society of Chemical Industry.


Assuntos
Mariposas , Solanum lycopersicum , Animais , China/epidemiologia , Surtos de Doenças , Especificidade de Hospedeiro , Larva , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA