Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(15): 8283-8292, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37486765

RESUMO

As an enabling technique of synthetic biology, the scale of DNA assembly largely determines the scale of genetic manipulation. However, large DNA assembly technologies are generally cumbersome and inefficient. Here, we developed a YLC (yeast life cycle)-assembly method that enables in vivo iterative assembly of large DNA by nesting cell-cell transfer of assembled DNA in the cycle of yeast mating and sporulation. Using this method, we successfully assembled a hundred-kilobase (kb)-sized endogenous yeast DNA and a megabase (Mb)-sized exogenous DNA. For each round, over 104 positive colonies per 107 cells could be obtained, with an accuracy ranging from 67% to 100%. Compared with other Mb-sized DNA assembly methods, this method exhibits a higher success rate with an easy-to-operate workflow that avoid in vitro operations of large DNA. YLC-assembly lowers the technical difficulty of Mb-sized DNA assembly and could be a valuable tool for large-scale genome engineering and synthetic genomics.


Assuntos
Técnicas Genéticas , Saccharomyces cerevisiae , Biologia Sintética , Estágios do Ciclo de Vida , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Biologia Sintética/métodos
2.
Nucleic Acids Res ; 51(21): 11967-11979, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889080

RESUMO

Synthetic biology and deep learning synergistically revolutionize our ability for decoding and recoding DNA regulatory grammar. The B-cell-specific transcriptional regulation is intricate, and unlock the potential of B-cell-specific promoters as synthetic elements is important for B-cell engineering. Here, we designed and pooled synthesized 23 640 B-cell-specific promoters that exhibit larger sequence space, B-cell-specific expression, and enable diverse transcriptional patterns in B-cells. By MPRA (Massively parallel reporter assays), we deciphered the sequence features that regulate promoter transcriptional, including motifs and motif syntax (their combination and distance). Finally, we built and trained a deep learning model capable of predicting the transcriptional strength of the immunoglobulin V gene promoter directly from sequence. Prediction of thousands of promoter variants identified in the global human population shows that polymorphisms in promoters influence the transcription of immunoglobulin V genes, which may contribute to individual differences in adaptive humoral immune responses. Our work helps to decipher the transcription mechanism in immunoglobulin genes and offers thousands of non-similar promoters for B-cell engineering.


Assuntos
Aprendizado Profundo , Humanos , DNA/genética , Regulação da Expressão Gênica , Região Variável de Imunoglobulina/genética , Regiões Promotoras Genéticas , Animais , Camundongos
3.
J Dairy Sci ; 107(9): 6576-6591, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38762103

RESUMO

Lactococcus lactis, widely used in the manufacture of dairy products, encounters various environmental stresses both in natural habitats and during industrial processes. It has evolved intricate machinery of stress sensing and defense to survive harsh stress conditions. Here, we identified a novel TetR/AcrR family transcription regulator, designated AcrR1, to be a repressor for acid and antibiotic tolerance that was derepressed in the presence of vancomycin or under acid stress. The survival rates of acrR1 deletion strain ΔAcrR1 under acid and vancomycin stresses were about 28.7-fold (pH 3.0, HCl), 8.57-fold (pH 4.0, lactic acid) and 2.73-fold (300 ng/mL vancomycin) greater than that of original strain F44. We also demonstrated that ΔAcrR1 was better able to maintain intracellular pH homeostasis and had a lower affinity to vancomycin. No evident effects of AcrR1 deletion on the growth and morphology of strain F44 were observed. Subsequently, we characterized that the transcription level of genes associated with amino acids biosynthesis, carbohydrate transport and metabolism, multidrug resistance, and DNA repair proteins significantly upregulated in ΔAcrR1 using transcriptome analysis and quantitative reverse transcription-PCR assays. Additionally, AcrR1 could repress the transcription of the nisin post-translational modification gene, nisC, leading to a 16.3% increase in nisin yield after AcrR1 deletion. Our results not only refined the knowledge of the regulatory mechanism of TetR/AcrR family regulator in L. lactis, but presented a potential strategy to enhance industrial production of nisin.


Assuntos
Antibacterianos , Lactococcus lactis , Nisina , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Nisina/biossíntese , Nisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Resistência Microbiana a Medicamentos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Microb Cell Fact ; 22(1): 257, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093313

RESUMO

BACKGROUND: Streptomyces lincolnensis is well known for producing the clinically important antimicrobial agent lincomycin. The synthetic and regulatory mechanisms on lincomycin biosynthesis have been deeply explored in recent years. However, the regulation involved in primary metabolism have not been fully addressed. RESULTS: SLCG_7083 protein contains a Per-Arnt-Sim (PAS) domain at the N-terminus, whose homologous proteins are highly distributed in Streptomyces. The inactivation of the SLCG_7083 gene indicated that SLCG_7083 promotes glucose utilization, slows mycelial growth and affects sporulation in S. lincolnensis. Comparative transcriptomic analysis further revealed that SLCG_7083 represses eight genes involved in sporulation, cell division and lipid metabolism, and activates two genes involved in carbon metabolism. CONCLUSIONS: SLCG_7083 is a PAS domain-containing regulator on morphological development and glucose utilization in S. lincolnensis. Our results first revealed the regulatory function of SLCG_7083, and shed new light on the transcriptional effects of SLCG_7083-like family proteins in Streptomyces.


Assuntos
Proteínas de Bactérias , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lincomicina , Fatores de Transcrição/genética , Streptomyces/genética , Streptomyces/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
J Cell Physiol ; 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183373

RESUMO

Botanical insecticides are the origin of all insecticidal compounds. They have been widely used to control pests in crops for a long time. Currently, the commercial production of botanical insecticides extracted from plants is limited because of insufficient raw material supply. Synthetic biology is a promising and effective approach for addressing the current problems of the production of botanical insecticides. It is an emerging biological research hotspot in the field of botanical insecticides. However, the biosynthetic pathways of many botanical insecticides are not completely elucidated. On the other hand, the cytotoxicity of botanical pesticides and low efficiency of these biosynthetic enzymes in new hosts make it still challenging for their heterologous production. In the present review, we summarized the recent developments in the heterologous production of botanical insecticides, analyzed the current challenges, and discussed the feasible production strategies, focusing on elucidating biosynthetic pathways, enzyme engineering, host engineering, and cytotoxicity engineering. Looking to the future, synthetic biology promises to further advance heterologous production of more botanical pesticides.

6.
Microb Cell Fact ; 21(1): 208, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217200

RESUMO

BACKGROUND: Glucoside natural products have been showing great medicinal values and potentials. However, the production of glucosides by plant extraction, chemical synthesis, and traditional biotransformation is insufficient to meet the fast-growing pharmaceutical demands. Microbial synthetic biology offers promising strategies for synthesis and diversification of plant glycosides. RESULTS: In this study, the two efficient UDP-glucosyltransferases (UGTs) (UGT85A1 and RrUGT3) of plant origin, that are capable of recognizing phenolic aglycons, are characterized in vitro. The two UGTs show complementary regioselectivity towards the alcoholic and phenolic hydroxyl groups on phenolic substrates. By combining a developed alkylphenol bio-oxidation system and these UGTs, twenty-four phenolic glucosides are enzymatically synthesized from readily accessible alkylphenol substrates. Based on the bio-oxidation and glycosylation systems, a number of microbial cell factories are constructed and applied to biotransformation, giving rise to a variety of plant and plant-like O-glucosides. Remarkably, several unnatural O-glucosides prepared by the two UGTs demonstrate better prolyl endopeptidase inhibitory and/or anti-inflammatory activities than those of the clinically used glucosidic drugs including gastrodin, salidroside and helicid. Furthermore, the two UGTs are also able to catalyze the formation of N- and S-glucosidic bonds to produce N- and S-glucosides. CONCLUSIONS: Two highly efficient UGTs, UGT85A1 and RrUGT3, with distinct regioselectivity were characterized in this study. A group of plant and plant-like glucosides were efficiently synthesized by cell-based biotransformation using a developed alkylphenol bio-oxidation system and these two UGTs. Many of the O-glucosides exhibited better PEP inhibitory or anti-inflammatory activities than plant-origin glucoside drugs, showing significant potentials for new glucosidic drug development.


Assuntos
Produtos Biológicos , Glucosiltransferases , Glucosídeos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Preparações Farmacêuticas , Prolil Oligopeptidases , Difosfato de Uridina
7.
Planta ; 253(3): 71, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604817

RESUMO

MAIN CONCLUSION: Two sesquiterpene synthases were identified through comparative transcriptome analysis of Leonurus sibiricus. LsSqTPS2 could produce high titer of δ-cadinene in vivo which suggests the terpene specificity of L. sibiricus. Leonurus sibiricus L., a medicinal herb, is widely used in China due to its pharmacological activities. Cadinene type sesquiterpenes, one of major bioactive components mainly present in aerial parts of L. sibiricus, showed antibacterial, anti-inflammatory, antioxidant and antiproliferative properties. However, there is no report about the sesquiterpene biosynthesis in L. sibiricus. This study identified L. sibiricus sesquiterpene synthases (LsSqTPSs) through comparative transcriptome analysis of L. sibiricus leaf and root samples using the BGISEQ-500 sequencing technique. A total of 83,244 unigenes were obtained with an average length of 1025 bp. Among them, 50,356 unigenes (60.49%) acquired annotations according to the BLAST searching results. A total of 68 differentially expressed genes (DEGs) were potentially involved in the sesquiterpene biosynthesis. Furthermore, four candidate DEGs encoding LsSqTPSs were characterized. The enzymatic characterization in engineered yeast showed that LsSqTPS1 produced α-farnesene as the single product and LsSqTPS2 mainly produced 76.23 mg/L of δ-cadinene, which constituted the major component of L. sibiricus leaf essential oil. This work contributes to the investigation of sesquiterpene biosynthesis in L. sibiricus.


Assuntos
Leonurus , Sesquiterpenos , China , Perfilação da Expressão Gênica , Sesquiterpenos/análise , Transcriptoma/genética
8.
Metab Eng ; 67: 186-197, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34229080

RESUMO

Quorum sensing (QS) offers cell density dependent dynamic regulations in cell culture through devices such as synchronized lysis circuit (SLC) and metabolic toggle switch (MTS). However, there is still a lack of studies on cocultivation with a combination of different QS-based devices. Taking the production of isopropanol and salidroside as case studies, we have mathematically modeled a comprehensive set of QS-regulated cocultivation schemes and constructed experimental combinations of QS devices, respectively, to evaluate their feasibility and optimality for regulating growth competition and corporative production. Glucose split ratio is proposed for the analysis of competition between cell growth and targeted production. Results show that the combination of different QS devices across multiple members offers a new tool with the potential to effectively coordinate synthetic microbial consortia for achieving high product titer in cross-feeding cocultivation. It is also evident that the performance of such systems is significantly affected by dynamic characteristics of chosen QS devices, carbon source control and the operational settings. This study offers insights for future applications of combinational QS devices in synthetic microbial consortia.


Assuntos
Consórcios Microbianos , Percepção de Quorum , Técnicas de Cocultura
9.
Arch Biochem Biophys ; 698: 108742, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359564

RESUMO

Mylia taylorii is an ancient nonseed land plant that accumulates various sesquiterpenes with insecticidal and antibacterial activities. Recently, microbial-type sesquiterpene synthases (STSs) with atypical aspartate-rich metal ion binding motifs have been identified in some liverworts. Here, transcriptome analysis of M. taylorii was performed to identify M. taylorii sesquiterpene synthases (MtSTSs) that are potentially involved in sesquiterpene biosynthesis and diversity. A total of 255,669 unigenes were obtained with an average length of 963 bp in the transcriptome data of M. taylorii, among which 148,093 (57.92%) unigenes had BLAST results. Forty-eight unigenes were related to the sesquiterpene backbone biosynthesis according to KEGG annotation. In addition, MtSTS1, MtSTS2 and MtSTS3 identified from putative MtSTSs display sesquiterpene catalytic activities on the basis of functional characterizations in yeast. Interestingly, MtSTSs exhibit a noncanonical metal ion binding motif and the structural composition of a single α-domain, which are features of microbial STSs instead of archetypical plant STSs. This study revealed new microbial-type STS members of nonseed plants, and functionally identified that MtSTSs may contribute to the investigation of the biosynthesis and biological role of sesquiterpenes in M. taylorii.


Assuntos
Hepatófitas/genética , Proteínas de Plantas/análise , Transcriptoma , Transferases/análise , Sequência de Aminoácidos , Biocatálise , Perfilação da Expressão Gênica , Óleos Voláteis/análise , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Sesquiterpenos/análise , Transferases/química , Transferases/genética
10.
Microb Cell Fact ; 20(1): 121, 2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34176467

RESUMO

BACKGROUND: 3-Phenylpropanol with a pleasant odor is widely used in foods, beverages and cosmetics as a fragrance ingredient. It also acts as the precursor and reactant in pharmaceutical and chemical industries. Currently, petroleum-based manufacturing processes of 3-phenypropanol is environmentally unfriendly and unsustainable. In this study, we aim to engineer Escherichia coli as microbial cell factory for de novo production of 3-phenypropanol via retrobiosynthesis approach. RESULTS: Aided by in silico retrobiosynthesis analysis, we designed a novel 3-phenylpropanol biosynthetic pathway extending from L-phenylalanine and comprising the phenylalanine ammonia lyase (PAL), enoate reductase (ER), aryl carboxylic acid reductase (CAR) and phosphopantetheinyl transferase (PPTase). We screened the enzymes from plants and microorganisms and reconstructed the artificial pathway for conversion of 3-phenylpropanol from L-phenylalanine. Then we conducted chromosome engineering to increase the supply of precursor L-phenylalanine and combined the upstream L-phenylalanine pathway and downstream 3-phenylpropanol pathway. Finally, we regulated the metabolic pathway strength and optimized fermentation conditions. As a consequence, metabolically engineered E. coli strain produced 847.97 mg/L of 3-phenypropanol at 24 h using glucose-glycerol mixture as co-carbon source. CONCLUSIONS: We successfully developed an artificial 3-phenylpropanol pathway based on retrobiosynthesis approach, and highest titer of 3-phenylpropanol was achieved in E. coli via systems metabolic engineering strategies including enzyme sources variety, chromosome engineering, metabolic strength balancing and fermentation optimization. This work provides an engineered strain with industrial potential for production of 3-phenylpropanol, and the strategies applied here could be practical for bioengineers to design and reconstruct the microbial cell factory for high valuable chemicals.


Assuntos
Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética/métodos , Engenharia Metabólica/métodos , Fenilalanina/metabolismo , Propanóis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Edição de Genes , Microbiologia Industrial/métodos , Oxirredutases/genética , Oxirredutases/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
11.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198531

RESUMO

Sesquiterpenes are important defense and signal molecules for plants to adapt to the environment, cope with stress, and communicate with the outside world, and their evolutionary history is closely related to physiological functions. In this study, the information of plant sesquiterpene synthases (STSs) with identified functions were collected and sorted to form a dataset containing about 500 members. The phylogeny of spermatophyte functional STSs was constructed based on the structural comparative analysis to reveal the sequence-structure-function relationships. We propose the evolutionary history of plant sesquiterpene skeletons, from chain structure to small rings, followed by large rings for the first time and put forward a more detailed function-driven hypothesis. Then, the evolutionary origins and history of spermatophyte STSs are also discussed. In addition, three newly identified STSs CaSTS2, CaSTS3, and CaSTS4 were analyzed in this functional evolutionary system, and their germacrene D products were consistent with the functional prediction. This demonstrates an application of the structure-based phylogeny in predicting STS function. This work will help us to understand evolutionary patterns and dynamics of plant sesquiterpenes and STSs and screen or design STSs with specific product profiles as functional elements for synthetic biology application.


Assuntos
Alquil e Aril Transferases/genética , Evolução Molecular , Plantas/enzimologia , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/química , Sequência de Aminoácidos , Filogenia , Sesquiterpenos/química
12.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709730

RESUMO

NisI confers immunity against nisin, with high substrate specificity to prevent a suicidal effect in nisin-producing Lactococcus lactis strains. However, the NisI maturation process as well as its influence on nisin resistance has not been characterized. Here, we report the roles of lipoprotein signal peptidase II (Lsp) and prolipoprotein diacylglyceryl transferase (Lgt) in NisI maturation and nisin resistance of L. lactis F44. We found that the resistance of nisin of an Lsp-deficient mutant remarkably decreased, while no significant differences in growth were observed. We demonstrated that Lsp could cleave signal peptide of NisI precursor in vitro Moreover, diacylglyceryl modification of NisI catalyzed by Lgt played a decisive role in attachment of NisI on the cell envelope, while it exhibited no effects on cleavage of the signal peptides of NisI precursor. The dissociation constant (KD ) for the interaction between nisin and NisI exhibited a 2.8-fold increase compared with that between nisin and pre-NisI with signal peptide by surface plasmon resonance (SPR) analysis, providing evidence that Lsp-catalyzed signal peptide cleavage was critical for the immune activity of NisI. Our study revealed the process of NisI maturation in L. lactis and presented a potential strategy to enhance industrial nisin production.IMPORTANCE Nisin, a safe and natural antimicrobial peptide, has a long and impressive history as a food preservative and is also considered a novel candidate to alleviate the increasingly serious threat of antibiotic resistance. Nisin is produced by certain L. lactis strains. The nisin immunity protein NisI, a membrane-bound lipoprotein, is expressed by nisin producers to avoid suicidal action. Here, we report the roles of Lsp and Lgt in NisI maturation and nisin resistance of L. lactis F44. The results verified the importance of Lsp to NisI-conferred immunity and Lgt to localization. Our study revealed the process of NisI maturation in L. lactis and presented a potential strategy to enhance industrial nisin production.


Assuntos
Proteínas de Bactérias/genética , Lactococcus lactis/genética , Lipoproteínas/genética , Proteínas de Membrana/genética , Nisina/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Nisina/metabolismo , Transferases/genética , Transferases/metabolismo
13.
Microb Cell Fact ; 19(1): 30, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050973

RESUMO

BACKGROUND: Lincomycin, produced by Streptomyces lincolnensis, is a lincosamide antibiotic and widely used for the treatment of the infective diseases caused by Gram-positive bacteria. The mechanisms of lincomycin biosynthesis have been deeply explored in recent years. However, the regulatory effects of LmbU that is a transcriptional regulator in lincomycin biosynthetic (lmb) gene cluster have not been fully addressed. RESULTS: LmbU was used to search for homologous LmbU (LmbU-like) proteins in the genomes of actinobacteria, and the results showed that LmbU-like proteins are highly distributed regulators in the biosynthetic gene clusters (BGCs) of secondary metabolites or/and out of the BGCs in actinomycetes. The overexpression, inactivation and complementation of the lmbU gene indicated that LmbU positively controls lincomycin biosynthesis in S. lincolnensis. Comparative transcriptomic analysis further revealed that LmbU activates the 28 lmb genes at whole lmb cluster manner. Furthermore, LmbU represses the transcription of the non-lmb gene hpdA in the biosynthesis of L-tyrosine, the precursor of lincomycin. LmbU up-regulates nineteen non-lmb genes, which would be involved in multi-drug flux to self-resistance, nitrate and sugar transmembrane transport and utilization, and redox metabolisms. CONCLUSIONS: LmbU is a significant pleiotropic transcriptional regulator in lincomycin biosynthesis by entirely activating the lmb cluster and regulating the non-lmb genes in Streptomyces lincolnensis. Our results first revealed the pleiotropic regulatory function of LmbU, and shed new light on the transcriptional effects of LmbU-like family proteins on antibiotic biosynthesis in actinomycetes.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Lincomicina/biossíntese , Streptomyces , Fatores de Transcrição/genética , Transcriptoma/genética , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/métodos , Pleiotropia Genética/genética , Família Multigênica/genética , Metabolismo Secundário/genética , Streptomyces/genética , Streptomyces/metabolismo
14.
BMC Genomics ; 20(1): 7, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611193

RESUMO

BACKGROUND: Celastrus angulatus Maxim is a kind of crucial and traditional insecticidal plant widely distributed in the mountains of southwest China. Celangulin V is the efficient insecticidal sesquiterpenoid of C. angulatus and widely used in pest control in China, but the low yield and discontinuous supply impeded its further popularization and application. Fortunately, the development of synthetic biology provided an opportunity for sustainable supply of Celangulin V, for which understanding its biosynthetic pathway is indispensable. RESULTS: In this study, six cDNA libraries were prepared from leaf and root of C. angulatus before global transcriptome analyses using the BGISEQ-500 platform. A total of 104,950 unigenes were finally obtained with an average length of 1200 bp in six transcriptome databases of C. angulatus, in which 51,817 unigenes classified into 25 KOG classifications, 39,866 unigenes categorized into 55 GO functional groups, and 48,810 unigenes assigned to 135 KEGG pathways, 145 of which were putative biosynthetic genes of sesquiterpenoid and triterpenoid. 16 unigenes were speculated to be related to Celangulin V biosynthesis. De novo assembled sequences were verified by Quantitative Real-Time PCR (qRT-PCR) analysis. CONCLUSIONS: This study is the first report on transcriptome analysis of C. angulatus, and 16 unigenes probably involved in the biosynthesis of Celangulin V were finally collected. The transcriptome data will make great contributions to research for this specific insecticidal plant and the further gene mining for biosynthesis of Celangulin V and other sesquiterpene polyol esters.


Assuntos
Celastrus/genética , Haptenos/genética , Anotação de Sequência Molecular , Transcriptoma/genética , Alcaloides/genética , Vias Biossintéticas/genética , Celastrus/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Haptenos/biossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
15.
Biotechnol Bioeng ; 116(1): 110-120, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252940

RESUMO

L-Threonine, a kind of essential amino acid, has numerous applications in food, pharmaceutical, and aquaculture industries. Fermentative l-threonine production from glucose has been achieved in Escherichia coli. However, there are still several limiting factors hindering further improvement of l-threonine productivity, such as the conflict between cell growth and production, byproduct accumulation, and insufficient availability of cofactors (adenosine triphosphate, NADH, and NADPH). Here, a metabolic modification strategy of two-stage carbon distribution and cofactor generation was proposed to address the above challenges in E. coli THRD, an l-threonine producing strain. The glycolytic fluxes towards tricarboxylic acid cycle were increased in growth stage through heterologous expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and citrate synthase, leading to improved glucose utilization and growth performance. In the production stage, the carbon flux was redirected into l-threonine synthetic pathway via a synthetic genetic circuit. Meanwhile, to sustain the transaminase reaction for l-threonine production, we developed an l-glutamate and NADPH generation system through overexpression of glutamate dehydrogenase, formate dehydrogenase, and pyridine nucleotide transhydrogenase. This strategy not only exhibited 2.02- and 1.21-fold increase in l-threonine production in shake flask and bioreactor fermentation, respectively, but had potential to be applied in the production of many other desired oxaloacetate derivatives, especially those involving cofactor reactions.


Assuntos
Carbono/metabolismo , Coenzimas/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Treonina/metabolismo , Fermentação , Glucose/metabolismo , Análise do Fluxo Metabólico
16.
Microb Cell Fact ; 18(1): 160, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547812

RESUMO

BACKGROUND: Alpha-Terpineol (α-Terpineol), a C10 monoterpenoid alcohol, is widely used in the cosmetic and pharmaceutical industries. Construction Saccharomyces cerevisiae cell factories for producing monoterpenes offers a promising means to substitute chemical synthesis or phytoextraction. RESULTS: α-Terpineol was produced by expressing the truncated α-Terpineol synthase (tVvTS) from Vitis vinifera in S. cerevisiae. The α-Terpineol titer was increased to 0.83 mg/L with overexpression of the rate-limiting genes tHMG1, IDI1 and ERG20F96W-N127W. A GSGSGSGSGS linker was applied to fuse ERG20F96W-N127W with tVvTS, and expressing the fusion protein increased the α-Terpineol production by 2.87-fold to 2.39 mg/L when compared with the parental strain. In addition, we found that farnesyl diphosphate (FPP) accumulation by down-regulation of ERG9 expression and deletion of LPP1 and DPP1 did not improve α-Terpineol production. Therefore, ERG9 was overexpressed and the α-Terpineol titer was further increased to 3.32 mg/L. The best α-Terpineol producing strain LCB08 was then used for batch and fed-batch fermentation in a 5 L bioreactor, and the production of α-Terpineol was ultimately improved to 21.88 mg/L. CONCLUSIONS: An efficient α-Terpineol production cell factory was constructed by engineering the S. cerevisiae mevalonate pathway, and the metabolic engineering strategies could also be applied to produce other valuable monoterpene compounds in yeast.


Assuntos
Cicloexenos/metabolismo , Engenharia Metabólica , Monoterpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos Cicloexânicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Vitis/enzimologia , Vitis/genética
17.
Microb Cell Fact ; 18(1): 73, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31018856

RESUMO

BACKGROUND: Diterpenoids are a large class of natural products with complex structures and broad commercial applications as food additives, important medicines, and fragrances. However, their low abundance in plants and high structural complexity limit their applications. Therefore, it is important to create an efficient diterpenoid-producing yeast cell factory of the production of various high-value diterpenoid compounds in a cost-effective manner RESULTS: In this study, 13R-manoyl oxide (13R-MO; 2.31 mg/L) was produced by expressing CfTPS2 and CfTPS3 from Coleus forskohlii in Saccharomyces cerevisiae. The 13R-MO titer was increased by 142-fold to 328.15 mg/L via the stepwise metabolic engineering of the original strain, including the overexpression of the rate-limiting genes (tHMG1 and ERG20) of the mevalonate pathway, transcription and protein level regulation of ERG9, Bts1p and Erg20F96Cp fusion, and the overexpression of tCfTPS2 and tCfTPS3 (excision of the N-terminal plastid transit peptide sequences of CfTPS2 and CfTPS3). The final titer of 13R-MO reached up to 3 g/L by fed-batch fermentation in a 5 L bioreactor. CONCLUSIONS: In this study, an efficient 13R-MO yeast cell factory was constructed, which achieved the de novo production of 3 g/L of 13R-MO from glucose. To the best of our knowledge, this is the highest 13R-MO titer reported to date. Furthermore, the metabolic engineering strategies presented here could be used to produce other valuable diterpenoid compounds in yeast.


Assuntos
Diterpenos/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Fermentação , Ácido Mevalônico/metabolismo , Saccharomyces cerevisiae/genética
18.
Acta Pharmacol Sin ; 40(2): 288-296, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29773886

RESUMO

The influence of broad-spectrum antibiotics on the pharmacokinetics and biotransformation of major constituents of Shaoyao-Gancao decoction (SGD) in rats was investigated. The pharmacokinetic behaviors of paeoniflorin (PF), albiflorin (AF), liquiritin (LT), isoliquiritin (ILT), liquiritin apioside (LA), isoliquiritin apioside (ILA), and glycyrrhizic acid (GL), seven major constituents of SGD, as well as glycyrrhetinic acid (GA), a major metabolite of GL, were analyzed. A 1-week pretreatment with broad-spectrum antibiotics (ampicillin, metronidazole, neomycin, 1 g L-1; and vancomycin, 0.5 g L-1) via drinking water reduced plasma exposure of the major constituents. The AUC0-24 h of PF and LT was significantly decreased by 28.7% and 33.8% (P < 0.05 and P < 0.005), respectively. Although the differences were not statistically significant, the AUC0-24 h of AF, ILT, LA, ILA, and GL was decreased by 31.4%, 50.9%, 16.9%, 44.1%, and 37.0%, respectively, compared with the control group. In addition, the plasma GA exposure in the antibiotic-pretreated group was significantly lower (P < 0.005) than the control group. The in vitro stability of the major constituents of SGD in the rat intestinal contents with or without broad-spectrum antibiotics was also investigated. The major constituents were comparatively stable in the rat duodenum contents, and the biotransformation of GL mainly occurred in the rat colon contents. In summary, broad-spectrum antibiotics suppressed the absorption of the major constituents of SGD and significantly inhibited the biotransformation of GL to GA by suppressing the colon microbiota. The results indicated a potential clinical drug-drug interaction (DDI) when SGD was administered with broad-spectrum antibiotics.


Assuntos
Antibacterianos/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética , Interações Ervas-Drogas , Administração Oral , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley
19.
Metab Eng ; 49: 28-35, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30031850

RESUMO

Zerumbone, the predominant sesquiterpenoid component of Zingiber zerumbet, exhibits diverse pharmacological properties. In this study, de novo production of zerumbone was achieved in a metabolically engineered yeast cell factory by introducing α-humulene synthase (ZSS1), α-humulene 8-hydroxylase (CYP71BA1) and zerumbone synthase variant (ZSD1S114A) from Z. zerumbet, together with AtCPR1 from Arabidopsis thaliana into the yeast strain. Multistep metabolic engineering strategies were applied, including the over-expression of the mevalonate (MVA) pathway rate-limiting enzymes tHMG1 and ERG20, regulation of ERG9 by an inducible promoter and competitive pathway deletion to redirect metabolic flux toward the desired product. In the engineered strain, α-humulene production increased by 18-fold, to 92 mg/L compared to that in the original strain. Five cytochrome P450 reductases (CPRs) from different sources were selected for CYP71BA1 adaptability tests, and AtCPR1 from A. thaliana was found to be the optimal, producing 113.16 µg/L of 8-hydroxy-α-humulene. Multicopy integration of CYP71BA1, AtCPR1, ZSS1 and ICE2 (type III membrane protein) genes resulting in strain LW14 increased the production of 8-hydroxy-α-humulene by 134-fold to 15.2 mg/L. Expressing ZSD1S114A in the ura3 site of strain LW14 resulted in the production of 7 mg/L zerumbone. Multicopy integration of ZSD1S114A increased the production of zerumbone to 20.6 mg/L. The high zerumbone-producing strain was used for batch and fed-batch fermentation in a 5-L bioreactor and zerumbone degradation by yeast was observed; the production of zerumbone finally reached 40 mg/L by fed-batch fermentation in a 5-L bioreactor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Engenharia Metabólica , Saccharomyces cerevisiae , Sesquiterpenos/metabolismo , Zingiberaceae , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Zingiberaceae/enzimologia , Zingiberaceae/genética
20.
Metab Eng ; 47: 243-253, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29596994

RESUMO

Synthetic microbial coculture to express heterologous biosynthetic pathway for de novo production of medicinal ingredients is an emerging strategy for metabolic engineering and synthetic biology. Here, taking efficient production of salidroside as an example of glycosides, we design and construct a syntrophic Escherichia coli-E. coli coculture composed of the aglycone (AG) strain and the glycoside (GD) strain, which convergently accommodate biosynthetic pathways of tyrosol and salidroside, respectively. To accomplish this the phenylalanine-deficient AG strain was engineered to utilize xylose preferentially and to overproduce precursor tyrosol, while the tyrosine-deficient GD strain was constructed to consume glucose exclusively and to enhance another precursor UDP-glucose availability for synthesis of salidroside. The AG and GD strains in the synthetic consortium are obligatory cooperators through crossfeeding of tyrosine and phenylalanine and compatible in glucose and xylose mixture. Through balancing the metabolic pathway strength, we show that the syntrophic coculture was robust and stable, and produced 6.03 g/L of salidroside. It was the de novo production of salidroside for the first time in E. coli coculture system, which would be applicable for production of other important glycosides and natural products.


Assuntos
Glucosídeos , Engenharia Metabólica , Fenóis , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Glucosídeos/biossíntese , Glucosídeos/genética , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Uridina Difosfato Glucose/genética , Uridina Difosfato Glucose/metabolismo , Xilose/genética , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA