Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.015
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Nature ; 602(7897): 455-460, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140403

RESUMO

Disruption of susceptibility (S) genes in crops is an attractive breeding strategy for conferring disease resistance1,2. However, S genes are implicated in many essential biological functions and deletion of these genes typically results in undesired pleiotropic effects1. Loss-of-function mutations in one such S gene, Mildew resistance locus O (MLO), confers durable and broad-spectrum resistance to powdery mildew in various plant species2,3. However, mlo-associated resistance is also accompanied by growth penalties and yield losses3,4, thereby limiting its widespread use in agriculture. Here we describe Tamlo-R32, a mutant with a 304-kilobase pair targeted deletion in the MLO-B1 locus of wheat that retains crop growth and yields while conferring robust powdery mildew resistance. We show that this deletion results in an altered local chromatin landscape, leading to the ectopic activation of Tonoplast monosaccharide transporter 3 (TaTMT3B), and that this activation alleviates growth and yield penalties associated with MLO disruption. Notably, the function of TMT3 is conserved in other plant species such as Arabidopsis thaliana. Moreover, precision genome editing facilitates the rapid introduction of this mlo resistance allele (Tamlo-R32) into elite wheat varieties. This work demonstrates the ability to stack genetic changes to rescue growth defects caused by recessive alleles, which is critical for developing high-yielding crop varieties with robust and durable disease resistance.


Assuntos
Ascomicetos , Resistência à Doença , Edição de Genes , Genoma de Planta , Triticum , Arabidopsis/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Resistência à Doença/genética , Mutação , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
2.
Plant Cell ; 35(7): 2449-2463, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-36943796

RESUMO

Cryptophyte plastids originated from a red algal ancestor through secondary endosymbiosis. Cryptophyte photosystem I (PSI) associates with transmembrane alloxanthin-chlorophyll a/c proteins (ACPIs) as light-harvesting complexes (LHCs). Here, we report the structure of the photosynthetic PSI-ACPI supercomplex from the cryptophyte Chroomonas placoidea at 2.7-Å resolution obtained by crygenic electron microscopy. Cryptophyte PSI-ACPI represents a unique PSI-LHCI intermediate in the evolution from red algal to diatom PSI-LHCI. The PSI-ACPI supercomplex is composed of a monomeric PSI core containing 14 subunits, 12 of which originated in red algae, 1 diatom PsaR homolog, and an additional peptide. The PSI core is surrounded by 14 ACPI subunits that form 2 antenna layers: an inner layer with 11 ACPIs surrounding the PSI core and an outer layer containing 3 ACPIs. A pigment-binding subunit that is not present in any other previously characterized PSI-LHCI complexes, ACPI-S, mediates the association and energy transfer between the outer and inner ACPIs. The extensive pigment network of PSI-ACPI ensures efficient light harvesting, energy transfer, and dissipation. Overall, the PSI-LHCI structure identified in this study provides a framework for delineating the mechanisms of energy transfer in cryptophyte PSI-LHCI and for understanding the evolution of photosynthesis in the red lineage, which occurred via secondary endosymbiosis.


Assuntos
Diatomáceas , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila A/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese , Transferência de Energia , Diatomáceas/metabolismo
3.
EMBO Rep ; 24(6): e55764, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37009823

RESUMO

Mitochondrial ribosomal proteins (MRPs) assemble as specialized ribosome to synthesize mtDNA-encoded proteins, which are essential for mitochondrial bioenergetic and metabolic processes. MRPs are required for fundamental cellular activities during animal development, but their roles beyond mitochondrial protein translation are poorly understood. Here, we report a conserved role of the mitochondrial ribosomal protein L4 (mRpL4) in Notch signaling. Genetic analyses demonstrate that mRpL4 is required in the Notch signal-receiving cells to permit target gene transcription during Drosophila wing development. We find that mRpL4 physically and genetically interacts with the WD40 repeat protein wap and activates the transcription of Notch signaling targets. We show that human mRpL4 is capable of replacing fly mRpL4 during wing development. Furthermore, knockout of mRpL4 in zebrafish leads to downregulated expression of Notch signaling components. Thus, we have discovered a previously unknown function of mRpL4 during animal development.


Assuntos
Proteínas de Drosophila , Animais , Humanos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Drosophila/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Asas de Animais/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
4.
EMBO Rep ; 24(12): e57500, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870259

RESUMO

SIRT2, a cytoplasmic member of the Sirtuin family, has important roles in immunity and inflammation. However, its function in regulating the response to DNA virus infection remains elusive. Here, we find that SIRT2 is a unique regulator among the Sirtuin family that negatively modulates the cGAS-STING-signaling pathway. SIRT2 is down-regulated after Herpes simplex virus-1 (HSV-1) infection, and SIRT2 deficiency markedly elevates the expression levels of type I interferon (IFN). SIRT2 inhibits the DNA binding ability and droplet formation of cGAS by interacting with and deacetylating G3BP1 at K257, K276, and K376, leading to the disassembly of the cGAS-G3BP1 complex, which is critical for cGAS activation. Administration of AGK2, a selective SIRT2 inhibitor, protects mice from HSV-1 infection and increases the expression of IFN and IFN-stimulated genes. Our study shows that SIRT2 negatively regulates cGAS activation through G3BP1 deacetylation, suggesting a potential antiviral strategy by modulating SIRT2 activity.


Assuntos
DNA Helicases , Imunidade Inata , Animais , Camundongos , DNA Helicases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Transdução de Sinais , Sirtuína 2/genética , Sirtuína 2/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(31): e2204114119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878019

RESUMO

The lack of effective and safe analgesics for chronic pain management has been a health problem associated with people's livelihoods for many years. Analgesic peptides have recently shown significant therapeutic potential, as they are devoid of opioid-related adverse effects. Programmed cell death protein 1 (PD-1) is widely expressed in neurons. Activation of PD-1 by PD-L1 modulates neuronal excitability and evokes significant analgesic effects, making it a promising target for pain treatment. However, the research and development of small molecule analgesic peptides targeting PD-1 have not been reported. Here, we screened the peptide H-20 using high-throughput screening. The in vitro data demonstrated that H-20 binds to PD-1 with micromolar affinity, evokes Src homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) phosphorylation, and diminishes nociceptive signals in dorsal root ganglion (DRG) neurons. Preemptive treatment with H-20 effectively attenuates perceived pain in naïve WT mice. Spinal H-20 administration displayed effective and longer-lasting analgesia in multiple preclinical pain models with a reduction in or absence of tolerance, abuse liability, constipation, itch, and motor coordination impairment. In summary, our findings reveal that H-20 is a promising candidate drug that ameliorates chronic pain in the clinic.


Assuntos
Analgésicos , Dor Crônica , Peptídeos , Receptor de Morte Celular Programada 1 , Analgésicos/farmacologia , Analgésicos Opioides , Animais , Dor Crônica/tratamento farmacológico , Gânglios Espinais/metabolismo , Camundongos , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/metabolismo
6.
Nano Lett ; 24(10): 3196-3203, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437624

RESUMO

Gelation is a promising method to assemble 3D macroscopic structures from MXene sheets for various applications. However, the fine control and scalable manufacturing of 3D MXene monoliths remains a great challenge. Herein, the controllable gelation of Ti3C2Tx MXene initiated by various ionic liquids (ILs) is first proposed, where the IL serve as linkers to bond the nanosheets together through electrostatic and hydrogen bonding interactions, forming 3D monoliths with well-adjustable structure. Furthermore, density functional theory calculations and experiments further reveal the cross-linking effect of different ILs. Typically, 3D porous structure with high specific surface area, suitable pore size, and improved electrolyte affinity is designed through the cross-linking of Ti3C2Tx with 1-vinyl-3-ethylimidazole bromide ([C2VIm]Br-Ti3C2Tx). Due to the strong coupling, the as-synthesized monolith possesses excellent rate performance and high energy density. The methodology is quite flexible, controllable, and universal that provides a new perspective for promoting innovative applications of 2D materials.

7.
J Biol Chem ; 299(9): 105116, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524130

RESUMO

Xylans are polysaccharides composed of xylose and include ß1,4-xylan, ß1,3-xylan, and ß1,3/1,4-mixed-linkage xylan (MLX). MLX is widely present in marine red algae and constitutes a significant organic carbon in the ocean. Xylanases are hydrolase enzymes that play an important role in xylan degradation. While a variety of ß1,4-xylanases and ß1,3-xylanases involved in the degradation of ß1,4-xylan and ß1,3-xylan have been reported, no specific enzyme has yet been identified that degrades MLX. Herein, we report the characterization of a new MLX-specific xylanase from the marine bacterium Polaribacter sp. Q13 which utilizes MLX for growth. The bacterium secretes xylanases to degrade MLX, among which is Xyn26A, an MLX-specific xylanase that shows low sequence similarities (<27%) to ß1,3-xylanases in the glycoside hydrolase family 26 (GH26). We show that Xyn26A attacks MLX precisely at ß1,4-linkages, following a ß1,3-linkage toward the reducing end. We confirm that Xyn26A and its homologs have the same specificity and mode of action on MLX, and thus represent a new xylanase group which we term as MLXases. We further solved the structure of a representative MLXase, AlXyn26A. Structural and biochemical analyses revealed that the specificity of MLXases depends critically on a precisely positioned ß1,3-linkage at the -2/-1 subsite. Compared to the GH26 ß1,3-xylanases, we found MLXases have evolved a tunnel-shaped cavity that is fine-tuned to specifically recognize and hydrolyze MLX. Overall, this study offers a foremost insight into MLXases, shedding light on the biochemical mechanism of bacterial degradation of MLX.

8.
Plant J ; 116(2): 478-496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478313

RESUMO

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi-subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)-containing SWI/SNF complexes in plants. Here, we show that the Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD-containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD, in vitro and in vivo. Phenotypic analyses of lfr-2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co-regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription of AGAMOUS (AG), a C-class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on the AG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop at AG locus is negatively correlated with the AG expression level, and LFR-SYD was functional to demolish the AG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD-SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.

9.
J Am Chem Soc ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498303

RESUMO

The chlorine evolution reaction (CER) is essential for industrial Cl2 production but strongly relies on the use of dimensionally stable anode (DSA) with high-amount precious Ru/Ir oxide on a Ti substrate. For the purpose of sustainable development, precious metal decrement and performance improvement are highly desirable for the development of CER anodes. Herein, we demonstrate that surface titanium oxide amorphization is crucial to regulate the coordination environment of stabilized Ir single atoms for efficient and durable chlorine evolution of Ti monolithic anodes. Experimental and theoretical results revealed the formation of four-coordinated Ir1O4 and six-coordinated Ir1O6 sites on amorphous and crystalline titanium oxides, respectively. Interestingly, the Ir1O4 sites exhibited a superior CER performance, with a mass activity about 10 and 500 times those of the Ir1O6 counterpart and DSA, respectively. Moreover, the Ir1O4 anode displayed excellent durability for 200 h, far longer than that of its Ir1O6 counterpart (2 h). Mechanism studies showed that the unsaturated Ir in Ir1O4 was the active center for chlorine evolution, which was changed to the top-coordinated O in Ir1O6. This change of active sites greatly affected the adsorption energy of Cl species, thus accounting for their different CER activity. More importantly, the amorphous structure and restrained water dissociation of Ir1O4 synergistically prevent oxygen permeation across the Ti substrate, contributing to its long-term CER stability. This study sheds light on the importance of single-atom coordination structures in the reactivity of catalysts and offers a facile strategy to prepare highly active single-atom CER anodes via surface titanium oxide amorphization.

10.
J Gene Med ; 26(2): e3671, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384136

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSC) is a challenging cancer with significant clinical implications. Natural killer (NK) cells have emerged as important players in tumor immunosurveillance, yet their role and potential as prognostic biomarkers in HNSC remain unclear. METHODS: Quantitative analysis using multiple algorithms identified FCRL1, KIR3DL2 and ZNF541 as molecules significantly associated with local NK cell infiltration and patient survival. A prognostic model based on these molecules demonstrated robust predictive performance. RESULTS: Analysis of high- and low-risk patient groups revealed distinct differences in the tumor microenvironment, indicating an inhibitory immune microenvironment in high-risk patients. Notably, low-risk patients exhibited potential sensitivity to immunotherapy and showed favorable responses to specific drugs such as axitinib, methotrexate, rapamycin and vorinostat. NK cells, important effectors of the innate immune response, were found to play a crucial role in HNSC immunity. The present study provides valuable insights into the correlation between FCRL1, KIR3DL2, ZNF541 and NK cell infiltration, paving the way for future investigations into their roles in HNSC. Activation of NOTCH signaling, MYC targets, DNA repair, E2F targets, epithelial-mesenchymal transition, G2M checkpoint and mitotic spindle pathways in high-risk patients suggests their involvement in disease progression and poor prognosis. CONCLUSIONS: The present study reveals the significance of NK cells in HNSC and their potential as prognostic biomarkers. The CFKZ score offers a promising approach for predicting patient outcomes and guiding personalized treatment decisions in HNSC. These findings contribute to our understanding of HNSC immunobiology and hold implications for precision medicine in HNSC management.


Assuntos
Neoplasias de Cabeça e Pescoço , Células Matadoras Naturais , Humanos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/genética , Biomarcadores , Microambiente Tumoral
11.
Biochem Biophys Res Commun ; 702: 149633, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341921

RESUMO

Ribosomal protein 25 (RPS25) has been related to male fertility diseases in humans. However, the role of RPS25 in spermatogenesis has yet to be well understood. RpS25 is evolutionarily highly conserved from flies to humans through sequence alignment and phylogenetic tree construction. In this study, we found that RpS25 plays a critical role in Drosophila spermatogenesis and its knockdown leads to male sterility. Examination of each stage of spermatogenesis from RpS25-knockdown flies showed that RpS25 was not required for initial germline cell divisions, but was required for spermatid elongation and individualization. In RpS25-knockdown testes, the average length of cyst elongation was shortened, the spermatid nuclei bundling was disrupted, and the assembly of individualization complex from actin cones failed, resulting in the failure of mature sperm production. Our data revealed an essential role of RpS25 during Drosophila spermatogenesis through regulating spermatid elongation and individualization.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Masculino , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Filogenia , Sêmen/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo
12.
Small ; : e2401940, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845488

RESUMO

Porous polymer membranes as separator plays important roles in separating cathode and anode, storing electrolytes, and transporting ions in energy storage devices. Here, an effective strategy is reported to prepare an electrolyte superwetting membrane, which shows good Li+ transport rate and uniformity, as well as electrode-friendly properties to afford the reduction and oxidation of electrodes. It thereby improves the cycle stability and safety of Li metal batteries. With the arrayed capillaries technique, a thin layer of polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) composite is uniformly coated on the surface and pores of polypropylene (PP) membrane with a total thickness of 30 µm. After treating it with n-butyllithium and LiNO3 in turn, a chemically inert membrane with efficient and uniform ion transport is prepared, and the cycle stability of Li||Li symmetric cells is up to 1500 h, 4 times higher than that of PP membrane. Moreover, the Li||LiFePO4 with as-prepared membranes achieve a higher capacity retention rate of 92% after 190 cycles at a current density of 3.6 mA cm-2 and a capacity of 3.6 mAh cm-2, and the Li||NCM721 batteries achieve a capacity retention rate of 71% after 600 cycles at a current density of 1.8 mA cm-2.

13.
Small ; : e2403600, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949410

RESUMO

BiVO4-based photoanode is one of the most promising photoanodes for photoelectrocatalytic water splitting. However, the serious problem of interface charge recombination limits its further development. Here, a Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi photoanode is constructed with double hole transport layer and an energy level gradient to achieve an effective photo-generated holes extraction and accumulation at the surface electrocatalyst. The conjugated polycarbazole framework CPF-TCzB is used as hole transport layer to eliminate the charge recombination center between Mo:BiVO4 and NiCoBi electrocatalyst and realize the extraction and storage of photo-generated hole; NiOx nanoparticles are further inserted between Mo:BiVO4 and CPF-TCzB to form a gradient energy level, eliminating the energy level barrier and optimizing band alignment. As a result, Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi achieves a much higher photocurrent densities of 3.14 mA cm-2 than that of Mo:BiVO4 (0.42 mA cm-2) at 0.6 V versus RHE. This work provides an specific way to adjust the band structure of BiVO4-based photoanodes and realize efficient hole extraction and storage for PEC water splitting.

14.
Plant Biotechnol J ; 22(1): 200-215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752705

RESUMO

Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.


Assuntos
Endosperma , Fatores de Transcrição , Fatores de Transcrição/genética , Endosperma/metabolismo , Triticum/metabolismo , Melhoramento Vegetal , Grão Comestível , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
15.
Phys Rev Lett ; 132(19): 191901, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804936

RESUMO

We present the first lattice QCD calculation of the universal axial γW-box contribution □_{γW}^{VA} to both superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within the theoretical uncertainties surrounding the extraction of |V_{ud}| from superallowed decays. Our calculation is conducted using two domain wall fermion ensembles at the physical pion mass. To construct the nucleon four-point correlation functions, we employ the random sparsening field technique. Furthermore, we incorporate long-distance contributions to the hadronic function using the infinite-volume reconstruction method. Upon performing the continuum extrapolation, we arrive at □_{γW}^{VA}=3.65(7)_{lat}(1)_{PT}×10^{-3}. Consequently, this yields a slightly higher value of |V_{ud}|=0.973 86(11)_{exp}(9)_{RC}(27)_{NS}, reducing the previous 2.1σ tension with the CKM unitarity to 1.8σ. Additionally, we calculate the vector γW-box contribution to the axial charge g_{A}, denoted as □_{γW}^{VV}, and explore its potential implications.

16.
Exp Eye Res ; 243: 109902, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641196

RESUMO

Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.


Assuntos
Dexametasona , Mecloretamina , Nanopartículas , Dexametasona/análogos & derivados , Animais , Mecloretamina/toxicidade , Modelos Animais de Doenças , Lesões da Córnea/prevenção & controle , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/patologia , Lesões da Córnea/tratamento farmacológico , Glucocorticoides , Substâncias para a Guerra Química/toxicidade , Camundongos , Queimaduras Químicas/prevenção & controle , Queimaduras Químicas/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/prevenção & controle , Coelhos , Córnea/efeitos dos fármacos , Córnea/patologia , Córnea/metabolismo
17.
Anal Biochem ; 690: 115510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513769

RESUMO

Phosphorylation is indispensable in comprehending biological processes, while biological experimental methods for identifying phosphorylation sites are tedious and arduous. With the rapid growth of biotechnology, deep learning methods have made significant progress in site prediction tasks. Nevertheless, most existing predictors only consider protein sequence information, that limits the capture of protein spatial information. Building upon the latest advancement in protein structure prediction by AlphaFold2, a novel integrated deep learning architecture PhosAF is developed to predict phosphorylation sites in human proteins by integrating CMA-Net and MFC-Net, which considers sequence and structure information predicted by AlphaFold2. Here, CMA-Net module is composed of multiple convolutional neural network layers and multi-head attention is appended to obtaining the local and long-term dependencies of sequence features. Meanwhile, the MFC-Net module composed of deep neural network layers is used to capture the complex representations of evolutionary and structure features. Furthermore, different features are combined to predict the final phosphorylation sites. In addition, we put forward a new strategy to construct reliable negative samples via protein secondary structures. Experimental results on independent test data and case study indicate that our model PhosAF surpasses the current most advanced methods in phosphorylation site prediction.

18.
Chemphyschem ; : e202400151, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635959

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) imply the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles, commonly referred to as soot particles in combustion systems and interstellar grains in deep space. Whereas gas phase formation pathways to the simplest PAH - naphthalene (C10H8) - are beginning to emerge, reaction pathways leading to the synthesis of the 14π Hückel aromatic PAHs anthracene and phenanthrene (C14H10) are still incomplete. Here, by utilizing a chemical microreactor in conjunction with vacuum ultraviolet (VUV) photoionization (PI) of the products followed by detection of the ions in a reflectron time-of-flight mass spectrometer (ReTOF-MS), the reaction between the 1'- and 2'-methylnaphthyl radicals (C11H9⋅) with the propargyl radical (C3H3⋅) accesses anthracene (C14H10) and phenanthrene (C14H10) via the Propargyl Addition-BenzAnnulation (PABA) mechanism in conjunction with a hydrogen assisted isomerization. The preferential formation of the thermodynamically less stable anthracene isomer compared to phenanthrene suggests a kinetic, rather than a thermodynamics control of the reaction.

19.
Exp Physiol ; 109(7): 1199-1210, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38812118

RESUMO

Diabetic nephropathy (DN) is a common complication of diabetes mellitus (DM), and cell death plays an important role. Ferroptosis is a recently discovered type of iron-dependent cell death and one that is different from other kinds of cell death including apoptosis and necrosis. However, ferroptosis has not been described in the context of DN. This study explored the role of ferroptosis in DN pathophysiology and aimed to confirm the efficacy of the ferroptosis inhibitor SRS 16-86 on DN. Streptozotocin injection was used to establish the DM and DN animal models. To investigate the presence or occurrence of ferroptosis in DN, we assessed the concentrations of iron, reactive oxygen species and specific markers associated with ferroptosis in a rat model of DN. Additionally, we performed haematoxylin-eosin staining, blood biochemistry, urine biochemistry and kidney function analysis to evaluate the efficacy of the ferroptosis inhibitor SRS 16-86 in ameliorating DN. We found that SRS 16-86 could improve the recovery of renal function after DN by upregulating glutathione peroxidase 4, glutathione and system xc -light chain and by downregulating the lipid peroxidation markers and 4-hydroxynonenal. SRS 16-86 treatment could improve renal organization after DN. The inflammatory cytokines interleukin 1ß and tumour necrosis factor α and intercellular adhesion molecule 1 were significantly decreased following SRS 16-86 treatment after DN. The results indicate that there is a strong connection between ferroptosis and the pathological mechanism of DN. The efficacy of the ferroptosis inhibitor SRS 16-86 in DN repair supports its use as a new therapeutic treatment for DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ferroptose , Ratos Sprague-Dawley , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Masculino , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Ferro/metabolismo
20.
Circ Res ; 131(12): 980-1000, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36367103

RESUMO

BACKGROUND: RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS: We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS: We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS: Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.


Assuntos
Cálcio , Miocárdio , Proteínas de Ligação a RNA , Proteínas de Peixe-Zebra , Animais , Humanos , Cálcio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA