Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Am Chem Soc ; 143(21): 8056-8068, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34028251

RESUMO

Among the ribosomally synthesized and post-translationally modified peptide (RiPP) natural products, "graspetides" (formerly known as microviridins) contain macrocyclic esters and amides that are formed by ATP-grasp ligase tailoring enzymes using the side chains of Asp/Glu as acceptors and Thr/Ser/Lys as donors. Graspetides exhibit diverse patterns of macrocylization and connectivities exemplified by microviridins, that have a caged tricyclic core, and thuringin and plesiocin that feature a "hairpin topology" with cross-strand ω-ester bonds. Here, we characterize chryseoviridin, a new type of multicore RiPP encoded by Chryseobacterium gregarium DS19109 (Phylum Bacteroidetes) and solve a 2.44 Å resolution crystal structure of a quaternary complex consisting of the ATP-grasp ligase CdnC bound to ADP, a conserved leader peptide and a peptide substrate. HRMS/MS analyses show that chryseoviridin contains four consecutive five- or six-residue macrocycles ending with a microviridin-like core. The crystal structure captures respective subunits of the CdnC homodimer in the apo or substrate-bound state revealing a large conformational change in the B-domain upon substrate binding. A docked model of ATP places the γ-phosphate group within 2.8 Å of the Asp acceptor residue. The orientation of the bound substrate is consistent with a model in which macrocyclization occurs in the N- to C-terminal direction for core peptides containing multiple Thr/Ser-to-Asp macrocycles. Using systematically varied sequences, we validate this model and identify two- or three-amino acid templating elements that flank the macrolactone and are required for enzyme activity in vitro. This work reveals the structural basis for ω-ester bond formation in RiPP biosynthesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Produtos Biológicos/metabolismo , Ligases/metabolismo , Peptídeos/metabolismo , Trifosfato de Adenosina/química , Amidas/química , Amidas/metabolismo , Produtos Biológicos/química , Ésteres/química , Ésteres/metabolismo , Ligases/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Conformação Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional
2.
Molecules ; 26(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885778

RESUMO

Pyrazines (1,4-diazirines) are an important group of natural products that have tremendous monetary value in the food and fragrance industries and can exhibit a wide range of biological effects including antineoplastic, antidiabetic and antibiotic activities. As part of a project investigating the secondary metabolites present in understudied and chemically rich Actinomycetes, we isolated a series of six pyrazines from a soil-derived Lentzea sp. GA3-008, four of which are new. Here we describe the structures of lentzeacins A-E (1, 3, 5 and 6) along with two known analogues (2 and 4) and the porphyrin zincphyrin. The structures were determined by NMR spectroscopy and HR-ESI-MS. The suite of compounds present in Lentzea sp. includes 2,5-disubstituted pyrazines (compounds 2, 4, and 6) together with the new 2,6-disubstituted isomers (compounds 1, 3 and 5), a chemical class that is uncommon. We used long-read Nanopore sequencing to assemble a draft genome sequence of Lentzea sp. which revealed the presence of 40 biosynthetic gene clusters. Analysis of classical di-modular and single module non-ribosomal peptide synthase genes, and cyclic dipeptide synthases narrows down the possibilities for the biosynthesis of the pyrazines present in this strain.


Assuntos
Actinomycetales/química , Pirazinas/isolamento & purificação , Microbiologia do Solo , Vias Biossintéticas/genética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Genoma Bacteriano , Família Multigênica , Peptídeo Sintases/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato
3.
J Am Chem Soc ; 142(38): 16161-16166, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32866011

RESUMO

Chrysophaentin A is an antimicrobial natural product isolated from the marine alga C. taylori in milligram quantity. Structurally, chrysophaentin A features a macrocyclic biaryl ether core incorporating two trisubstituted chloroalkenes at its periphery. A concise synthesis of iso- and 9-dechlorochrysophaentin A enabled by a Z-selective ring-closing metathesis (RCM) cyclization followed by an oxygen to carbon ring contraction is described. Fluorescent microscopy studies revealed 9-dechlorochrysophaentins leads to inhibition of bacterial cell wall biosynthesis by disassembly of key divisome proteins, the cornerstone to bacterial cell wall biosynthesis and division.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Produtos Biológicos/farmacologia , Parede Celular/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Parede Celular/metabolismo , Eucariotos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenótipo , Estereoisomerismo
4.
Bioorg Med Chem ; 26(21): 5751-5757, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389408

RESUMO

Sialidases or neuraminidases are enzymes that catalyze the cleavage of terminal sialic acids from oligosaccharides and glycoconjugates. They play important roles in bacterial and viral infection and have been attractive targets for drug development. Structure-based drug design has led to potent inhibitors against neuraminidases of influenza A viruses that have been used successfully as approved therapeutics. However, selective and effective inhibitors against bacterial and human sialidases are still being actively pursued. Guided by crystal structural analysis, several derivatives of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en or DANA) were designed and synthesized as triazole-linked transition state analogs. Inhibition studies revealed that glycopeptide analog E-(TriazoleNeu5Ac2en)-AKE and compound (TriazoleNeu5Ac2en)-A were selective inhibitors against Vibrio cholerae sialidase, while glycopeptide analog (TriazoleNeu5Ac2en)-AdE selectively inhibited Vibrio cholerae and A. ureafaciens sialidases.


Assuntos
Inibidores Enzimáticos/química , Glicopeptídeos/química , Neuraminidase/antagonistas & inibidores , Triazóis/química , Vibrio cholerae/enzimologia , Domínio Catalítico , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Glicopeptídeos/síntese química , Humanos , Simulação de Acoplamento Molecular , Neuraminidase/química , Triazóis/síntese química
5.
Mol Genet Metab ; 120(3): 198-206, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28007335

RESUMO

This study documents the disparate therapeutic effect of N-carbamyl-l-glutamate (NCG) in the activation of two different disease-causing mutants of carbamyl phosphate synthetase 1 (CPS1). We investigated the effects of NCG on purified recombinant wild-type (WT) mouse CPS1 and its human corresponding E1034G (increased ureagenesis on NCG) and M792I (decreased ureagenesis on NCG) mutants. NCG activates WT CPS1 sub-optimally compared to NAG. Similar to NAG, NCG, in combination with MgATP, stabilizes the enzyme, but competes with NAG binding to the enzyme. NCG supplementation activates available E1034G mutant CPS1 molecules not bound to NAG enhancing ureagenesis. Conversely, NCG competes with NAG binding to the scarce M792I mutant enzyme further decreasing residual ureagenesis. These results correlate with the respective patient's response to NCG. Particular caution should be taken in the administration of NCG to patients with hyperammonemia before their molecular bases of their urea cycle disorders is known.


Assuntos
Trifosfato de Adenosina/administração & dosagem , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/tratamento farmacológico , Glutamatos/administração & dosagem , Trifosfato de Adenosina/farmacologia , Animais , Doença da Deficiência da Carbamoil-Fosfato Sintase I/enzimologia , Quimioterapia Combinada , Feminino , Glutamatos/farmacologia , Humanos , Masculino , Camundongos , Mutação , Medicina de Precisão , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Doenças Raras/tratamento farmacológico , Doenças Raras/enzimologia
6.
Proteins ; 81(10): 1847-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23609986

RESUMO

We report herein the crystal structure of Escherichia coli RimK at a resolution of 2.85 Å, an enzyme that catalyzes the post-translational addition of up to 15 C-terminal glutamate residues to ribosomal protein S6. The structure belongs to the ATP-grasp superfamily and is organized as a tetramer, consistent with gel filtration analysis. Each subunit consists of three distinct structural domains and the active site is located in the cleft between these domains. The catalytic reaction appears to occur at the junction between the three domains as ATP binds between the B and C domains, and other substrates bind nearby.


Assuntos
Proteínas de Escherichia coli , Peptídeo Sintases , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Conformação Proteica , Dobramento de Proteína
7.
Biochem Biophys Res Commun ; 430(4): 1253-8, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23261468

RESUMO

N-Acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS.


Assuntos
Acil Coenzima A/química , Aminoácido N-Acetiltransferase/química , Proteínas de Bactérias/química , Glutamatos/química , Neisseria gonorrhoeae/enzimologia , Aminoácido N-Acetiltransferase/genética , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Estrutura Secundária de Proteína , Especificidade por Substrato
8.
Biochem Biophys Res Commun ; 437(4): 585-90, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23850694

RESUMO

Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in L-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by L-arginine, although L-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by L-arginine, we have determined the structure of the mmNAGS/K complexed with L-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of L-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the L-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when L-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by L-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism.


Assuntos
Alphaproteobacteria/enzimologia , Aminoácido N-Acetiltransferase/química , Arginina/química , Proteínas de Bactérias/química , Sítio Alostérico , Catálise , Domínio Catalítico , Escherichia coli/metabolismo , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica
9.
Sci Rep ; 13(1): 11944, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488207

RESUMO

Chrysophaeum taylorii is a member of an understudied clade of marine algae that can be responsible for harmful coastal blooms and is known to accumulate bioactive natural products including antibiotics of the chrysophaentin class. Whole genome sequencing of laboratory-cultivated samples revealed an extensive and diverse complement of secondary metabolite biosynthetic genes in C. taylorii, alongside a small microbiome with a more limited biosynthetic potential. 16S microbiome analysis of laboratory cultured alongside wild-collected samples revealed several common taxa; however, analysis of biosynthetic genes suggested an algal origin for the chrysophaentins, possibly via one of several non-canonical polyketide synthase genes encoded within the genome.


Assuntos
Produtos Biológicos , Microbiota , Metabolismo Secundário , Antibacterianos , Laboratórios
10.
Proteins ; 80(5): 1436-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22328207

RESUMO

Putrescine carbamoyltransferase (PTCase) catalyzes the conversion of carbamoylputrescine to putrescine and carbamoyl phosphate (CP), a substrate of carbamate kinase (CK). The crystal structure of PTCase has been determined and refined at 3.2 Å resolution. The trimeric molecular structure of PTCase is similar to other carbamoyltransferases, including the catalytic subunit of aspartate carbamoyltransferase (ATCase) and ornithine carbamoyltransferase (OTCase). However, in contrast to other trimeric carbamoyltransferases, PTCase binds both CP and putrescine with Hill coefficients at saturating concentrations of the other substrate of 1.53 ± 0.03 and 1.80 ± 0.06, respectively. PTCase also has a unique structural feature: a long C-terminal helix that interacts with the adjacent subunit to enhance intersubunit interactions in the molecular trimer. The C-terminal helix appears to be essential for both formation of the functional trimer and catalytic activity, since truncated PTCase without the C-terminal helix aggregates and has only 3% of native catalytic activity. The active sites of PTCase and OTCase are similar, with the exception of the 240's loop. PTCase lacks the proline-rich sequence found in knotted carbamoyltransferases and is unknotted. A Blast search of all available genomes indicates that 35 bacteria, most of which are Gram-positive, have an agcB gene encoding PTCase located near the genes that encode agmatine deiminase and CK, consistent with the catabolic role of PTCase in the agmatine degradation pathway. Sequence comparisons indicate that the C-terminal helix identified in this PTCase structure will be found in all other PTCases identified, suggesting that it is the signature feature of the PTCase family of enzymes.


Assuntos
Proteínas de Bactérias/química , Carboxil e Carbamoil Transferases/química , Enterococcus faecalis/enzimologia , Regulação Alostérica , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Domínio Catalítico , Cristalização , Bases de Dados Genéticas , Enterococcus faecalis/metabolismo , Histidina , Dados de Sequência Molecular , Ornitina Carbamoiltransferase , Conformação Proteica , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
11.
J Am Chem Soc ; 134(16): 6920-3, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22489570

RESUMO

Cationic monolayer-protected gold nanoparticles (AuNPs) with sizes of 6 or 2 nm interact with the cell membranes of Escherichia coli (Gram-) and Bacillus subtilis (Gram+), resulting in the formation of strikingly distinct AuNP surface aggregation patterns or lysis depending upon the size of the AuNPs. The aggregation phenomena were investigated by transmission electron microscopy and UV-vis spectroscopy. Upon proteolytic treatment of the bacteria, the distinct aggregation patterns disappeared.


Assuntos
Bacillus subtilis/química , Escherichia coli/química , Ouro/química , Nanopartículas Metálicas/química , Bacillus subtilis/citologia , Cátions/química , Escherichia coli/citologia , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Propriedades de Superfície
12.
ACS Chem Biol ; 17(6): 1450-1459, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537058

RESUMO

Lectins, carbohydrate-binding proteins of nonimmune origin, bind to carbohydrates and glycan shields present on the surfaces of cells and viral spike proteins. Lectins thus hold great promise as therapeutic and diagnostic proteins, exemplified by their potent antiviral activities and the desire to engineer synthetic carbohydrate receptors based on lectin recognition principles. Here, we describe a new carbohydrate-binding architectural motif─namely, a C3-symmetric tyrosine-based aromatic core, present in the therapeutic lectin griffithsin (GRFT). By using structure-based amino acid substitutions, X-ray crystallography, molecular dynamics (MD) simulations, and HIV-1 neutralization assays, we show that this core is critical for potent (pM) antiviral activity and nanomolar binding to the glycan shield largely consisting of high mannose glycans. Crystal structures and MD simulations show that CH-π interactions stabilize the aromatic cluster to maintain the three pseudo-symmetric carbohydrate-binding sites, nonaromatic amino acid substitutions (Tyr to Ala) abrogate antiviral activity, and increasing the aromatic CH-π edge-to-centroid interface via a Tyr to Trp substitution yields a GRFT variant with improved potency and increased residence time of Man-9 observed in MD simulations. NMR titrations of a Tyr-to-Ala variant indicate that disruption of the aromatic prevents the intermolecular crosslinking between two equivalents of Man-9 and one carbohydrate-binding face observed in wild-type GRFT and known to be critical for picomolar potency of this lectin. This C3-symmetric aromatic core defines a new recognition motif for the design of carbohydrate receptors and suggests principles for engineering known lectins to have increased affinity and stability.


Assuntos
Fármacos Anti-HIV , HIV-1 , Fármacos Anti-HIV/química , Carboidratos/química , HIV-1/metabolismo , Humanos , Lectinas/química , Lectinas de Plantas/química
13.
Org Lett ; 23(3): 682-686, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33444500

RESUMO

Six novel pyranonaphthoquinones, vertirhodins A-F (1-6), were discovered from a soil-derived Streptomyces sp. B15-008. Their chemical structures and absolute configurations were determined using nuclear magnetic resonance and comparison of experimental and theoretical electronic circular dichroism spectra. The vertirhodins feature an unusual C-8 N-methyl-2-pyrrolidinemethanol moiety, a 5,14-epoxide rarely seen in streptomyces-derived natural products, and a C-13 hydroxyl group that forms the semiquinone. A plausible ver biosynthetic gene cluster was identified through whole genome sequencing and provides insights into these features.


Assuntos
Produtos Biológicos/química , Naftoquinonas/química , Pirrolidinas/química , Streptomyces/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Família Multigênica , Naftoquinonas/isolamento & purificação , Pirrolidinas/isolamento & purificação
14.
mSystems ; 6(6): e0102021, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34812649

RESUMO

Genome mining is an important tool for discovery of new natural products; however, the number of publicly available genomes for natural product-rich microbes such as actinomycetes, relative to human pathogens with smaller genomes, is small. To obtain contiguous DNA assemblies and identify large (ca. 10 to greater than 100 kb) biosynthetic gene clusters (BGCs) with high GC (>70%) and high-repeat content, it is necessary to use long-read sequencing methods when sequencing actinomycete genomes. One of the hurdles to long-read sequencing is the higher cost. In the current study, we assessed Flongle, a recently launched platform by Oxford Nanopore Technologies, as a low-cost DNA sequencing option to obtain contiguous DNA assemblies and analyze BGCs. To make the workflow more cost-effective, we multiplexed up to four samples in a single Flongle sequencing experiment while expecting low-sequencing coverage per sample. We hypothesized that contiguous DNA assemblies might enable analysis of BGCs even at low sequencing depth. To assess the value of these assemblies, we collected high-resolution mass spectrometry data and conducted a multi-omics analysis to connect BGCs to secondary metabolites. In total, we assembled genomes for 20 distinct strains across seven sequencing experiments. In each experiment, 50% of the bases were in reads longer than 10 kb, which facilitated the assembly of reads into contigs with an average N50 value of 3.5 Mb. The programs antiSMASH and PRISM predicted 629 and 295 BGCs, respectively. We connected BGCs to metabolites for N,N-dimethyl cyclic-di-tryptophan, two novel lasso peptides, and three known actinomycete-associated siderophores, namely, mirubactin, heterobactin, and salinichelin. IMPORTANCE Short-read sequencing of GC-rich genomes such as those from actinomycetes results in a fragmented genome assembly and truncated biosynthetic gene clusters (often 10 to >100 kb long), which hinders our ability to understand the biosynthetic potential of a given strain and predict the molecules that can be produced. The current study demonstrates that contiguous DNA assemblies, suitable for analysis of BGCs, can be obtained through low-coverage, multiplexed sequencing on Flongle, which provides a new low-cost workflow ($30 to 40 per strain) for sequencing actinomycete strain libraries.

15.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 1): 86-95, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615976

RESUMO

Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Šresolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, ß=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.


Assuntos
Proteínas de Bactérias/química , Glutamatos/química , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Xylella/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Glutamato Sintase/química , Histidina , Ligação de Hidrogênio , Modelos Moleculares , Oligopeptídeos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
16.
PLoS One ; 8(7): e70369, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894642

RESUMO

N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK) domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K) from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K.


Assuntos
Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/metabolismo , Glutamatos/química , Glutamatos/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Humanos , Multimerização Proteica , Estrutura Secundária de Proteína
17.
PLoS One ; 6(12): e28825, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174908

RESUMO

Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 Å resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26° is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.


Assuntos
Alphaproteobacteria/enzimologia , Aminoácido N-Acetiltransferase/química , Sequência de Aminoácidos , Arginina/farmacologia , Domínio Catalítico , Coenzima A/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , Ácido Glutâmico/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Maleabilidade , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
18.
J Vis Exp ; (44)2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21085097

RESUMO

Electron crystallography has evolved as a method that can be used either alternatively or in combination with three-dimensional crystallization and X-ray crystallography to study structure-function questions of membrane proteins, as well as soluble proteins. Screening for two-dimensional (2D) crystals by transmission electron microscopy (EM) is the critical step in finding, optimizing, and selecting samples for high-resolution data collection by cryo-EM. Here we describe the fundamental steps in identifying both large and ordered, as well as small 2D arrays, that can potentially supply critical information for optimization of crystallization conditions. By working with different magnifications at the EM, data on a range of critical parameters is obtained. Lower magnification supplies valuable data on the morphology and membrane size. At higher magnifications, possible order and 2D crystal dimensions are determined. In this context, it is described how CCD cameras and online-Fourier Transforms are used at higher magnifications to assess proteoliposomes for order and size. While 2D crystals of membrane proteins are most commonly grown by reconstitution by dialysis, the screening technique is equally applicable for crystals produced with the help of monolayers, native 2D crystals, and ordered arrays of soluble proteins. In addition, the methods described here are applicable to the screening for 2D crystals of even smaller as well as larger membrane proteins, where smaller proteins require the same amount of care in identification as our examples and the lattice of larger proteins might be more easily identifiable at earlier stages of the screening.


Assuntos
Cristalização/métodos , Cristalografia/métodos , Proteínas de Membrana/química , Microscopia Crioeletrônica/métodos , Elétrons , Proteínas de Membrana/ultraestrutura
19.
J Struct Biol ; 160(1): 1-10, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17692534

RESUMO

Urokinase-type plasminogen activator (uPA) plays a crucial role in the regulation of plasminogen activation, tumor cell adhesion and migration. The inhibition of uPA activity is a promising mechanism for anti-cancer therapy. A cyclic peptidyl inhibitor, upain-1, CSWRGLENHRMC, was identified recently as a competitive and highly specific uPA inhibitor. We determined the crystal structure of uPA in complex with upain-1 at 2.15 A. The structure reveals that the cyclic peptide adopts a rigid conformation stabilized by a disulfide bond (residues 1-12) and three tight beta turns (residues 3-6, 6-9, 9-12). The Glu7 residue of upain-1 forms hydrogen bonds with the main chain nitrogen atoms of residues 4, 5, and 6 of upain-1, and is also critical for maintaining the active conformation of upain-1. The Arg4 of upain-1 is inserted into the uPA's specific S1 pocket. The Ser2 residue of upain-1 locates close to the S1beta pocket of uPA. The Gly5 and Glu7 residues of upain-1 occupy the S2 pocket and the oxyanion hole of uPA, respectively. Furthermore, the Asn8 residue of upain-1 binds to the 37- and 60-loops of uPA and renders the specificity of upain-1 for uPA. Based on this structure, a new pharmacophore for the design of highly specific uPA inhibitors was proposed.


Assuntos
Inibidores Enzimáticos/farmacologia , Peptídeos Cíclicos/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Sequência de Aminoácidos , Inibidores Enzimáticos/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos Cíclicos/química , Conformação Proteica
20.
J Struct Biol ; 157(2): 348-55, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17067818

RESUMO

Human serum albumin (HSA) is the most abundant plasma protein in the human body with a plasma concentration of 0.6mM. HSA plays an important role in drug transport and metabolism. Enzymatic activity of HSA on different substrates or drugs has been studied and documented. The structural mechanism of this activity, however, is unknown. In this study, we have determined the crystal structures of HSA-myristate in a complex of aspirin and of salicylic acid, respectively. The crystal structure of HSA-myristate-aspirin illustrates that aspirin transfers acetyl group to Lys199 and is hydrolyzed into salicylic acid by HSA. The hydrolysis product, salicylic acid, remains bound to HSA at a similar location, but it shows a very different orientation when compared with the salicylic acid in the HSA-myristate-salicylic acid ternary complex. These results not only provide the structural evidence of esterase activity of HSA, and demonstrate the conformational plasticity of HSA on drug binding, but also may provide structural information for the modulation of HSA-drug interaction by computational approach based on HSA-drug structure.


Assuntos
Esterases/química , Esterases/fisiologia , Inativação Metabólica , Albumina Sérica/química , Albumina Sérica/fisiologia , Aspirina/análogos & derivados , Aspirina/química , Cristalografia , Esterases/metabolismo , Humanos , Modelos Moleculares , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Ligação Proteica , Salicilatos/química , Salicilatos/metabolismo , Albumina Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA