Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139262

RESUMO

Intestinal inflammation is a complex and recurrent inflammatory disease. Pharmacological and pharmacodynamic experiments showed that aspirin eugenol ester (AEE) has good anti-inflammatory, antipyretic, and analgesic effects. However, the role of AEE in regulating intestinal inflammation has not been explored. This study aimed to investigate whether AEE could have a protective effect on LPS-induced intestinal inflammation and thus help to alleviate the damage to the intestinal barrier. This was assessed with an inflammation model in Caco-2 cells and in rats induced with LPS. The expression of inflammatory mediators, intestinal epithelial barrier-related proteins, and redox-related signals was analyzed using an enzyme-linked immunosorbent assay (ELISA), Western blotting, immunofluorescence staining, and RT-qPCR. Intestinal damage was assessed by histopathological examination. Changes in rat gut microbiota and their functions were detected by the gut microbial metagenome. AEE significantly reduced LPS-induced pro-inflammatory cytokine levels (p < 0.05) and oxidative stress levels in Caco-2 cells and rats. Compared with the LPS group, AEE could increase the relative expression of Occludin, Claudin-1, and zonula occludens-1 (ZO-1) and decrease the relative expression of kappa-B (NF-κB) and matrix metalloproteinase-9. AEE could significantly improve weight loss, diarrhea, reduced intestinal muscle thickness, and intestinal villi damage in rats. Metagenome results showed that AEE could regulate the homeostasis of the gut flora and alter the relative abundance of Firmicutes and Bacteroidetes. Flora enrichment analysis indicated that the regulation of gut flora with AEE may be related to the regulation of glucose metabolism and energy metabolism. AEE could have positive effects on intestinal inflammation-related diseases.


Assuntos
Enteropatias , Lipopolissacarídeos , Humanos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Células CACO-2 , Aspirina/farmacologia , Aspirina/metabolismo , Mucosa Intestinal/metabolismo , Inflamação/metabolismo , Eugenol/farmacologia , Eugenol/metabolismo , Enteropatias/metabolismo
2.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375124

RESUMO

Resveratrol has anti-inflammatory, anti-cancer, and anti-aging pharmacological activities. There is currently a gap in academic research regarding the uptake, transport, and reduction of H2O2-induced oxidative damage of resveratrol in the Caco-2 cell model. This study investigated the role of resveratrol in the uptake, transport, and alleviation of H2O2-induced oxidative damage in Caco-2 cells. In the Caco-2 cell transport model, it was observed that the uptake and transport of resveratrol (10, 20, 40, and 80 µM) were time dependent and concentration dependent. Different temperatures (37 °C vs. 4 °C) could significantly affect the uptake and transportation of resveratrol. The apical to basolateral transport of resveratrol was markedly reduced by STF-31, a GLUT1 inhibitor, and siRNA intervention. Furthermore, resveratrol pretreatment (80 µM) improves the viability of Caco-2 cells induced by H2O2. In a cellular metabolite analysis combined with ultra-high performance liquid chromatography-tandem mass spectrometry, 21 metabolites were identified as differentials. These differential metabolites belong to the urea cycle, arginine and proline metabolism, glycine and serine metabolism, ammonia recycling, aspartate metabolism, glutathione metabolism, and other metabolic pathways. The transport, uptake, and metabolism of resveratrol suggest that oral resveratrol could prevent intestinal diseases caused by oxidative stress.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Resveratrol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células CACO-2 , Transportador de Glucose Tipo 1/metabolismo , Peróxido de Hidrogênio/metabolismo , Transporte Biológico
3.
Arch Insect Biochem Physiol ; 110(1): e21880, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35191078

RESUMO

Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of several viruses that cause great harm to the sericulture industry, and its pathogenic mechanism is still being explored. Geldanamycin (GA), a kind of HSP90 inhibitor, has been verified to suppress BmNPV proliferation. However, the molecular mechanism by which GA inhibits BmNPV is unclear. MicroRNAs (miRNAs) have been shown to play a key role in regulating virus proliferation and host-pathogen interactions. In this study, BmN cells infected with BmNPV were treated by GA and DMSO for 72 h, respectively, then transcriptome analysis of miRNA was performed from the GA group and the control group. As a result, a total of 29 miRNAs were differentially expressed (DE), with 13 upregulated and 16 downregulated. Using bioinformatics analysis, it was found that the target genes of DEmiRNAs were involved in ubiquitin-mediated proteolysis, phagosome, proteasome, endocytosis pathways, and so on. Six DEmiRNAs were verified by quantitative reverse-transcription polymerase chain reaction. DElong noncoding RNA (DElncRNA)-DEmiRNA-messenger RNA (mRNA) regulatory networks involved in apoptosis and immune pathways were constructed in GA-treated BmN cells, which included 12 DEmiRNA, 132 DElncRNA, and 69 mRNAs. This regulatory network enriched the functional role of miRNA in the BmNPV-silkworm interactions and improved our understanding of the molecular mechanism of HSP90 inhibitors on BmNPV proliferation.


Assuntos
Bombyx , MicroRNAs , Nucleopoliedrovírus , Animais , Benzoquinonas , Bombyx/metabolismo , Lactamas Macrocíclicas , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleopoliedrovírus/fisiologia , RNA Mensageiro/metabolismo , Transcriptoma
4.
J Vet Pharmacol Ther ; 45(3): 311-319, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35243644

RESUMO

A flow-limited physiologically based pharmacokinetic (PBPK) model consisting of seven compartments was established for orbifloxacin in crucian carp to predict drug concentrations after intravenous or intramuscular injections. Physiological and anatomical parameters, including tissue weights and blood flow through different tissues, were obtained from previous literature. The tissue/plasma partition coefficients for orbifloxacin were calculated using the area method or parameter optimization. In addition, their values were 0.9326, 1.1204, 1.1644, 1.3514, and 2.0057 in the liver, skin, muscle, kidney, and the rest of the body compartment, respectively. Based on the current PBPK model, orbifloxacin concentrations were predicted and compared with those previously reported for further validation. In addition, the mean absolute percentage error (MAPE) values were also calculated, with values ranging from 10.21% in plasma to 42.37% in kidneys, indicating acceptable predictions for all tissues and plasma. A local sensitivity analysis was performed, which showed that the parameters related to elimination and distribution were most influential on orbifloxacin concentrations in muscle. This model was finally used to predict plasma and tissue concentrations after multiple intramuscular dosing. The current PBPK model provided a valuable tool for predicting the tissue residues of orbifloxacin in crucian carp following intramuscular injection.


Assuntos
Carpas , Carpa Dourada , Animais , Antibacterianos/farmacocinética , Ciprofloxacina/análogos & derivados , Modelos Biológicos
5.
Heart Vessels ; 34(1): 167-176, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30043157

RESUMO

We hypothesize that the controlled delivery of vascular endothelial growth factor (VEGF) using a novel protein sustained-release system based on the combination of protein-loaded dextran microparticles and PLGA microspheres could be useful to achieve mature vessel formation in a rat hind-limb ischemic model. VEGF-loaded dextran microparticles were fabricated and then encapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres to prepare VEGF-dextran-PLGA microspheres. The release behavior and bioactivity in promoting endothelial cell proliferation of VEGF from PLGA microspheres were monitored in vitro. VEGF-dextran-PLGA microsphere-loaded fibrin gel was injected into an ischemic rat model, and neovascularization at the ischemic site was evaluated. The release of VEGF from PLGA microspheres was in a sustained manner for more than 1 month in vitro with low level of initial burst release. The released VEGF enhanced the proliferation of endothelial cells in vitro, and significantly promoted the capillaries and smooth muscle α-actin positive vessels formation in vivo. The retained bioactivity of VEGF released from VEGF-dextran-PLGA microspheres potentiated the angiogenic efficacy of VEGF. This sustained-release system may be a promising vehicle for delivery of multiple angiogenic factors for therapeutic neovascularization.


Assuntos
Dextranos , Sistemas de Liberação de Medicamentos , Isquemia/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Proliferação de Células , Células Cultivadas , Preparações de Ação Retardada , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/patologia , Masculino , Microscopia Eletrônica de Varredura , Microesferas , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Ratos , Ratos Sprague-Dawley
6.
J Huazhong Univ Sci Technolog Med Sci ; 35(1): 111-116, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25673203

RESUMO

The lentivirus-mediated uPA interference in the proliferation, apoptosis, and secretion of osteoarthritic chondrocytes was examined in this study. Cells were obtained from the cartilage tissues of New Zealand white rabbits. They were cultured with interleukin (IL)-1ß (10 ng/mL) for 24 h and then divided into three groups: uPA-siRNA group (cells transfected with uPA-siRNA lentiviruses), blank control group (untreated cells), and negative control group (cells transfected with empty vectors). Western blotting and real-time quantitative reverse transcription-PCR (RT-QPCR) were performed to detect the protein and mRNA expression levels of uPA, MMP-1, MMP-3, MMP-9, MMP-10, MMP-13 and MMP-14 in osteoarthritic chondrocytes. Cell Counting Kit-8, flow cytometry, and colony formation assay were used to examine the proliferation and apoptosis of chondrocytes. The results showed that after uPA-siRNA transfection, the protein and mRNA expression levels of uPA, MMP-1, MMP-3, MMP-9, MMP-10, MMP-13, and MMP-14 were significantly decreased (P<0.05 for MMP-1, MMP-9, MMP-10 and MMP-14, P<0.01 for uPA, MMP-3 and MMP-13). Cell proliferation and colony formation rate were significantly higher and the cell apoptosis rate was significantly lower in uPA-siRNA group than in control groups (P<0.01). The proportion of cells in G0/G1 phase was markedly increased and that in the S phase decreased, and the cell cycle was arrested at the G1/S phase in the control group. In the uPA-siRNA group, the proportion of cells in the S phase was significantly increased, resulting in a different proportion of cells in cell cycle phase (P<0.01). It was suggested that the down-regulation of uPA gene could inhibit the expression of MMPs protein and cell apoptosis, increase the proliferation and colony formation of osteoarthritic chondrocytes.


Assuntos
Apoptose , Proliferação de Células , Condrócitos/citologia , Inativação Gênica , Lentivirus/genética , Metaloproteinases da Matriz/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Animais , Células Cultivadas , Condrócitos/enzimologia , Coelhos
7.
Appl Environ Microbiol ; 80(1): 29-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24077700

RESUMO

Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Minerais/metabolismo , Microbiologia do Solo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sideróforos/metabolismo
8.
Int J Syst Evol Microbiol ; 64(Pt 2): 621-624, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24158950

RESUMO

A Gram-reaction-negative, aerobic, non-motile, yellow-pigmented, rod-shaped bacterium, designated strain TH-19(T), was isolated from a forest soil sample in Jiangsu province, China. On the basis of 16S rRNA gene sequence similarity, strain TH-19(T) was shown to belong to the genus Myroides, a member of the phylum Bacteroidetes, and was related to Myroides odoratimimus LMG 4029(T) (98.7% similarity), Myroides profundi D25(T) (98.2%) and Myroides marinus JS-08(T) (97.5%). Strain TH-19(T) contained menaquinone-6 (MK-6) as the predominant menaquinone, and the dominant fatty acids were iso-C(15 : 0) and iso-C(17 : 0) 3-OH. The DNA G+C content of strain TH-19(T) was 37.2 mol%. The DNA-DNA relatedness values of strain TH-19(T) with Myroides odoratimimus JCM 7460(T), Myroides profundi D25(T) and Myroides marinus JS-08(T) were below 70%. Based on phenotypic, genotypic and phylogenetic evidence, it is suggested that strain TH-19(T) represents a novel species of the genus Myroides, for which the name Myroides xuanwuensis sp. nov. is proposed. The type strain is TH-19(T) ( = CCTCC AB 2013145(T) = JCM 19200(T)).


Assuntos
Flavobacteriaceae/classificação , Filogenia , Microbiologia do Solo , China , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Árvores/microbiologia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
9.
Int J Syst Evol Microbiol ; 64(Pt 3): 1030-1034, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24363294

RESUMO

A novel type of mineral-weathering bacterium was isolated from purplish soils collected from Yanting (Sichuan, south-western China). Cells of strain 1007(T) were Gram-stain-negative and rod-shaped, motile and yellow-pigmented. The isolate was strictly aerobic, catalase- and oxidase-positive, and grew optimally at 28-30 °C and pH 6.0-7.0. The genomic DNA G+C content of strain 1007(T) was 67±0.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1007(T) belonged to the genus Sphingomonas and was most closely related to Sphingomonas pruni IFO 15498(T) (97.3 %), Sphingomonas mali IFO 15500(T) (97.2 %), Sphingomonas japonica KC7(T) (97.2 %) and Sphingomonas koreensis JSS26(T) (97.0 %). This affiliation of strain 1007(T) to the genus Sphingomonas was confirmed by the presence of Q-10 as the major ubiquinone, sphingoglycolipid, C14 : 0 2-OH and by the absence of 3-hydroxy fatty acids. The major polyamine was homospermidine. The main cellular fatty acids included summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. Based on the low level of DNA-DNA relatedness (ranging from 26.1 % to 58.7 %) to these type strains of species of the genus Sphingomonas and unique phenotypic characteristics, strain 1007(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas yantingensis sp. nov. is proposed. The type strain is 1007(T) ( = DSM 27244(T) = JCM 19201(T) = CCTCC AB 2013146(T)).


Assuntos
Filogenia , Microbiologia do Solo , Sphingomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oryza/microbiologia , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Ubiquinona/química
10.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(4): 474-9, 2014 07.
Artigo em Zh | MEDLINE | ID: mdl-25187464

RESUMO

OBJECTIVE: To assess the efficacy and safety of Dan'e-fukang soft extract for dysmenorrhea by meta-analysis. METHODS: Cochrane Controlled Trials Register, PubMed, EMBASE, CBM, VIP, Wanfang Data, and CNKI databases were searched. Results of randomized controlled trials were also harvested from pharmaceutical companies by manual search. Meta-analysis was carried out according to the method provided by the Cochrane Collaboration with RevMan5.0 software. RESULTS: Twelve Chinese papers were selected, and 1213 patients were included. Significant difference in recovery rate was found between Dan'e-fukang soft extract group and other drugs group (RR=1.33, 95%CI: 1.02-1.75, P<0.05), but the difference no longer existed when studies with pseudo ginseng and marvelon were removed from other drug groups (RR=1.08, 95%CI: 0.91-1.29, P>0.05). No statistical difference was noticed in total effective rate between two groups (RR=1.04, 95%CI: 1.00-1.08, P>0.05). A statistical difference in improvement of dysmenorrhea symptoms was found before and after treatment in both Dan'e-fukang soft extract group and other drugs group (MD=5.79, 95%CI: 5.01-6.56, P<0.001; MD=4.62, 95%CI: 3.71-5.53, P<0.001), while no significant difference was seen between two groups before treatment (MD=0.20, 95%CI: -0.11-0.50, P>0.05) and after treatment (MD=-0.94, 95%CI: -2.11-0.23, P>0.05). Oral administration of Dan'e-fukang soft extract caused only mild gastrointestinal discomfort, but other drugs had more adverse effects including serious gastrointestinal reaction, severe liver dysfunction, vaginal bleeding, and female masculinity. CONCLUSION: The existing evidence shows that Dan'e-fukang soft extract has the same efficacy as other drugs in treatment of dysmenorrheal. Because of the quality of the included studies was limited, the evidence of the efficacy and safety of Dan'e-fukang soft extract was not strong, and high-quality randomized trials with large samples are needed.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Dismenorreia/tratamento farmacológico , Feminino , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Artigo em Inglês | MEDLINE | ID: mdl-39021186

RESUMO

Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

12.
Front Microbiol ; 15: 1396663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873155

RESUMO

Klebsiella pneumoniae (K. pneumoniae) infection and the rapid spread of multi-drug resistant (MDR) bacteria pose a serious threat to global healthcare. Polymyxin E (colistin), a group of cationic antimicrobial polypeptides, is currently one of the last resort treatment options against carbapenem-resistant Gram-negative pathogens. The effectiveness of colistin has been compromised due to its intensive use. This study found that fingolimod (FLD), a natural product derivative, exhibited a significant synergistic bactericidal effect on K. pneumoniae when combined with colistin, both in vitro and in vivo. The checkerboard method was employed to assess the in vitro synergistic effect of FLD with colistin. FLD enhanced the susceptibility of bacteria to colistin and lowered effectively minimum inhibitory concentrations (MIC) when compared to colistin MIC, and the fractional inhibitory concentrations (FIC) value was less than 0.3. The time-kill curve demonstrated that the combination treatment of FLD and colistin had significant bactericidal efficacy. The in vitro concurrent administration of colistin and FLD resulted in heightening membrane permeability, compromising cell integrity, diminishing membrane fluidity, and perturbing membrane homeostasis. They also induced alterations in membrane potential, levels of reactive oxygen species, and adenosine triphosphate synthesis, ultimately culminating in bacterial death. Moreover, the combination of FLD with colistin significantly influenced fatty acid metabolism. In the mouse infection model, the survival rate of mice injected with K. pneumoniae was significantly improved to 67% and pathological damage was significantly relieved with combination treatment of FLD and colistin when compared with colistin treatment. This study highlights the potential of FLD in combining with colistin for treating infections caused by MDR isolates of K. pneumoniae.

13.
Oncol Lett ; 26(2): 340, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37427347

RESUMO

Cancer is a serious and potentially life-threatening disease, which, despite numerous advances over several decades, remains a challenge to treat that challenging to detect at an early stage or treat during the later stages. Long noncoding RNAs are >200 nucleotides long and do not possess protein-coding capacity, instead regulating cellular processes, such as proliferation, differentiation, maturation, apoptosis, metastasis, and sugar metabolism. Several studies have shown the role of lncRNAs and glucose metabolism in regulating several key glycolytic enzymes and the activity of multiple functional signaling pathways during tumor progression. Thus, it is possible to further learn about the effects of lncRNA and glycolytic metabolism on tumor diagnosis, treatment, and prognosis through a thorough investigation of the lncRNA expression profiles and glycolytic metabolism in tumors. This may provide a novel strategy for improving the management of several types of cancer.

14.
Exp Ther Med ; 26(4): 470, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37664674

RESUMO

Cancer has emerged as the most common cause of death in China. The change in lipid metabolism has been confirmed to have a role in several tumor types, such as esophageal, gastric, colorectal and liver cancer. Cancer cells use lipid metabolism for energy and then rapidly proliferate, invade and migrate. The main pathway by which cancer cell lipid metabolism influences cancer progression is increased fatty acid synthesis. Long non-coding (lnc)RNAs are important ncRNAs that were indicated to have significant roles in the development of human tumors. They are considered potential tumor biomarkers. Increased lipid synthesis or uptake due to deregulation of lncRNAs contributes to rapid tumor growth. In the present review, current studies on the relationship between lncRNAs, lipid metabolism and the occurrence and development of tumors were collated and summarized, and their mechanism of action was discussed. The review is expected to provide a theoretical basis for tumor treatment and prognosis evaluation based on the effective regulation of lncRNAs and lipid metabolism.

15.
Biomed Pharmacother ; 166: 115311, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572635

RESUMO

BACKGROUND: Exosomes play an essential role in maintaining normal brain function due to their ability to cross the blood-brain barrier. Aspirin eugenol ester (AEE) is a new medicinal compound synthesized by the esterification of aspirin with eugenol using the prodrug principle. Aspirin has been reported to have neuroprotective effects and may be effective against neurodegenerative diseases. PURPOSE: This study wanted to investigate how AEE affected neurological diseases in vivo and in vitro. EXPERIMENTAL APPROACH: A multi-omics approach was used to explore the effects of AEE on the nervous system. Gene and protein expression changes of BDNF and NEFM in SY5Y cells after AEE treatment were detected using RT-qPCR and Western Blot. KEY RESULTS: The multi-omics results showed that AEE could regulate neuronal synapses, neuronal axons, neuronal migration, and neuropeptide signaling by affecting transport, inflammatory response, and regulating apoptosis. Exosomes secreted by AEE-treated Caco-2 cells could promote the growth of neurofilaments in SY5Y cells and increased the expression of BDNF and NEFM proteins in SY5Y cells. miRNAs in the exosomes of AEE-treated Caco-2 cells may play an important role in the activation of SY5Y neuronal cells. CONCLUSIONS: In conclusion, AEE could play positive effects on neurological-related diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Eugenol , Humanos , Eugenol/farmacologia , Eugenol/uso terapêutico , Células CACO-2 , Fator Neurotrófico Derivado do Encéfalo/genética , Multiômica , Aspirina/farmacologia , Aspirina/uso terapêutico
16.
Front Pharmacol ; 13: 887598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600888

RESUMO

Background: Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterification of aspirin with eugenol using the prodrug principle. AEE has the pharmacological activities of being anti-inflammatory, antipyretic, analgesic, anti-cardiovascular diseases, and anti-oxidative stress However, its oral bioavailability is poor, and its intestinal absorption and transport characteristics are still unknown. Objective: The purpose of this study was to investigate the uptake and transport mechanisms of AEE in Caco-2 cells. Methods: The effects of time, concentration, and temperature on the transport and uptake of AEE were studied. Results: The results showed that a higher concentration of salicylic acid (SA) was detected in the supernatant of cell lysates and cell culture medium, while AEE was not detected. Therefore, the content change of AEE was expressed as the content change of its metabolite SA. In the uptake experiment, when the factors of time, concentration, and temperature were examined, the uptake of SA reached the maximum level within 30 min, and there was concentration dependence. In addition, low temperature (4°C) could significantly reduce the uptake of SA in Caco-2 cells. In the transport experiment, under the consideration of time, concentration, and temperature, the transepithelial transport of SA from AP-BL and BL-AP sides was time-dependent. The amount of SA transported in Caco-2 cells increased with the increase of concentration, but the transmembrane transport rate had no correlation with the concentration. This phenomenon may be due to the saturation phenomenon of high concentration. The efflux ratio (ER) was less than 1, which indicated that their intestinal transport mechanism was passive transport. Moreover, the temperature had a significant effect on the transport of AEE. Conclusion: In summary, intestinal absorption of AEE through Caco-2 cell monolayers was related to passive transport. The uptake and transport of AEE were concentration-dependent, and temperature significantly affected their uptake and transport. The absorption and transport characteristics of AEE may contribute to the exploration of mechanisms of absorption and transport of chemosynthetic drugs in vitro.

17.
Front Nutr ; 9: 894117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685871

RESUMO

Naringenin, a flavanone, has been reported for a wide range of pharmacological activities. However, there are few reports on the absorption, transport and antioxidant effects of naringenin. The study was to explore the uptake, transport and antioxidant effects of naringenin in vitro. Cell transmembrane resistance, lucifer yellow transmission rate, and alkaline phosphatase activity were used to evaluate the successful construction of cell model. The results showed that the absorption and transport of naringenin by Caco-2 cells were time- and concentration-dependent. Different temperatures (37 and 4°C) had a significant effect on the uptake and transport of naringenin. Verapamil, potent inhibitor of P-glycoprotein, significantly inhibit naringenin transport in Caco-2 cells. The results revealed that naringenin was a moderately absorbed biological macromolecule and can penetrate Caco-2 cells, mainly mediated by the active transport pathway involved in P-glycoprotein. At the same time, naringenin pretreatment could significantly increase the viability of H2O2-induced Caco-2 cells. Twenty four differential metabolites were identified based on cellular metabolite analysis, mainly including alanine, aspartate and glutamate metabolism, histidine metabolism, taurine and hypotaurine metabolism, pyruvate metabolism, purine metabolism, arginine biosynthesis, citrate cycle, riboflavin metabolism, and D-glutamine and D-glutamate metabolism. We concluded that the transport of naringenin by Caco-2 cells is mainly involved in active transport mediated by P-glycoprotein and naringenin may play an important role in oxidative stress-induced intestinal diseases.

18.
Front Immunol ; 13: 939106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967416

RESUMO

Aspirin eugenol ester (AEE) was a novel drug compound with aspirin and eugenol esterified. AEE had various pharmacological activities, such as anti-inflammatory, antipyretic, analgesic, anti-oxidative stress and so on. In this study, it was aimed to investigate the effect of AEE on the acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. In vitro experiments evaluated the protective effect of AEE on the LPS-induced A549 cells. The tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) were measured in the cell supernatant. The Wistar rats were randomly divided into five groups (n = 8): control group, model group (LPS group), LPS + AEE group (AEE, 54 mg·kg-1), LPS + AEE group (AEE, 108 mg·kg-1), LPS + AEE group (AEE, 216 mg·kg-1). The lung wet-to-dry weight (W/D) ratio and immune organ index were calculated. WBCs were counted in bronchoalveolar lavage fluid (BALF) and total protein concentration was measured. Hematoxylin-Eosin (HE) staining of lung tissue was performed. Glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), antioxidant superoxide dismutase (SOD), total antioxidant capacity (T-AOC), lactate dehydrogenase (LDH), C-reactive protein (CRP), myeloperoxidase (MPO), malondialdehyde (MDA), macrophage mobility inhibitory factor (MIF), TNF-α, IL-6, and IL-1ß activity were measured. The metabolomic analysis of rat serum was performed by UPLC-QTOF-MS/MS. From the results, compared with LPS group, AEE improved histopathological changes, reduced MDA, CRP, MPO, MDA, and MIF production, decreased WBC count and total protein content in BALF, pro-inflammatory cytokine levels, immune organ index and lung wet-dry weight (W/D), increased antioxidant enzyme activity, in a dose-dependent manner. The results of serum metabolomic analysis showed that the LPS-induced ALI caused metabolic disorders and oxidative stress in rats, while AEE could ameliorate it to some extent. Therefore, AEE could alleviate LPS-induced ALI in rats by regulating abnormal inflammatory responses, slowing down oxidative stress, and modulating energy metabolism.


Assuntos
Lesão Pulmonar Aguda , Antioxidantes , Aspirina , Eugenol , Células A549/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aspirina/análogos & derivados , Aspirina/farmacologia , Aspirina/uso terapêutico , Eugenol/análogos & derivados , Eugenol/farmacologia , Eugenol/uso terapêutico , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
19.
Oxid Med Cell Longev ; 2021: 5527475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257805

RESUMO

Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Aspirina/análogos & derivados , Eugenol/análogos & derivados , Peróxido de Hidrogênio/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Infecciosos Locais/farmacologia , Aspirina/farmacologia , Aspirina/uso terapêutico , Eugenol/farmacologia , Eugenol/uso terapêutico , Humanos , Peróxido de Hidrogênio/farmacologia , Células PC12 , Ratos , Transfecção
20.
Oxid Med Cell Longev ; 2021: 6697872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394831

RESUMO

Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. The aim of this study was to investigate the protective effect of AEE on paraquat- (PQ-) induced cell damage of SH-SY5Y human neuroblastoma cells and its potential molecular mechanism. There was no significant change in cell viability when AEE was used alone. PQ treatment reduced cell viability in a concentration-dependent manner. However, AEE reduced the PQ-induced loss of cell viability. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and 4'6-diamidino-2-phenylindole (DAPI) staining were used to evaluate cell apoptosis. Compared with the PQ group, AEE pretreatment could significantly inhibit PQ-induced cell damage. AEE pretreatment could reduce the cell damage of SH-SY5Y cells induced by PQ via reducing superoxide anion, intracellular reactive oxygen species (ROS), and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). At the same time, AEE could increase the activity of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) and decrease the activity of malondialdehyde (MDA). The results showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of caspase-3 and Bax was significantly increased in the PQ group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of caspase-3 and Bax in SH-SY5Y cells. PI3K inhibitor LY294002 and the silencing of PI3K by shRNA could weaken the protective effect of AEE on PQ-induced SH-SY5Y cells. Therefore, AEE has a protective effect on PQ-induced SH-SY5Y cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Aspirina/análogos & derivados , Eugenol/análogos & derivados , Paraquat/toxicidade , Substâncias Protetoras/farmacologia , Aspirina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Eugenol/farmacologia , Glutationa Peroxidase/metabolismo , Humanos , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA