Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245967

RESUMO

AIMS: The aim of this study was to explore the clinical characteristics and risk factors for hypersensitivity reactions induced by antituberculosis drugs. METHODS: A retrospective analysis was conducted on the medical records of patients with active tuberculosis (TB) treated in the TB ward at West China Hospital, Sichuan University, from November 2010 to April 2020. RESULTS: Out of 7106 patients with active tuberculosis, 205 experienced hypersensitivity reactions to antituberculosis drugs; the incidence of hypersensitivity was 2.9%. The predominant clinical manifestation was a rash, observed in 57.1% (117/205) of these cases. Additionally, 19.0% (39/205) of patients presented with concurrent liver injury. The laboratory parameters white blood cell count, total lymphocyte count, monocyte count, eosinophil count, basophil count, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were significantly elevated in patients with hypersensitivity compared to those without. In 38 patients who tested positive for oral antituberculosis drug provocation, 14 (36.8%) were allergic to more than two antituberculosis drugs. Significant risk factors included being female (odds ratio [OR] = 1.387, 95% confidence intervals [CI]: 1.016-1.894), under 65 years of age (OR = 1.826, 95% CI: 1.145-2.913), existing liver disease (OR = 2.464, 95% CI: 1.822-3.333) and a history of allergic diseases (OR = 6.633, 95% CI: 2.681-16.406) and were significantly correlated with hypersensitivity to antituberculosis drugs. CONCLUSIONS: Hypersensitivity reactions to antituberculosis drugs primarily affect the skin, with significant associations observed with liver injury. Females, individuals younger than 65 years, those with pre-existing liver disease and patients with a history of allergic diseases are at elevated risk for hypersensitivity.

2.
EMBO J ; 35(5): 496-514, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26834238

RESUMO

The Beclin1-VPS34 complex is recognized as a central node in regulating autophagy via interacting with diverse molecules such as ATG14L for autophagy initiation and UVRAG for autophagosome maturation. However, the underlying molecular mechanism that coordinates the timely activation of VPS34 complex is poorly understood. Here, we identify that PAQR3 governs the preferential formation and activation of ATG14L-linked VPS34 complex for autophagy initiation via two levels of regulation. Firstly, PAQR3 functions as a scaffold protein that facilitates the formation of ATG14L- but not UVRAG-linked VPS34 complex, leading to elevated capacity of PI(3)P generation ahead of starvation signals. Secondly, AMPK phosphorylates PAQR3 at threonine 32 and switches on PI(3)P production to initiate autophagosome formation swiftly after glucose starvation. Deletion of PAQR3 leads to reduction of exercise-induced autophagy in mice, accompanied by a certain degree of disaggregation of ATG14L-associated VPS34 complex. Together, this study uncovers that PAQR3 can not only enhance the capacity of pro-autophagy class III PI3K due to its scaffold function, but also integrate AMPK signal to activation of ATG14L-linked VPS34 complex upon glucose starvation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Glucose/deficiência , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/metabolismo , Masculino , Proteínas de Membrana , Camundongos Knockout , Músculo Esquelético/metabolismo , Corrida/fisiologia , Transdução de Sinais
3.
RNA ; 23(1): 1-5, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742910

RESUMO

Multiplex genome engineering in vivo with CRISPR/Cas9 shows great promise as a potential therapeutic approach. The ability to incorporate multiple single guide RNA (sgRNA) cassettes together with Cas9 gene expression in one AAV vector could greatly enhance the efficiency. In a recent Method article, Mefferd and coworkers indicated that small tRNA promoters could be used to drive sgRNA expression to facilitate the construction of a more effective AAV vector. In contrast, we found that when targeting endogenous genomic loci, CRISPR/Cas9 with tRNA promoter-driven sgRNA expression showed much reduced genome editing activity, compared with significant cleavage with U6 promoter-driven sgRNA expression. Though the underlying mechanisms are still under investigation, our study suggests that the CRISPR/Cas9 system with tRNA promoter-driven sgRNA expression needs to be reevaluated before it can be used for therapeutic genome editing.


Assuntos
Exorribonucleases/genética , Edição de Genes/métodos , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , RNA de Transferência/genética , Sistemas CRISPR-Cas , Expressão Gênica
4.
J Cell Physiol ; 232(12): 3396-3408, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28059444

RESUMO

Tumor necrosis factor α (TNF-α)-induced osteoclast formation have been demonstrated to play an important role in the pathogenesis of estrogen deficiency-mediated bone loss, but the exact mechanisms by which TNF-α enhanced osteoclast differentiation were not fully elucidated. The class III semaphorins members were critical to regulate bone homeostasis. Here, we identified a novel mechanism whereby TNF-α increasing Semaphorin3D expression contributes to estrogen deficiency-induced osteoporosis. In this study, we found that Semaphorin3D expression was upregulated by TNF-α during the process of RANKL-induced osteoclast differentiation. Inhibition of Semaphorin3D in pre-osteoclasts could attenuate the stimulatory effects of TNF-α on osteoclast proliferation and differentiation. Mechanistically, blocking of the Jun N-terminal kinase (JNK) signaling markedly rescued TNF-α-induced Semaphorin3D expression, suggesting that JNK signaling was involved in the regulation of Semaphorin3D expression by TNF-α. In addition, silencing of Semaphorin3D in vivo could alleviate estrogen deficiency-induced osteoporosis. Our results revealed a novel function for Semaphorin3D and suggested that increased Semaphorin3D may contribute to enhanced bone loss by increased TNF-α in estrogen deficiency-induced osteoporosis. Thus, Semaphorin3D may provide a potential therapeutic target for the treatment of estrogen-deficiency induced osteoporosis.


Assuntos
Estrogênios/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoporose/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Estrogênios/deficiência , Feminino , MAP Quinase Quinase 4/metabolismo , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Ovariectomia , Ligante RANK/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 36(5): 783-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26941020

RESUMO

OBJECTIVE: Although early proof-of-concept studies of somatic in vivo genome editing of the mouse ortholog of proprotein convertase subtilisin/kexin type 9 (Pcsk9) in mice have established its therapeutic potential for the prevention of cardiovascular disease, the unique nature of genome-editing technology-permanent alteration of genomic DNA sequences-mandates that it be tested in vivo against human genes in normal human cells with human genomes to give reliable preclinical insights into the efficacy (on-target mutagenesis) and safety (lack of off-target mutagenesis) of genome-editing therapy before it can be used in patients. APPROACH AND RESULTS: We used a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) 9 genome-editing system to target the human PCSK9 gene in chimeric liver-humanized mice bearing human hepatocytes. We demonstrated high on-target mutagenesis (approaching 50%), greatly reduced blood levels of human PCSK9 protein, and minimal off-target mutagenesis. CONCLUSIONS: This work yields important information on the efficacy and safety of CRISPR-Cas9 therapy targeting the human PCSK9 gene in human hepatocytes in vivo, and it establishes humanized mice as a useful platform for the preclinical assessment of applications of somatic in vivo genome editing.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Marcação de Genes/métodos , Hepatócitos/enzimologia , Pró-Proteína Convertase 9/genética , Animais , Proteínas Associadas a CRISPR/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Genótipo , Hepatócitos/transplante , Humanos , Hidrolases/deficiência , Hidrolases/genética , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Pró-Proteína Convertase 9/biossíntese , Pró-Proteína Convertase 9/sangue
6.
J Lipid Res ; 56(7): 1329-39, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26022806

RESUMO

Alcoholic liver disease (ALD) is a major health problem worldwide and hepatic steatosis is an early response to alcohol consumption. Fat and glycogen are two major forms of energy storage in the liver; however, whether glycogen metabolism in the liver impacts alcohol-induced steatosis has been elusive. In this study, we used a mouse model with overexpression of PPP1R3G in the liver to dissect the potential role of glycogen on alcohol-induced fatty liver formation. PPP1R3G is a regulatory subunit of protein phosphatase 1 and stimulates glycogenesis in the liver. Chronic and binge ethanol (EtOH) feeding reduced glycogen level in the mouse liver and such inhibitory effect of EtOH was reversed by PPP1R3G overexpression. In addition, PPP1R3G overexpression abrogated EtOH-induced elevation of serum levels of alanine aminotransferase and aspartate aminotransferase, increase in liver triglyceride concentration, and lipid deposition in the liver. EtOH-stimulated sterol regulatory element-binding protein (SREBP)-1c, a master regulator of lipogenesis, was also reduced by PPP1R3G overexpression in vivo. In AML-12 mouse hepatocytes, PPP1R3G overexpression could relieve EtOH-induced lipid accumulation and SREBP-1c stimulation. In conclusion, our data indicate that glycogen metabolism is closely linked to EtOH-induced liver injury and fatty liver formation.


Assuntos
Etanol/toxicidade , Fígado Gorduroso Alcoólico/metabolismo , Glicogênio/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Linhagem Celular , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/genética , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Proteína Fosfatase 1/genética
7.
Yi Chuan ; 37(11): 1167-73, 2015 11.
Artigo em Zh | MEDLINE | ID: mdl-26582531

RESUMO

The RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has offered a new platform for genome editing with high efficiency. Here, we report the use of CRISPR/Cas9 technology to target a specific genomic region in human pluripotent stem cells. We show that CRISPR/Cas9 can be used to disrupt a gene by introducing frameshift mutations to gene coding region; to knock in specific sequences (e.g. FLAG tag DNA sequence) to targeted genomic locus via homology directed repair; to induce large genomic deletion through dual-guide multiplex. Our results demonstrate the versatile application of CRISPR/Cas9 in stem cell genome editing, which can be widely utilized for functional studies of genes or genome loci in human pluripotent stem cells.


Assuntos
Sistemas CRISPR-Cas/genética , Genoma Humano/genética , Células-Tronco Pluripotentes/metabolismo , Edição de RNA , Mutação da Fase de Leitura , Humanos , RNA Guia de Cinetoplastídeos/genética
8.
Yi Chuan ; 37(10): 983-91, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26496750

RESUMO

Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.


Assuntos
Sistemas CRISPR-Cas , Doença/genética , Engenharia Genética/métodos , Genoma Humano/genética , Medicina de Precisão/métodos , Células-Tronco/metabolismo , Humanos , Modelos Genéticos , Neoplasias/genética , Neoplasias/patologia , Medicina de Precisão/tendências , Doenças Raras/genética , Doenças Raras/patologia
9.
Front Microbiol ; 15: 1402235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974026

RESUMO

Introduction: The H9N2 subtype is a predominant avian influenza virus (AIV) circulating in Chinese poultry, forming various genotypes (A-W) based on gene segment origins. This study aims to investigate the genotypic distribution and pathogenic characteristics of H9N2 isolates from wild birds and domestic poultry in Yunnan Province, China. Methods: Eleven H9N2 strains were isolated from fecal samples of overwintering wild birds and proximate domestic poultry in Yunnan, including four from common cranes (Grus grus), two from bar-headed geese (Anser indicus), and five from domestic poultry (Gallus gallus). Phylogenetic analysis was conducted to determine the genotypes, and representative strains were inoculated into Yunnan mallard ducks to assess pathogenicity. Results: Phylogenetic analysis revealed that five isolates from domestic birds and one from a bar-headed goose belong to genotype S, while the remaining five isolates from wild birds belong to genotype A. These bird-derived strains possess deletions in the stalk domain of NA protein and the N166D mutation of HA protein, typical of poultry strains. Genotype S H9N2 demonstrated oropharyngeal shedding, while genotype A H9N2 exhibited cloacal shedding and high viral loads in the duodenum. Both strains caused significant pathological injuries, with genotype S inducing more severe damage to the thymus and spleen, while genotype A caused duodenal muscle layer rupture. Discussion: These findings suggest that at least two genotypes of H9N2 are currently circulating in Yunnan, and Yunnan mallard ducks potentially act as intermediaries in interspecies transmission. These insights highlight the importance of analyzing the current epidemiological transmission characteristics of H9N2 among wild and domestic birds in China.

10.
J Biol Chem ; 287(47): 39653-63, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027871

RESUMO

Upon activation, TGF-ß type I receptor (TßRI) undergoes active ubiquitination via recruitment of E3 ligases to the receptor complex by Smad7. However, how ubiquitination of TßRI is coupled to intracellular trafficking, and protein degradation remains unclear. We report here that Tollip, an adaptor protein that contains both ubiquitin-associated domains and endosome-targeting domain, plays an important role in modulating trafficking and degradation of TßRI. Tollip was previously demonstrated to possess a functional role in modulating the signaling of interleukin-1 and Toll-like receptors. We identify here that Tollip interacts with Smad7, a major modulatory protein involved in the negative regulation of TGF-ß signaling. Overexpression of Tollip antagonizes TGF-ß-stimulated transcriptional response, Smad2 phosphorylation, and epithelial-mesenchymal transition. Tollip also interacts with ubiquitinated TßRI, and such interaction requires ubiquitin-associated domains of Tollip. The interaction and intracellular colocalization of Tollip with TßRI is enhanced by Smad7. Overexpression of Tollip accelerates protein degradation of activated TßRI. In addition, Tollip alters subcellular compartmentalization and endosomal trafficking of activated TßRI. Collectively, our studies reveal that Tollip cooperates with Smad7 to modulate intracellular trafficking and degradation of ubiquitinated TßRI, whereby negatively regulates TGF-ß signaling pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Ubiquitinação/fisiologia , Animais , Endossomos/genética , Endossomos/metabolismo , Células HeLa , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/genética
11.
Environ Sci Pollut Res Int ; 30(45): 100675-100700, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639095

RESUMO

This study attempts to explore the essential influencing factors of landslides and explores the effects of different datasets on landslide susceptibility mapping (LSM) at six grid resolutions (i.e., 10 m, 30 m, 300 m, 1000 m, 2000 m, and 3000 m). Firstly, the geospatial dataset of 21 influencing factors was extracted from 1847 historical landslide InSAR (Interferometric Synthetic Aperture Radar) points, which were taken as a sample for the Sino-Pakistani Karakorum Highway. Secondly, Spearman correlation coefficient (SCC), random forest feature selection (RFFS), and their combinations (SCC-RFFS) were selected at different grid resolutions to identify the essential influencing factors from the 21 original factors. A random division into training set (70%) and test set (30%) was performed. Then, the LSM models for the original influencing factors and the selected influencing factors were constructed separately using machine learning models. Finally, the reasonableness of the essential influencing factors was verified by comparing the accuracy of the models under different grid resolutions. The results show that (1) relief degree of land surface (RDLS), SPI, and rainfall have significant effects on landslide occurrence. (2) The primary elements (i.e., RDLS, slop, rainfall) are less affected by the grid resolution, while the secondary elements (TWI) are more affected by the grid resolution. (3) At 30 m, the SCC-RFFS-RF model can get the highest landslide susceptibility model accuracy. The prediction will also provide scientific guidance for the allocation of land resources on a regional and global scale, and minimize the human and economic costs along the highway, while ensuring safe highway operations.


Assuntos
Deslizamentos de Terra , Humanos , Aprendizado de Máquina , Algoritmo Florestas Aleatórias
12.
Viruses ; 15(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631996

RESUMO

Fowl adenoviruses (FAdVs) are distributed worldwide in poultry and incriminated as the etiological agents for several health problems in fowls, and are capable of crossing species barriers between domestic and wild fowls. An FAdV strain was, for the first time, isolated from black-necked crane in this study, and was designated as serotype 4 Fowl aviadenovirus C (abbreviated as BNC2021) according to the phylogenetic analysis of its DNA polymerase and hexon gene. The viral genomic sequence analysis demonstrated that the isolate possessed the ORF deletions that are present in FAdV4 strains circulating in poultry fowls in China and the amino acid mutations associated with viral pathogenicity in the hexon and fiber 2 proteins. A viral challenge experiment with mallard ducks demonstrated systemic viral infection and horizontal transmission. BNC2021 induced the typical clinical signs of hepatitis-hydropericardium syndrome (HHS) with swelling and inflammation in multiple organs and showed significant viral replication in all eight organs tested in the virus-inoculated ducks and their contactees at 6 dpi. The findings highlight the importance of surveillance of FAdVs in wild birds.


Assuntos
Aviadenovirus , Sepse , Animais , Filogenia , Sorogrupo , Genômica , Aves , Patos , Hexametônio
13.
Mol Cancer Ther ; 22(12): 1479-1492, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37710057

RESUMO

Aberrant activation of the FGF19-FGFR4 signaling pathway plays an essential role in the tumorigenesis of hepatocellular carcinoma (HCC). As such, FGFR4 inhibition has emerged as a novel therapeutic option for the treatment of HCC and has shown preliminary efficacy in recent clinical trials for patients exhibiting aberrant FGF19 expression. Resistance to kinase inhibitors is common in oncology, presenting a major challenge in the clinical treatment process. Hence, we investigated the potential mechanisms mediating and causing resistance to FGFR4 inhibition in HCC. Upon the successful establishment of a battery of cellular models developing resistance to FGFR4 inhibitors, we have identified the activation of EGFR, MAPK, and AKT signaling as the primary mechanisms mediating the acquired resistance. Combination of inhibitors against EGFR or its downstream components restored sensitivity to FGFR4 inhibitors. In parental HCC cell lines, EGF treatment also resulted in resistance to FGFR4 inhibitors. This resistance was effectively reverted by inhibitors of the EGFR signaling pathway, suggesting that EGFR activation is a potential cause of intrinsic resistance. We further confirmed the above findings in vivo in mouse xenograft tumor models. Genomic analysis of patient samples from The Cancer Genome Atlas confirmed that a segment of patients with HCC harboring FGF19 overexpression indeed exhibited increased activation of EGFR signaling. These findings conclusively indicate that both induced and innate activation of EGFR could mediate resistance to FGFR4 inhibition, suggesting that dual blockade of EGFR and FGFR4 may be a promising future therapeutic strategy for the treatment of FGF19-FGFR4 altered HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
14.
Exp Cell Res ; 317(8): 1083-92, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20955697

RESUMO

Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.


Assuntos
Movimento Celular/efeitos dos fármacos , Dexametasona/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucocorticoides/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Aging (Albany NY) ; 14(7): 3143-3154, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381577

RESUMO

Inflammatory cytokines contribute to the development of osteoporosis with sophisticated mechanisms. Globally alteration of long-chain non-coding RNA was screened in osteoporosis, while we still know little about their functional role in the inflammatory cytokine secretion. In this study, we collected the peripheral blood mononuclear cells (PBMCs) from post-menopausal osteoporosis patients to measure lncRNA MIAT (lncMIAT) expression levels, and explored the molecular mechanism of lncMIAT induced inflammatory cytokine secretion. We identified increased lncMIAT expression in the PBMCs of post-menopausal osteoporosis patients, which was an important predictive biomarker for the diagnosis. LncMIAT expression in PBMCs was positively correlated with the inflammatory cytokine secretion. Mechanism study indicated that lncMIAT increased the expression levels of p38MAPK by crosstalk with miR-216a in PBMCs. The lncMIAT/miR-216a/p38MAPK signaling contributed predominantly to the increased inflammatory cytokine secretion in the PBMCs from postmenopausal osteoporosis. In conclusion, we identified that increased lncMIAT in PBMCs induced inflammatory cytokine secretion, which contributed to the development of post-menopausal osteoporosis. lncMIAT/miR-216a axis was critical for the regulation of AMPK/p38MAPK signaling, which may be a promising therapeutic target for osteoporosis treatment by inflammatory cytokine inhibition.


Assuntos
MicroRNAs , Osteoporose Pós-Menopausa , RNA Longo não Codificante , Citocinas , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoporose Pós-Menopausa/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
18.
Ann Palliat Med ; 10(11): 11524-11528, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34872277

RESUMO

BACKGROUND: Understanding the relationship between the greater trochanter, the lesser trochanter, and the femoral head center is helpful to achieve satisfactory lower limb length in hip arthroplasty, and it may be more important when the contralateral side of the surgical hip cannot be referenced. This work aims to measure the relative position of the femoral head center, the greater trochanter, and the lesser trochanter, and analyze the relationship between these anatomical landmarks. METHODS: The femoral head diameter (D), the linear distance (G) from the femoral head center (C) to the greater trochanter, and the linear distance (L) from the femoral head center to the lesser trochanter were measured by pelvic X-ray. The basic information of the data was analyzed, the ratios of G to D and L to D were calculated, the functional relationship between the data was analyzed after the factors of gender and age were included, and the 95% reference intervals of the basic data and ratio data were calculated. RESULTS: A total of 97 patients with 194 hips were enrolled in this study. The diameter D was 5.08±0.43 cm, the distance G was 4.68±0.45 cm, and the distance L was 4.28±0.49 cm. The G/D ratio was 0.92±0.07, and the 95% reference range was 0.78-1.06. The L/D ratio was 0.84±0.08, and the 95% reference range was 0.68-1.00. Gender (g) was included in the regression analysis, and the regression equations G =1.890+0.536*D and L =1.129+0.620*D were obtained. Age was not related to the distances G and L. CONCLUSIONS: The basic data of G, D, and L was measured, and the relationship between these anatomical landmarks was analyzed.


Assuntos
Artroplastia de Quadril , Cabeça do Fêmur , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Cabeça do Fêmur/diagnóstico por imagem , Humanos , Radiografia , Valores de Referência
19.
IEEE Trans Vis Comput Graph ; 16(6): 1413-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975182

RESUMO

Over the past few years, large human populations around the world have been affected by an increase in significant seismic activities. For both conducting basic scientific research and for setting critical government policies, it is crucial to be able to explore and understand seismic and geographical information obtained through all scientific instruments. In this work, we present a visual analytics system that enables explorative visualization of seismic data together with satellite-based observational data, and introduce a suite of visual analytical tools. Seismic and satellite data are integrated temporally and spatially. Users can select temporal ;and spatial ranges to zoom in on specific seismic events, as well as to inspect changes both during and after the events. Tools for designing high dimensional transfer functions have been developed to enable efficient and intuitive comprehension of the multi-modal data. Spread-sheet style comparisons are used for data drill-down as well as presentation. Comparisons between distinct seismic events are also provided for characterizing event-wise differences. Our system has been designed for scalability in terms of data size, complexity (i.e. number of modalities), and varying form factors of display environments.

20.
Food Sci Nutr ; 7(7): 2374-2380, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31367366

RESUMO

This study aimed to isolate starch and evaluate its chemical and structural characteristics from six Chinese hulless barley (HB) cultivars. Starch isolated from naked barley displays A-type crystalline packing and a regular granular shape. We measured peak viscosity values ranging from 237 to 264 cP, trough viscosity values from 305 to 380 cP, breakdown values from 390 to 535 cP, final viscosities from 357 to 523 cP, setback values from 245 to 354 cP and 383 to 460 cP, peak times from 5.53 to 5.73 min, and pasting temperatures from 93.10 to 94.65°C by RVA. Transition temperatures (T 0, T p, and T c), gelatinization temperature ranges (ΔT r), and enthalpies of gelatinization (ΔH) were measured on a differential scanning calorimeter analyzer (DSC) and ranged from 57.81 to 61.25°C, 64.36 to 67.57°C, 82.03 to 84.70°C, and 21.52 to 26.89°C and 7.14 to 10.66 J/g, respectively. The varying chemical and structural characteristics of HB starch isolated from different cultivars suggested the potential for broader applications of the cereal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA