Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 345, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801527

RESUMO

The emergence and quick spread of the plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 have posed a great threat to public health and raised global concerns. It is imperative to develop rapid and accurate detection systems for the onsite surveillance of mcr-1 and tet(X4). In this study, we developed one-tube recombinase polymerase amplification (RPA) and CRISPR-Cas12b integrated mcr-1 and tet(X4) detection systems. We identified mcr-1- and tet(X4)-conserved and -specific protospacers through a comprehensive BLAST search based on the NCBI nt database and used them for assembling the detection systems. Our developed one-tube RPA-CRISPR-Cas12b-based detection systems enabled the specific detection of mcr-1 and tet(X4) with a sensitivity of 6.25 and 9 copies within a detection time of ~ 55 and ~ 40 min, respectively. The detection results using pork and associated environmental samples collected from retail markets demonstrated that our developed mcr-1 and tet(X4) detection systems could successfully monitor mcr-1 and tet(X4), respectively. Notably, mcr-1- and tet(X4)-positive strains were isolated from the positive samples, as revealed using the developed detection systems. Whole-genome sequencing of representative strains identified an mcr-1-carrying IncI2 plasmid and a tet(X4)-carrying IncFII plasmid, which are known as important vectors for mcr-1 and tet(X4) transmission, respectively. Taken together, our developed one-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems show promising potential for the onsite detection of mcr-1 and tet(X4). KEY POINTS: • One-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems were developed based on identified novel protospacers. • Both detection systems exhibited high sensitivity and specification with a sample-to-answer time of less than 1 h. • The detection systems show promising potential for onsite detection of mcr-1 and tet(X4).


Assuntos
Sistemas CRISPR-Cas , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Suínos , Animais , Colistina/farmacologia , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Antibacterianos/farmacologia
2.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734756

RESUMO

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Assuntos
Chaetomium , Histona Desacetilases , Família Multigênica , Policetídeos , Metabolismo Secundário , Chaetomium/genética , Chaetomium/enzimologia , Chaetomium/metabolismo , Metabolismo Secundário/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Policetídeos/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Vias Biossintéticas/genética , Epigênese Genética
3.
BMC Genomics ; 24(1): 530, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679681

RESUMO

BACKGROUND: Ligilactobacillus salivarius has been frequently isolated from the gut microbiota of humans and domesticated animals and has been studied as a candidate probiotic. Badger (Meles meles) is known as a "generalist" species that consumes complex foods and exhibits tolerance and resistance to certain pathogens, which can be partly attributed to the beneficial microbes such as L. salivarius in the gut microbiota. However, our understanding of the beneficial traits and genomic features of badger-originated L. salivarius remains elusive. RESULTS: In this study, nine L. salivarius strains were isolated from wild badgers' feces, one of which exhibited good probiotic properties. Complete genomes of the nine L. salivarius strains were generated, and comparative genomic analysis was performed with the publicly available complete genomes of L. salivarius obtained from humans and domesticated animals. The strains originating from badgers harbored a larger genome, a higher number of protein-coding sequences, and functionally annotated genes than those originating from humans and chickens. The pan-genome phylogenetic tree demonstrated that the strains originating from badgers formed a separate clade, and totally 412 gene families (12.6% of the total gene families in the pan-genome) were identified as genes gained by the last common ancestor of the badger group. The badger group harbored significantly more gene families responsible for the degradation of complex carbohydrate substrates and production of polysaccharides than strains from other hosts; many of these were acquired by gene gain events. CONCLUSIONS: A candidate probiotic and nine L. salivarius complete genomes were obtained from the badgers' gut microbiome, and several beneficial genes were identified to be specifically present in the badger-originated strains that were gained in the evolution. Our study provides novel insights into the adaptation of L. salivarius to the intestinal habitat of wild badgers and provides valuable strain and genome resources for the development of L. salivarius as a probiotic.


Assuntos
Ligilactobacillus salivarius , Animais , Humanos , Adaptação ao Hospedeiro , Filogenia , Galinhas , Aclimatação , Animais Domésticos
4.
Appl Microbiol Biotechnol ; 106(17): 5659-5674, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35922588

RESUMO

Certain animals harbor a high proportion of pathogens, particular the zoonotic pathogens, in their gut microbiome but are usually asymptomic; however, their carried pathogens may seriously threaten the public health. By understanding how the microbiome overcomes the negative effects of pathogens to maintain host health, we can develop novel solutions to control animal-mediated pathogen transmission including identification and application of beneficial microbes. Here, we analyzed the gut microbiota of 10 asymptomic captive sika deer individuals by full-length 16S rDNA sequencing. Twenty-nine known pathogens capable of infecting humans were identified, and the accumulated proportions of the identified pathogens were highly variable among individuals (2.33 to 39.94%). The relative abundances of several beneficial bacteria, including Lactobacillus and Bifidobacterium, were found to be positively correlated with the relative abundances of accumulated pathogens. Whole-genome metagenomic analysis revealed that the beneficial- and pathogenic-associated functions, such as genes involved in the synthesis of short chain fatty acids and virulence factors, were also positively correlated in the microbiome, indicating that the beneficial and pathogenic functions were maintained at a relatively balanced ratio. Furthermore, the bacteriophages that target the identified pathogens were found to be positively correlated with the pathogenic content in the microbiome. Several high-quality genomes of beneficial bacteria affiliated with Lactobacillus and Bifidobacterium and bacteriophages were recovered from the metagenomic data. Overall, this study provides novel insights into the interplay between beneficial and pathogenic content to ensure maintenance of a healthy gut microbiome, and also contributes to discovery of novel beneficial microbes and functions that control pathogens. KEY POINTS: • Certain asymptomic captive sika deer individuals harbor relatively high amounts of zoonotic pathogens. • The beneficial microbes and the beneficial functions are balanced with the pathogenic contents in the gut microbiome. • Several high-quality genomes of beneficial bacteria and bacteriophages are recovered by metagenomics.


Assuntos
Cervos , Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Bifidobacterium , Humanos , Lactobacillus , Metagenômica
5.
BMC Pulm Med ; 22(1): 40, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045860

RESUMO

BACKGROUND: The reported experience of surgical treatment for chronic pulmonary aspergillosis (CPA) mainly focused on simple aspergilloma (SA), few about other types of CPA. The present study aims to evaluate the outcomes of surgical treatment for different types of CPA. METHODS: We performed a retrospective analysis of 85 patients with CPA who underwent surgery from 2014 to 2020 at Shandong Provincial Chest Hospital. The patients were divided into four types, including SA, chronic cavitary pulmonary aspergillosis (CCPA), chronic fibrosing pulmonary aspergillosis (CFPA), aspergillus nodule (AN). We collected and analyzed the preoperative, perioperative, and postoperative data to evaluate the outcomes of surgical treatment of different types of CPA. RESULTS: The four groups had similar age (p = 0.22), symptoms (p = 0.36), lesion location (p = 0.09), VATS rate (p = 0.08), recurrence rate (p = 0.95), and had significant difference in surgical procedures (p < 0.01), time of surgery (p < 0.01), intraoperative blood loss (p < 0.01), postoperative complication (p = 0.01). CFPA (P = 0.01), longer surgical time (P = 0.001), and more intraoperative blood loss (P = 0.004) were risk factors of postoperative complication, more intraoperative blood loss (> 400 ml) was the independent risk factor (OR 13.5, 95% CI 1.6-112.1, P = 0.02). 6 patients relapsed after surgery with a recurrence rate of 7.1%. The mean time to relapse was 14.8 months (2-30 months) after surgery. Relapse occurred in 2 SA patients, 3 CCPA, and 1 CFPA, respectively, while none of the AN patients relapsed. No risk factor for recurrence was found. CONCLUSIONS: Surgical resection seems safe and effective in the treatment of SA, AN, CCPA with a low complication and recurrence rate, while surgery for CFPA should be limited to selected patients because of its higher complication rate.


Assuntos
Complicações Pós-Operatórias/epidemiologia , Aspergilose Pulmonar/cirurgia , Adolescente , Adulto , Idoso , Antifúngicos/uso terapêutico , Criança , China/epidemiologia , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aspergilose Pulmonar/tratamento farmacológico , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Adulto Jovem
6.
Hematol Oncol ; 39(5): 616-624, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34331367

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease with complex tumor microenvironment (TME) alterations. However, immune cell signatures of TME and their prognostic value remain unclear in DLBCL. We aimed to identify high-risk DLBCL with specific immune cell signatures in TME. Clinical and gene expression data of DLBCL patients were obtained from previously reported retrospective datasets in Gene Expression Omnibus (GSE108466 and GSE5378616 ) and a multi-center prospective clinical trial NHL001 (NCT01852435). Patients treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) regimen (n = 159) from GSE10846 were referred as training cohort for CHOP regimen, while patients treated with rituximab-CHOP (R-CHOP) regimen (n = 192) from GSE10846 as training cohort for R-CHOP regimen. Patients from NHL001 (n = 68) and GSE53786 (n = 57) were referred as validation cohorts for R-CHOP regimen. CIBERSORT was applied to estimate the relative proportions of 22 subtype of immune cells. We established a prognostic model for model for R-CHOP regimen included Age, performance status, lactate dehydrogenase, T cells follicular helper and macrophages M0, defining a low-risk group with 2-years OS of 92.9% and a high-risk group with 2-years OS of 52.5% (HR 6.57 [3.27-13.18], p < 0.0001). Immune cell signatures could be used as prognostic markers and provided further insights for individualized immunotherapeutic strategies in DLBCL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores/análise , Linfoma Difuso de Grandes Células B/patologia , Microambiente Tumoral , Feminino , Seguimentos , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/imunologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida
7.
Int J Syst Evol Microbiol ; 70(7): 4364-4371, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32579101

RESUMO

A novel, moderately thermophilic, Gram-stain-negative bacterium, designated strain J18T, was isolated from a water-flooded oil reservoir. Cells were aerobic, oxidase- and catalase-positive, with a polar flagellum. Growth occurred at 35-60 °C and at pH 6-8.5. The respiratory quinones were ubiquinone 8 and ubiquinone 9. The dominant cellular fatty acids were C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, an unidentified phospholipid and an unidentified aminophospholipid. The strain showed the highest 16S rRNA gene sequence similarities to Tepidiphilus margaritifer DSM 15129T (98.6 %), Tepidiphilus succinatimandens DSM 15512T (98.4 %) and Tepidiphilus thermophilus DSM 27220T (98.1 %), respectively, and the similarity to other species was lower than 93 %. In the phylogenetic trees, it constituted a unique sub-cluster within the genus Tepidiphilus. The DNA G+C content of strain J18T was 64.44 mol%. As compared with the type strains, the genome-to-genome distances of strain J18T were 34.7-40 %. These results confirmed the separate species status of J18T with its close relatives. On the basis of physiological, chemotaxonomic and phylogenetic analyses along with the low levels of identity at the whole-genome level, it can be concluded that strain J18T represents a new species of the genus Tepidiphilus, for which the name Tepidiphilus olei sp. nov. is proposed. The type strain of T. olei is J18T (=CGMCC 1.16800T=LMG 31400T).


Assuntos
Hydrogenophilaceae/classificação , Campos de Petróleo e Gás/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hydrogenophilaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Água/análise
8.
BMC Genomics ; 20(1): 55, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654743

RESUMO

BACKGROUND: The gram-negative Xanthomonas genus contains a large group of economically important plant pathogens, which cause severe diseases on many crops worldwide. The diffusible signal factor (DSF) - mediated quorum sensing (QS) system coordinates expression of virulence factors in plant pathogenic Xanthomonas spp. However, the regulatory effects of this system during the Xanthomonas- plant interactions remain unclear from both the pathogen and host aspects. RESULTS: In this study, we investigated the in planta DSF- mediated QS regulon of X. citri subsp. citri (Xac), the causal agent of citrus canker. We also characterized the transcriptional responses of citrus plants to DSF-mediated Xac infection via comparing the gene expression patterns of citrus trigged by wild type Xac strain 306 with those trigged by its DSF- deficient (∆rpfF) mutant using the dual RNA-seq approach. Comparative global transcript profiles of Xac strain 306 and the ∆rpfF mutant during host infection revealed that DSF- mediated QS specifically modulates bacterial adaptation, nutrition uptake and metabolisms, stress tolerance, virulence, and signal transduction to favor host infection. The transcriptional responses of citrus to DSF-mediated Xac infection are characterized by downregulation of photosynthesis genes and plant defense related genes, suggesting photosynthetically inactive reactions and repression of defense responses. Alterations of phytohormone metabolism and signaling pathways were also triggered by DSF-mediated Xac infection to benefit the pathogen. CONCLUSIONS: Collectively, our findings provide new insight into the DSF- mediated QS regulation during plant-pathogen interactions and advance the understanding of traits used by Xanthomonas to promote infection on host plants.


Assuntos
Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Doenças das Plantas/microbiologia , Percepção de Quorum , Xanthomonas/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes Bacterianos , Interações Hospedeiro-Patógeno/genética , Ferro/metabolismo , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Regulon/genética , Metabolismo Secundário/genética , Transcrição Gênica , Transcriptoma/genética , Xanthomonas/genética
9.
BMC Genomics ; 20(1): 700, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500575

RESUMO

BACKGROUND: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. RESULTS: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination at some branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. CONCLUSIONS: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes.


Assuntos
Evolução Molecular , Variação Genética , Genômica , Filogeografia , Xanthomonas/genética , Xanthomonas/fisiologia
10.
Plant Biotechnol J ; 15(7): 817-823, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27936512

RESUMO

Citrus is a highly valued tree crop worldwide, while, at the same time, citrus production faces many biotic challenges, including bacterial canker and Huanglongbing (HLB). Breeding for disease-resistant varieties is the most efficient and sustainable approach to control plant diseases. Traditional breeding of citrus varieties is challenging due to multiple limitations, including polyploidy, polyembryony, extended juvenility and long crossing cycles. Targeted genome editing technology has the potential to shorten varietal development for some traits, including disease resistance. Here, we used CRISPR/Cas9/sgRNA technology to modify the canker susceptibility gene CsLOB1 in Duncan grapefruit. Six independent lines, DLOB 2, DLOB 3, DLOB 9, DLOB 10, DLOB 11 and DLOB 12, were generated. Targeted next-generation sequencing of the six lines showed the mutation rate was 31.58%, 23.80%, 89.36%, 88.79%, 46.91% and 51.12% for DLOB 2, DLOB 3, DLOB 9, DLOB 10, DLOB 11 and DLOB 12, respectively, of the cells in each line. DLOB 2 and DLOB 3 showed canker symptoms similar to wild-type grapefruit, when inoculated with the pathogen Xanthomonas citri subsp. citri (Xcc). No canker symptoms were observed on DLOB 9, DLOB 10, DLOB 11 and DLOB 12 at 4 days postinoculation (DPI) with Xcc. Pustules caused by Xcc were observed on DLOB 9, DLOB 10, DLOB 11 and DLOB 12 in later stages, which were much reduced compared to that on wild-type grapefruit. The pustules on DLOB 9 and DLOB 10 did not develop into typical canker symptoms. No side effects and off-target mutations were detected in the mutated plants. This study indicates that genome editing using CRISPR technology will provide a promising pathway to generate disease-resistant citrus varieties.


Assuntos
Citrus/genética , Citrus/microbiologia , Resistência à Doença/genética , Edição de Genes , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Suscetibilidade a Doenças/metabolismo , Regulação da Expressão Gênica de Plantas/genética , RNA de Plantas/genética
11.
Phytopathology ; 107(4): 380-387, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28095208

RESUMO

The Huanglongbing (HLB) disease pyramid is composed of Liberibacters, psyllid vectors, citrus hosts, and the environment. The epidemiological outcomes for Liberibacter-associated plant diseases are collectively determined by the inherent relationships among plant-Liberibacters-psyllids, and how various environmental factors affect plant-Liberibacter-psyllid interactions. Citrus-Liberibacter-psyllid interactions occur in a complex microbiome system. In this review, we focus on the progress in understanding the HLB disease pyramid, and how the microbiome affects the HLB disease pyramid including the interaction between HLB and the citrus microbiome; the interaction between Liberibacters and psyllids; the interaction between Liberibacters and gut microbiota in psyllids; and the effect of HLB on selected above- and belowground citrus pathogens. Their implications for HLB management are also discussed.


Assuntos
Citrus/microbiologia , Hemípteros/microbiologia , Interações Hospedeiro-Patógeno , Microbiota , Doenças das Plantas/microbiologia , Rhizobiaceae/isolamento & purificação , Animais , Doenças das Plantas/prevenção & controle , Rhizobiaceae/genética
12.
BMC Genomics ; 17: 485, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27391971

RESUMO

BACKGROUND: Citrus blight is a citrus tree overall decline disease and causes serious losses in the citrus industry worldwide. Although it was described more than one hundred years ago, its causal agent remains unknown and its pathophysiology is not well determined, which hampers our understanding of the disease and design of suitable disease management. RESULTS: In this study, we sequenced and assembled the draft genome for Swingle citrumelo, one important citrus rootstock. The draft genome is approximately 280 Mb, which covers 74 % of the estimated Swingle citrumelo genome and the average coverage is around 15X. The draft genome of Swingle citrumelo enabled us to conduct transcriptome analysis of roots of blight and healthy Swingle citrumelo using RNA-seq. The RNA-seq was reliable as evidenced by the high consistence of RNA-seq analysis and quantitative reverse transcription PCR results (R(2) = 0.966). Comparison of the gene expression profiles between blight and healthy root samples revealed the molecular mechanism underneath the characteristic blight phenotypes including decline, starch accumulation, and drought stress. The JA and ET biosynthesis and signaling pathways showed decreased transcript abundance, whereas SA-mediated defense-related genes showed increased transcript abundance in blight trees, suggesting unclassified biotrophic pathogen was involved in this disease. CONCLUSIONS: Overall, the Swingle citrumelo draft genome generated in this study will advance our understanding of plant biology and contribute to the citrus breeding. Transcriptome analysis of blight and healthy trees deepened our understanding of the pathophysiology of citrus blight.


Assuntos
Perfilação da Expressão Gênica , Genoma de Planta , Doenças das Plantas/genética , Raízes de Plantas/genética , Transcriptoma , Biologia Computacional/métodos , Resistência à Doença/genética , Ontologia Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Raízes de Plantas/metabolismo
13.
Phytopathology ; 106(5): 442-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26780431

RESUMO

Citrus canker, caused by Xanthomonas citri subsp. citri, is a devastating disease of most commercial citrus varieties. In our previous study, we analyzed the transcriptional response of 'Valencia' sweet orange to X. citri subsp. citri wild-type and pthA4 mutant infection at 48 h postinoculation (hpi). Using microarray analysis, two PthA4 targets, CsLOB1 and CsSWEET1, were identified. We have shown that PthA4 binds to the effector binding element (EBE) of CsLOB1 and activates gene expression of this susceptibility gene. However, how PthA4 modulates host genes at different stages of infection remains to be determined. In this study, we compared the transcriptional profiles between citrus leaf tissue inoculated with Xcc306 and those inoculated with a pthA4-deletion mutant strain (Xcc306∆pthA4) at 6, 48, and 120 hpi. At both 48 and 120 hpi, the PthA4-mediated infection significantly upregulated expression of a variety of genes involved in cell-wall degradation and modification, DNA packaging, G-protein, protein synthesis, sucrose metabolism, and cell division functions, while the downregulated genes were mainly enriched in photosynthesis, transport, secondary metabolism, cytochrome P450, and various plant defense-associated mechanisms. To validate microarray results, gene expression of 26 genes representing genes associated with cell-wall-associated, immunity system, and carbohydrate metabolism was confirmed using quantitative reverse-transcription polymerase chain reaction. Expression patterns of these genes at 48 and 120 hpi were consistent with the microarray results. We also identified putative EBE for PthA4 (EBEPthA4) in the promoter regions of multiple genes upregulated by PthA4, to which PthA4 might bind directly to control their gene expression. Our study provided a dynamic picture of citrus genes regulated by PthA4 during the X. citri subsp. citri infection of citrus leaves at different stages. This study will be useful in further understanding the virulence mechanism of X. citri subsp. citri and identifying potential targets of PthA4.


Assuntos
Citrus sinensis/metabolismo , Interações Hospedeiro-Patógeno , Xanthomonas/fisiologia , Citrus sinensis/microbiologia , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas
14.
Zhonghua Wai Ke Za Zhi ; 53(8): 608-11, 2015 Aug 01.
Artigo em Zh | MEDLINE | ID: mdl-26653962

RESUMO

OBJECTIVE: To study the experiences and operative procedure choice for surgical management of chronic tuberculous empyema. METHODS: Totally 461 patients of chronic tuberculous empyema were treated surgically in Shandong Provincial Chest Hospital between January 2006 and December 2011. There were 317 male and 144 female patients, aging from 6 to 79 years with a mean age of 32 years. Preoperative duration lasted from 3 months to 50 years, including 347 cases within 1 year, 61 cases 1 to 2 years, and 53 cases above 2 years. Chest tube drainage or pleuracentesis was performed in 395 patients, decortication in 287 patients, thoracoplasty in 13 patients, pleuropneumonectomy and resection of remaining lung in 11 patients, complex operation in 150 patients. RESULTS: There was no death perioperatively. Four hundred and forty-five patients were cured at once, 6 patients were cured by stages. One patient with empyema and bronchial fistula relapsed bronchial fistula after pulmonary lobectomy and pleural decortication, whom was cured by the combination operation which including fistula repair, muscle flap tamponing and local thoracoplasty according to the closed drainage of thoracic cavity after 6 months. Three cases were suffered incision delayed healing and were cured by dressing change. Five cases were suffered abscess of chest wall within 3 months and were cured by local thoracoplasty. One patient died due to respiratory failure in one year which resulted in tuberculosis spreading because of bronchial fistula after pleuropneumonectomy. CONCLUSIONS: Surgical management of chronic tuberculous empyema still have irreplaceable roles. Selecting appropriate operations according to different cases will achieve good results.


Assuntos
Empiema Tuberculoso/cirurgia , Abscesso , Adolescente , Adulto , Idoso , Fístula Brônquica , Tubos Torácicos , Criança , Doença Crônica , Drenagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonectomia , Insuficiência Respiratória , Infecção da Ferida Cirúrgica , Parede Torácica , Toracoplastia , Adulto Jovem
15.
mSphere ; 9(1): e0060723, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38085017

RESUMO

The plant microbiome plays a critical role in plant growth, development, and health, with endophytes being recognized as essential members due to their close interactions with host plants. However, knowledge gaps remain in understanding the mechanisms driving the colonization and establishment of endophytic communities. To address this issue, we investigated the microbiota of tobacco roots and leaves, including both epiphytic and endophytic microorganisms. We found that Actinobacteria and Alphaproteobacteria were significantly enriched in the root endosphere. Additionally, we identified higher abundances of functional traits involved in antibiotic synthesis, plant cell wall degradation, iron metabolism, secretion systems, and nicotine degradation enzymes in the endosphere. We further studied metagenome-assembled genomes from the rhizosphere and root endosphere, revealing a greater diversity of secondary metabolites in bacteria within the root endosphere. Together, this study provides insights into the taxonomic and functional assembly cues that may contribute to shaping the endophytic plant microbiota.IMPORTANCEThe presence of diverse microorganisms within plant tissues under natural conditions is a well-established fact. However, due to the plant immune system's barrier and the unique microhabitat of the plant interior, it remains unclear what specific characteristics bacteria require to successfully colonize and thrive in the plant endosphere. Recognizing the significance of unraveling these functional features, our study focused on investigating the enriched traits in the endophytic microbiota compared to the epiphytes. Through our research, we have successfully identified the taxonomic and functional assembly cues that drive the enrichment of the endophytic microbiota across the epiphytic compartments. These findings shed new light on the intricate mechanisms of endophyte colonization, thereby deepening our understanding of plant-microbe interactions and paving the way for further advancements in microbiome manipulation.


Assuntos
Sinais (Psicologia) , Microbiota , Bactérias/genética , Metagenoma , Endófitos/genética , Plantas , Nicotiana
16.
Front Microbiol ; 15: 1361883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495510

RESUMO

The plant microbiota is believed to be an accessory genome that extends plant functions, forming holobionts together with the host plant. Plant disease resistance, therefore, is inextricably linked with plant microbiota, which play important roles in plant growth and health. To explore the relationship between plant microbiota and disease resistance, we investigated the tobacco microbiome of two varieties with contrasting disease-resistance levels to bacterial wilt and black shank diseases. Comparative microbiome analysis indicated that the resistant variety assembled a distinct microbiota with higher network complexity and diversity. While Pseudomonas and Ensifer, which contain biocontrol and beneficial members, were enriched in the rhizosphere of the resistant variety, Ralstonia, a genus including the known causative pathogen, was enriched in the susceptible variety. Metagenome sequencing revealed that biocontrol functions, such as hydrogen cyanide synthase, pyochelin biosynthesis, and arthrofactin-type cyclic lipopeptide synthetase, were more abundant in the resistant variety. Further analysis indicated that contigs encoding the corresponding genes were mostly assigned to Pseudomonas. Among all the metagenome-assembled genomes, positive selection was suggested in the genome assigned to Pseudomonas only in the rhizosphere of the resistant variety. The search of biosynthetic gene clusters in the Pseudomonas genome revealed a non-ribosomal peptide synthetase, the compound of which was brabantamide A, with known antimicrobial activity. Collectively, our study suggests that the plant microbiota might be involved in microbe-mediated disease resistance. Particularly, our results highlight Pseudomonas in the rhizosphere of the disease-resistant variety as a promising biocontrol candidate. Our study may facilitate further screening of bacterial isolates and the targeted design of microbial communities.

17.
Ecol Evol ; 14(3): e11084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469048

RESUMO

The gut microbiota of rodents is essential for survival and adaptation and is susceptible to various factors, ranging from environmental conditions to genetic predispositions. Nevertheless, few comparative studies have considered the contribution of species identity and geographic spatial distance to variations in the gut microbiota. In this study, a random sampling survey encompassing four rodent species (Apodemus agrarius, Cricetulus barabensis, Tscherskia triton and Rattus norvegicus) was conducted at five sites in northern China's farming-pastoral ecotone. Through a cross-factorial comparison, we aimed to discern whether belonging to the same species or sharing the same capture site predominantly influences the composition of gut microbiota. Notably, the observed variations in microbiome composition among these four rodent species match the host phylogeny at the family level but not at the species level. The gut microbiota of these four rodent species exhibited typical mammalian characteristics, predominantly characterized by the Firmicutes and Bacteroidetes phyla. As the geographic distance between populations increased, the number of shared microbial taxa among conspecific populations decreased. We observed that within a relatively small geographical range, even different species exhibited convergent α-diversity due to their inhabitation within the same environmental microbial pool. In contrast, the composition and structure of the intestinal microbiota in the allopatric populations of A. agrarius demonstrated marked differences, similar to those of C. barabensis. Additionally, geographical environmental elements exhibited significant correlations with diversity indices. Conversely, host-related factors had minimal influence on microbial abundance. Our findings indicated that the similarity of the microbial compositions was not determined primarily by the host species, and the location of the sampling explained a greater amount of variation in the microbial composition, indicating that the local environment played a crucial role in shaping the microbial composition.

18.
Microorganisms ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674616

RESUMO

In our previous microbiome profiling analysis, Lactobacillus (L.) johnsonii was suggested to contribute to resistance against chronic heat stress-induced diarrhea in weaned piglets. Forty-nine L. johnsonii strains were isolated from these heat stress-resistant piglets, and their probiotic properties were assessed. Strains N5 and N7 exhibited a high survival rate in acidic and bile environments, along with an antagonistic effect against Salmonella. To identify genes potentially involved in these observed probiotic properties, the complete genome sequences of N5 and N7 were determined using a combination of Illumina and nanopore sequencing. The genomes of strains N5 and N7 were found to be highly conserved, with two N5-specific and four N7-specific genes identified. Multiple genes involved in gastrointestinal environment adaptation and probiotic properties, including acidic and bile stress tolerance, anti-inflammation, CAZymes, and utilization and biosynthesis of carbohydrate compounds, were identified in both genomes. Comparative genome analysis of the two genomes and 17 available complete L. johnsonii genomes revealed 101 genes specifically harbored by strains N5 and N7, several of which were implicated in potential probiotic properties. Overall, this study provides novel insights into the genetic basis of niche adaptation and probiotic properties, as well as the genome diversity of L. johnsonii.

19.
Hortic Res ; 11(6): uhae121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919561

RESUMO

Root-associated microbiomes play a crucial role in plant responses to biotic and abiotic stresses. Plants can enrich beneficial microbes to increase their stress-relieving ability. Above-ground insect herbivory is among the most detrimental stresses for plants, especially to crop production. However, few studies have explored how root-associated microbiomes respond to herbivores and influence plant-defense functions under herbivory stress. We investigate the changes and functional role of root-associated microbial communities under herbivory stress using leafminer (Liriomyza trifolii) and cowpea (Vigna unguiculata) as a focal system. We did this by using a combination of 16S ribosomal RNA gene profiling and metagenomic sequencing to test for differences in co-occurrence networks and functions between cowpea plants infested and noninfested with leafminers. The results demonstrated that leafminer infestation caused a shift in the rhizosphere microbiome, which was characterized by a significant variation in microbiome community structure and composition, the selection of hub microbes involved in nitrogen (N) metabolism, and functional enrichment related to N metabolism. Notably, nitrogen-fixing bacteria Bradyrhizobium species were actively enriched and selected to be hubs in the rhizosphere. Inoculation with Bradyrhizobium enhanced cowpea performance under leafminer stress and increased protease inhibitor levels to decrease leafminer fitness. Overall, our study characterized the changes of root-associated microbiota between leafminer-infested and noninfested cowpea plants and revealed the mechanisms underlying the rhizosphere microbiome shift that enhance plant performance and defense against herbivory. Our findings provide further support for the notion that plants enrich rhizosphere microbes to counteract aboveground insect herbivores.

20.
Nat Commun ; 15(1): 2179, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467684

RESUMO

Metagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.


Assuntos
Ecossistema , Metagenoma , Silicatos , Metagenoma/genética , Metagenômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA