Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(11): e18405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842134

RESUMO

Prostate cancer (PCa), a prevalent malignancy among elderly males, exhibits a notable rate of advancement, even when subjected to conventional androgen deprivation therapy or chemotherapy. An effective progression prediction model would prove invaluable in identifying patients with a higher progression risk. Using bioinformatics strategies, we integrated diverse data sets of PCa to construct a novel risk model predicated on gene expression and progression-free survival (PFS). The accuracy of the model was assessed through validation using an independent data set. Eight genes were discerned as independent prognostic factors and included in the prediction model. Patients assigned to the high-risk cohort demonstrated a diminished PFS, and the areas under the curve of our model in the validation set for 1-year, 3-year, and 5-year PFS were 0.9325, 0.9041 and 0.9070, respectively. Additionally, through the application of single-cell RNA sequencing to two castration-related prostate cancer (CRPC) samples and two hormone-related prostate cancer (HSPC) samples, we discovered that luminal cells within CRPC exhibited an elevated risk score. Subsequent molecular biology experiments corroborated our findings, illustrating heightened SYK expression levels within tumour tissues and its contribution to cancer cell migration. We found that the knockdown of SYK could inhibit migration in PCa cells. Our progression-related risk model demonstrated the potential prognostic value of SYK and indicated its potential as a target for future diagnosis and treatment strategies in PCa management.


Assuntos
Biologia Computacional , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Masculino , Humanos , Biologia Computacional/métodos , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Fatores de Risco , Linhagem Celular Tumoral
2.
Hum Mol Genet ; 31(22): 3829-3845, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35708510

RESUMO

The aim of this study is to investigate if extracellular vesicles (EVs) from bone marrow mesenchymal stem cells (BMSCs) deliver microRNA (miR)-331-3p to regulate LIM zinc finger domain containing 2 (LIMS2) methylation in cervical cancer cells. Cervical cancer cells were incubated with EVs from BMSCs with altered expression of miR-331-3p, DNA methyltransferase 3 alpha (DNMT3A) or/and LIMS2 and then subjected to 5-ethynyl-2'-deoxyuridine, Transwell, flow cytometry and western blotting analyses. Dual-luciferase reporter assay was conducted to verify the binding between miR-331-3p and DNMT3A. A xenograft model was established to evaluate the effect of BMSC-derived EV-miR-331-3p on cervical tumor growth. miR-331-3p was lowly and DNMT3A was highly expressed in cervical cancer. BMSC-derived EVs delivered miR-331-3p to control the behaviors of cervical cancer cells. miR-331-3p inhibited the expression of DNMT3A by binding DNMT3A mRNA. DNMT3A promoted LIMS2 methylation and reduced the expression of LIMS2. Overexpression of DNMT3A or silencing of LIMS2 in BMSCs counteracted the tumor suppressive effects of miR-331-3p. BMSC-derived EV-miR-331-3p also inhibited the growth of cervical tumors in vivo. BMSC-derived EVs alleviate cervical cancer partially by delivering miR-331-3p to reduce DNMT3A-dependent LIMS2 methylation in tumor cells.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Metilação de DNA/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , DNA Metiltransferase 3A , Dedos de Zinco
3.
Apoptosis ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478171

RESUMO

Prostate cancer (PCa) is one of the most common cancers affecting the health of men worldwide. Castration-resistant prostate cancer (CRPC), the advanced and refractory phase of prostate cancer, has multiple mechanisms of resistance to androgen deprivation therapy (ADT) such as AR mutations, aberrant androgen synthase, and abnormal expression of AR-related genes. Based on the research of the AR pathway, new drugs for the treatment of CRPC have been developed in clinical practice, such as Abiraterone and enzalutamide. However, many areas in this pathway are still worth exploring. In this study, single-cell sequencing analysis was utilized to scrutinize significant genes in the androgen receptor (AR) pathway related to CRPC. Our analysis of single-cell sequencing combined with bulk-cell sequencing revealed a substantial downregulation of AR-regulated AFF3 in CRPC. Overexpression of AFF3 restricted the proliferation and migration of prostate cancer cells whilst also increasing their sensitivity towards enzalutamide, while knockdown of AFF3 had the opposite effect. To elucidate the mechanism of tumor inhibition by AFF3, we applied GSVA and GSEA to investigate the metabolic pathways related to AFF3 and revealed that AFF3 had an impact on fatty acids metabolism and ferroptosis through the regulation of ACSL4 protein expression. Based on correlation analysis and flow cytometry, we can speculate that AFF3 can impact the sensitivity of the CRPC cell lines to the ferroptosis inducer (RSL3) by regulating ACSL4. Therefore, our findings may provide new insights into the mechanisms of drug resistance in CRPC, and AFF3 may serve as a novel prognostic biomarker in prostate cancer.

4.
Int J Cancer ; 153(6): 1172-1181, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37260277

RESUMO

Information regarding the impact of the coronavirus disease 2019 (COVID-19) pandemic on cervical cancer in mainland China is lacking. We explored its impact on the hospital attendance of patients with primary cervical cancer. We included 1918 patients with primary cervical cancer who initially attended Harbin Medical University Cancer Hospital between January 23, 2019, and January 23, 2021. Attendance decreased by 31%, from 1135 in 2019 to 783 in 2020, mainly from January to June (𝜒2 = 73.362, P < .001). The percentage of patients detected by screening decreased from 12.1% in January-June 2019 to 5.8% in January-June 2020 (𝜒2 = 7.187, P = .007). Patients with stage I accounted for 28.4% in 2020 significantly lower than 36.6% in 2019 (𝜒2 = 14.085, P < .001), and patients with stage III accounted for 27.1% in 2020 significantly higher than 20.5% in 2019 (𝜒2 = 11.145, P < .001). Waiting time for treatment was extended from 8 days (median) in January-June and July-December 2019 to 16 days in January-June (𝜒2 = 74.674, P < .001) and 12 days in July-December 2020 (𝜒2 = 37.916, P < .001). Of the 179 patients who delayed treatment, 164 (91.6%) were for the reasons of the healthcare providers. Compared to 2019, the number of patients in Harbin or non-Harbin in Heilongjiang Province and outside the province decreased, and cross-regional medical treatment has been hindered. The COVID-19 pandemic has negatively impacted cervical cancer patient attendance at the initial phase. These results are solid evidence that a strategy and mechanism for the effective attendance of cervical cancer patients in response to public health emergencies is urgently needed.


Assuntos
COVID-19 , Neoplasias do Colo do Útero , Feminino , Humanos , COVID-19/epidemiologia , Pandemias , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/terapia , China/epidemiologia , Hospitais Universitários
5.
Neoplasma ; 70(3): 319-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37498066

RESUMO

Aldo-keto reductases (ARKs), a group of reductases that rely on nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) to catalyze carbonyl, are widely found in various organisms, which play an important role in the physiological and pathological processes of human. Aldo-keto reductase family 1 member C2 (AKR1C2) as a member of the human ARKs family, can regulate steroid hormones and is abnormally expressed in many cancers. According to whether the tumor can be affected by hormones, we divide malignancies into hormone-dependent and hormone-independent types. Studies have shown that AKR1C2 is involved in regulating tumor invasion, migration, and other malignant phenotypes, eliminating reactive oxygen species (ROS), promoting chemotherapy resistance of tumor cells, and has prognostic value in some cancers. Here, we focus on the role and clinical significance of AKR1C2 in different types of tumors.


Assuntos
Neoplasias , Humanos , Prognóstico , Aldo-Ceto Redutases/genética , Neoplasias/tratamento farmacológico , Resistência a Medicamentos , Hormônios , Hidroxiesteroide Desidrogenases/genética
6.
Nano Lett ; 22(8): 3433-3439, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420433

RESUMO

The influence of nanowire (NW) surface states increases rapidly with the reduction of diameter and hence severely degrades the optoelectronic performance of narrow-diameter NWs. Surface passivation is therefore critical, but it is challenging to achieve long-term effective passivation without significantly affecting other qualities. Here, we demonstrate that an ultrathin InP passivation layer of 2-3 nm can effectively solve these challenges. For InAsP nanowires with small diameters of 30-40 nm, the ultrathin passivation layer reduces the surface recombination velocity by at least 70% and increases the charge carrier lifetime by a factor of 3. These improvements are maintained even after storing the samples in ambient atmosphere for over 3 years. This passivation also greatly improves the performance thermal tolerance of these thin NWs and extends their operating temperature from <150 K to room temperature. This study provides a new route toward high-performance room-temperature narrow-diameter NW devices with long-term stability.

7.
Anal Chem ; 94(4): 1983-1989, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038868

RESUMO

Periphery blood testing is an attractive and relatively less invasive way of early cancer screening. In this work, based on the latest understanding of the pivotal role of platelets in promoting cancer invasion, a method for detecting a procancerous protein overexpressed both on platelets and in cancer cells is developed. As a kinase, the enzymatic activity, abundance, and self-phosphorylation of this protein are all important factors influencing its procancerous activity. To simultaneously determine these three important biochemical parameters, electrochemical control is called upon to connect or disconnect a polymer chain reaction (PCR) primer with a small-molecule synthetic probe, and with the target protein, in a target-specific manner. The resulting PCR signal amplification greatly improves the sensitivity of the design and also enables direct detection of the protein and its catalytic activity as well as its self-phosphorylation in clinical periphery blood samples from hepatocellular carcinoma (HCC) patients. This may point to future application of the proposed method in the early screening of HCC to assist its diagnosis and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Plaquetas/patologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Polímeros
8.
Clin Lab ; 68(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975509

RESUMO

BACKGROUND: We have explored that quantitative PCT detection can be conducted in different sample types (whole blood and/or plasma samples) with good correlation and consistency in clinical use. These findings reduce the sample volume and turnover time of PCT detection in clinical labs. However, different hematocrit (HCT) percentages of whole blood samples may affect the final results, especially abnormal hematocrit (HCT) percentages. To overcome this problem, we established a mathematical model to modify the whole blood test results and evaluated the effects of HCT correction. METHODS: First, we prepared a preliminary experiment - various hematocrit (HCT) percentages (15% - 65%) of whole blood samples with different PCT concentrations and established a mathematic model to correct the effects of PCT detection. Then, in this paper, we evaluated the consistency with Pearson's correlation and Kappa analysis between whole bloods detected by the i-Reader S system and plasma detected by the Biomerieux system. Besides, we prepared different HCT values about 15%, 40%, 60% of 9 samples with different PCT concentrations to evaluate the effects of HCT correction Results and Conclusions: Pearson's correlative studies and Kappa analysis indicated that PCT levels measured by i-Reader S (plasma & whole blood samples) were comparable to results from the VIDAS system, and HCT correction could improve consistency of PCT detection between whole blood and plasma. Analysis of samples with abnormal HCT values showed that the mathematical correction model could offset the influences of various HCT values.


Assuntos
Hematócrito , Plasma , Pró-Calcitonina , Hematócrito/métodos , Humanos , Pró-Calcitonina/sangue
9.
Nano Lett ; 21(13): 5722-5729, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181433

RESUMO

Axially stacked quantum dots (QDs) in nanowires (NWs) have important applications in nanoscale quantum devices and lasers. However, there is lack of study of defect-free growth and structure optimization using the Au-free growth mode. We report a detailed study of self-catalyzed GaAsP NWs containing defect-free axial GaAs QDs (NWQDs). Sharp interfaces (1.8-3.6 nm) allow closely stack QDs with very similar structural properties. High structural quality is maintained when up to 50 GaAs QDs are placed in a single NW. The QDs maintain an emission line width of <10 meV at 140 K (comparable to the best III-V QDs, including nitrides) after having been stored in an ambient atmosphere for over 6 months and exhibit deep carrier confinement (∼90 meV) and the largest reported exciton-biexciton splitting (∼11 meV) for non-nitride III-V NWQDs. Our study provides a solid foundation to build high-performance axially stacked NWQD devices that are compatible with CMOS technologies.

10.
FASEB J ; 34(7): 8887-8901, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519766

RESUMO

Intestinal ischemia-reperfusion (IIR) often occurs during and following major cardiovascular or gut surgery and causes significant organ including kidney injuries. This study was to investigate the protective effect of intestinal ischemic postconditioning (IPo) on IIR-induced acute kidney injury (AKI) and the underling cellular signaling mechanisms with focus on the Nrf2/HO-1. Adult C57BL/6J mice were subjected to IIR with or without IPo. IIR was established by clamping the superior mesenteric artery (SMA) for 45 minutes followed by 120 minutes reperfusion. Outcome measures were: (i) Intestinal and renal histopathology; (ii) Renal function; (iii) Cellular signaling changes; (iv) Oxidative stress and inflammatory responses. IPo significantly attenuated IIR-induced kidney injury. Furthermore, IPo significantly increased both nuclear Nrf2 and HO-1 expression in the kidney, upregulated autophagic flux, inhibited IIR-induced inflammation and reduced oxidative stress. The protective effect of IPo was abolished by the administration of Nrf2 inhibitor (Brusatol) or Nrf2 siRNA. Conversely, a Nrf2 activator t-BHQ has a similar protective effect to that of IPo. Our data indicate that IPo protects the kidney injury induced by IIR, which was likely mediated through the Nrf2/HO-1 cellular signaling activation.


Assuntos
Injúria Renal Aguda/prevenção & controle , Autofagia , Heme Oxigenase (Desciclizante)/metabolismo , Intestinos/fisiologia , Pós-Condicionamento Isquêmico/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Heme Oxigenase (Desciclizante)/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Reperfusão
11.
Mol Cell Biochem ; 476(2): 949-957, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33128668

RESUMO

A large number of long non-coding RNAs have been confirmed to play vital roles in regulating various biological processes. Abnormal expression of growth arrest-specific transcript 5 (GAS5) is reported to be involved in the development of atherosclerosis (AS). This work is to explore the detailed mechanism underling how GAS5 regulates AS progression. We found that the abundance of GAS5 was markedly increased, and miR-135a was decreased in AS patient serums and ox-LDL-induced human THP-1 cells dose and time dependently. Interference of GAS5 suppressed inflammation and oxidative stress induced by ox-LDL in THP-1 cells. Mechanistically, GAS5 acted as a molecular sponge of microRNA-135a (miR-135a). Rescue assays indicated that knockdown of miR-135a partially rescued small interference RNA for GAS5-inhibited inflammatory cytokines release and oxidative stress in ox-LDL-triggered THP-1 cells. In conclusion, the absence of GAS5-inhibited inflammatory response and oxidative stress induced by ox-LDL in THP-1 cells via sponging miR-135a, providing a deep insight into the molecular target for AS treatment.


Assuntos
Aterosclerose/metabolismo , Inflamação/prevenção & controle , Lipoproteínas LDL/farmacologia , MicroRNAs/metabolismo , Estresse Oxidativo/fisiologia , RNA Longo não Codificante/antagonistas & inibidores , Aterosclerose/genética , Citocinas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , RNA Longo não Codificante/genética , Transdução de Sinais , Células THP-1
12.
Nanotechnology ; 33(3)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638105

RESUMO

Nanowires (NWs) with a unique one-dimensional structure can monolithically integrate high-quality III-V semiconductors onto Si platform, which is highly promising to build lasers for Si photonics. However, the lasing from vertically-standing NWs on silicon is much more difficult to achieve compared with NWs broken off from substrates, causing significant challenges in the integration. Here, the challenge of achieving vertically-standing NW lasers is systematically analysed with III-V materials, e.g. GaAs(P) and InAs(P). The poor optical reflectivity at the NW/Si interface results severe optical field leakage to the substrate, and the commonly used SiO2or Si2N3dielectric mask at the interface can only improve it to ∼10%, which is the major obstacle for achieving low-threshold lasing. A NW super lattice distributed Bragg reflector is therefore proposed, which is able to greatly improve the reflectivity to >97%. This study provides a highly-feasible method to greatly improve the performance of vertically-standing NW lasers, which can boost the rapid development of Si photonics.

13.
J Comput Assist Tomogr ; 45(5): 711-716, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34546678

RESUMO

RATIONALE AND OBJECTIVES: This study aimed to evaluate the value of background parenchymal enhancement (BPE) and diffusion-weighted image (DWI) histogram features in differentiating among different molecular subtypes of breast cancers and investigate the relationship between BPE and DWI features. MATERIALS AND METHODS: We prospectively enrolled 142 patients with breast cancer between January and November 2018. All patients underwent breast magnetic resonance imaging before core needle biopsy. The quantitative BPE from dynamic enhanced images and the first-order histogram features extracted from DWI were analyzed. Univariate analysis of variance was used to compare differences in DWI histogram features and BPE characteristics among different molecular subtypes. Spearman test was used to compare the correlation between these imaging indexes. RESULTS: A total of 142 patients had 142 lesions, including 17 cases of triple-negative breast cancer, 12 cases of luminal A type breast cancer, 39 cases of luminal B type breast cancer, and 74 cases of human epidermal growth factor receptor 2-positive breast cancer. The apparent diffusion coefficient (ADC) 95th percentile, ADC kurtosis, and BPE were significantly different among 4 subtype groups (P < 0.05), especially between the triple-negative subtype and any other subtype (P < 0.05 in pairwise comparisons). There was a weak but significant correlation between BPE and kurtosis of ADC (r = -0.176, P = 0.036). CONCLUSIONS: Diffusion-weighted image histogram features (95th percentile ADC value and kurtosis value of ADC) and BPE features were different in the 4 molecular subtypes of breast cancer, especially in the triple-negative breast cancer subtype. Background parenchymal enhancement was negatively correlated with the kurtosis value of ADC.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Mama/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos
14.
Environ Monit Assess ; 194(1): 39, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34935070

RESUMO

Oxygen sensors based on luminescence quenching are the most commonly used instruments for in situ measurement in seawater due to their accuracy and long-term stability. The calibration method of the sensor is crucial for their accuracy. Conventional methods exhibit some defects, such as strict control of calibration conditions and cumbersome and time-consuming operation. To improve calibration operation and obtain good calibration results, a new calibration method was proposed for the optical dissolved oxygen sensor in seawater based on an intelligent learning algorithm. The sensor to be calibrated and the reference sensor were deployed in the water for synchronous measurements. The calibration system consisted of a temperature-regulated device and a sampling method to improve calibration operation. An intelligent learning algorithm was used to train the calibration data and model the oxygen response of the sensor. Calibration and test results in both laboratory and field showed that the new calibration method is feasible and efficient. It is highly significant for sensor development and in situ measurement in seawater.


Assuntos
Monitoramento Ambiental , Água do Mar , Algoritmos , Calibragem , Oxigênio
15.
Cancer Cell Int ; 20: 182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489318

RESUMO

BACKGROUND: Lysine acetylation is a post-translational modification that regulates a diversity of biological processes, including cancer development. METHODS: Here, we performed the quantitative acetylproteomic analysis of three primary cervical cancer tissues and corresponding adjacent normal tissues by using the label-free proteomics approach. RESULTS: We identified a total of 928 lysine acetylation sites from 1547 proteins, in which 495 lysine acetylation sites corresponding to 296 proteins were quantified. Further, 41 differentially expressed lysine acetylation sites corresponding to 30 proteins were obtained in cervical cancer tissues compared with adjacent normal tissues (Fold change > 2 and P < 0.05), of which 1 was downregulated, 40 were upregulated. Moreover, 75 lysine acetylation sites corresponding to 58 proteins were specifically detected in cancer tissues or normal adjacent tissues. Motif-X analysis showed that kxxxkxxxk, GkL, AxxEk, kLxE, and kkxxxk are the most enriched motifs with over four-fold increases when compared with the background matches. KEGG analysis showed that proteins identified from differently and specifically expressed peptides may influence key pathways, such as Notch signaling pathway, viral carcinogenesis, RNA transport, and Jak-STAT, which play an important role in tumor progression. Furthermore, the acetylated levels of CREBBP and S100A9 in cervical cancer tissues were confirmed by immunoprecipitation (IP) and Western blot analysis. CONCLUSIONS: Taken together, our data provide novel insights into the role of protein lysine acetylation in cervical carcinogenesis.

16.
Cancer Cell Int ; 20: 344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742191

RESUMO

BACKGROUND: Concurrent chemoradiotherapy is the common first-line treatment for patients with advanced cervical cancer. However, radioresistance remains a major clinical challenge, which results in recurrence and poor survival. Many studies have shown the potential of Delta-like Ligand 4 (DLL4) as a novel prognostic biomarker and therapeutic target in many solid tumors. Previously, we have found that high DLL4 expression in tumor cells may predict the pelvic lymph node metastasis and poor prognosis in patients with cervical cancer. In our present study, we further studied the effects of DLL4 on the biological behavior and radiosensitivity of cervical cancer cells. METHODS: The expression of DLL4 and epithelial-mesenchymal transition (EMT) phenotype markers in cervical cancer cell lines or tissues were detected using Western blotting, and the expression of DLL4 mRNA in cervical cancer cell lines or tissues was detected using Quantitative real-time PCR. The effect of DLL4 on cell proliferation, migration, and radiosensitivity was evaluated using the CCK8 assay, flow cytometry, Transwell assays for cell invasion and migration, and Immunofluorescence staining in vitro. RESULTS: The expression of DLL4 in radiotherapy-resistant SiHa cells was significantly higher than that in radiotherapy-sensitive Me-180 cells. Furthermore, downregulation of DLL4 enhanced the radiosensitivity of SiHa and Caski cells via the inhibition of cell proliferation, promotion of radiation-induced apoptosis, and inhibition of the DNA damage repair. Moreover, downregulation of DLL4 inhibited the EMT and reduced the proliferation, invasion, and migration ability in SiHa and Caski cells. Consistent with the DLL4 expression in the cell lines, the expression of DLL4 in the tissues of the radioresistant group was also higher than that of the radiosensitive group. CONCLUSIONS: Downregulation of DLL4 inhibited the progression and increased the radiosensitivity in cervical cancer cells by reversing EMT. These results indicated the promising prospect of DLL4 against the radioresistance and metastasis of cervical cancer and its potential as a predictive biomarker for radiosensitivity and prognosis in patients with cervical cancer patients receiving concurrent chemoradiotherapy (cCRT).

17.
Nano Lett ; 19(7): 4574-4580, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31189065

RESUMO

The droplet consumption step in self-catalyzed III-V semiconductor nanowires can produce material that contains a high density of line defects. Interestingly, these defects are often associated with twin boundaries and have null Burgers vector, i.e., no long-range strain field. Here, we analyze their stability by considering the forces that act on them and use in situ aberration corrected scanning transmission electron microscopy (STEM) to observe their behavior in GaAsP nanowires (NWs) using short annealing cycles. Their movement appears to be consistent with the thermally activated single- or double-kink mechanisms of dislocation glide, with velocities that do not exceed 1 nm s-1. We find that motion of individual defects depends on their size, position, and surrounding environment and set an upper limit to activation energy around 2 eV. The majority of defects (>70%) are removed by our postgrowth annealing for several seconds at temperatures in excess of 640 °C, suggesting that in situ annealing during growth at lower temperatures would significantly improve material quality. The remaining defects do not move at all and are thermodynamically stable in the nanowire.

18.
Nano Lett ; 19(6): 4158-4165, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31141668

RESUMO

Quantum structures designed using nanowires as a basis are excellent candidates to achieve novel design architectures. Here, triplets of quantum wires (QWRs) that form at the core-shell interface of GaAsP-GaAsP nanowires are reported. Their formation, on only three of the six vertices of the hexagonal nanowire, is governed by the three-fold symmetry of the cubic crystal on the (111) plane. In twinned nanowires, the QWRs are segmented, to alternating vertices, forming quantum dots (QDs). Simulations confirm the possibility of QWR and QD-like behavior from the respective regions. Optical measurements confirm the presence of two different types of quantum emitters in the twinned individual nanowires. The possibility to control the relative formation of QWRs or QDs, and resulting emission wavelengths of the QDs, by controlling the twinning of the nanowire core, opens up new possibilities for designing nanowire devices.

19.
Small ; 15(3): e1803684, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30556282

RESUMO

Nanowires (NWs) with radial p-i-n junction have advantages, such as large junction area and small influence from the surface states, which can lead to highly efficient material use and good device quantum efficiency. However, it is difficult to make high-quality core-shell NW devices, especially single NW devices. Here, the key factors during the growth and fabrication process that influence the quality of single core-shell p-i-n NW devices are studied using GaAs(P) NW photovoltaics as an example. By p-doping and annealing, good ohmic contact is achieved on NWs with a diameter as small as 50-60 nm. Single NW photovoltaics are subsequently developed and a record fill factor of 80.5% is shown. These results bring valuable information for making single NW devices, which can further benefit the development of high-density integration circuits.

20.
Cancer Cell Int ; 19: 235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516392

RESUMO

BACKGROUND: Hyperoside (Hy) is a plant-derived quercetin 3-d-galactoside that exhibits inhibitory activities on various tumor types. The objective of the current study was to explore Hy effects on cervical cancer cell proliferation, and to perform a transcriptome analysis of differentially expressed genes. METHODS: Cervical cancer HeLa and C-33A cells were cultured and the effect of Hy treatment was determined using the Cell Counting Kit-8 (CCK-8) assay. After calculating the IC50 of Hy in HeLa and C-33A cells, the more sensitive to Hy treatment cell type was selected for RNA-Seq. Differentially expressed genes (DEGs) were identified by comparing gene expression between the Hy and control groups. Candidate genes were determined through DEG analysis, protein interaction network (PPI) construction, PPI module analysis, transcription factor (TF) prediction, TF-target network construction, and survival analysis. Finally, the key candidate genes were verified by RT-qPCR and western blot. RESULTS: Hy inhibited HeLa and C33A cell proliferation in a dose- and time-dependent manner, as determined by the CCK-8 assay. Treatment of C-33A cells with 2 mM Hy was selected for the subsequent experiments. Compared with the control group, 754 upregulated and 509 downregulated genes were identified after RNA-Seq. After functional enrichment, 74 gene ontology biological processes and 43 Kyoto Encyclopedia of Genes and Genomes pathways were obtained. According to the protein interaction network (PPI), PPI module analysis, TF-target network construction, and survival analysis, the key genes MYC, CNKN1A, PAX2, TFRC, ACOX2, UNC5B, APBA1, PRKACA, PEAR1, COL12A1, CACNA1G, PEAR1, and CCNA2 were detected. RT-qPCR was performed on the key genes, and Western blot was used to verify C-MYC and TFRC. C-MYC and TFRC expressions were lower and higher than the corresponding values in the control group, respectively, in accordance with the results from the RNA-Seq analysis. CONCLUSION: Hy inhibited HeLa and C-33A cell proliferation through C-MYC gene expression reduction in C-33A cells and TFRC regulation. The results of the current study provide a theoretical basis for Hy treatment of cervical cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA