RESUMO
The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.
Assuntos
NF-kappa B , Fator de Transcrição RelA , NF-kappa B/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Linfócitos B/metabolismo , Sítios de Ligação , Receptores de Antígenos/metabolismoRESUMO
Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.
Assuntos
Comportamento Animal , Encéfalo , Emoções , Coração , Animais , Camundongos , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Mapeamento Encefálico , Emoções/fisiologia , Coração/fisiologia , Comportamento Animal/fisiologia , Eletrofisiologia , Optogenética , Córtex Insular/fisiologia , Frequência Cardíaca , Channelrhodopsins , Taquicardia/fisiopatologia , Marca-Passo ArtificialRESUMO
BACKGROUND: ß-adrenergic receptor (ß-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of ß-AR remains unclear. METHODS: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates ß-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the ß-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between ß-adrenergic insult and ß-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from ß-arrestin-1-S330A/S330D mutation and ß-adrenergic insult. RESULTS: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to ß-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted ß-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing ß-arrestin-1-S330D (active form) inhibited the ß-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. ß-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the ß-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS: AMPK phosphorylation of ß-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting ß-AR/cAMP/PKA activation. Subsequently, ß-arrestin-1 Ser330 phosphorylation blocks ß-AR-induced cardiac inflammasome activation and remodeling.
Assuntos
Proteínas Quinases Ativadas por AMP , Isoproterenol , Miócitos Cardíacos , beta-Arrestina 1 , Animais , Fosforilação , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Isoproterenol/toxicidade , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Masculino , Receptores Adrenérgicos beta/metabolismo , Serina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/toxicidade , Células Cultivadas , Transdução de Sinais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , HumanosRESUMO
Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-ß1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-ß1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-ß1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.
Assuntos
Antidepressivos , Ketamina , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Baço , Esplenectomia , Nervo Vago , Animais , Ketamina/farmacologia , Antidepressivos/farmacologia , Baço/efeitos dos fármacos , Baço/metabolismo , Camundongos , Masculino , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/tratamento farmacológico , Derrota SocialRESUMO
Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.
Assuntos
Dor Crônica , Clemastina , Humanos , Animais , Camundongos , Clemastina/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Central , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismoRESUMO
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that often involves abnormal activation of regulatory IFN genes and regulation of B cells by CD4+ T cells. Radical S-adenosyl methionine domain containing 2 (RSAD2) is a viral suppressor protein regulated by type I IFN, and it has been proven to play an important regulatory role in SLE. However, the mechanism by which RSAD2 participates in the pathogenesis of SLE is unclear. In this study, we observed higher expression levels of RSAD2 in CD4+ T-cell subsets from the peripheral blood of SLE patients than in those from healthy controls by bioinformatics analysis and validation experiments. We analyzed the expression of RSAD2 in CD4+ T cells of patients with SLE and other autoimmune diseases. In addition, we found that the expression of RSAD2 in CD4+ T cells might be regulated by IFN-α, and RSAD2 significantly affected the differentiation of Th17 cells and T follicular helper (Tfh) cells. Our findings underlined that RSAD2 may promote B-cell activation by promoting the differentiation of Th17 and Tfh cells in SLE patients, a process that is regulated by IFN-α.
Assuntos
Lúpus Eritematoso Sistêmico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Células Th17 , Interferon-alfa , Células T Auxiliares Foliculares , Subpopulações de Linfócitos T , Lúpus Eritematoso Sistêmico/genética , Linfócitos T Auxiliares-IndutoresRESUMO
Pemphigus vulgaris (PV) stands as a rare autoimmune bullous disease, while the precise underlying mechanism remains incompletely elucidated. High-throughput proteomic methodologies, such as LC-MS/MS, have facilitated the quantification and characterisation of proteomes from clinical skin samples, enhancing our comprehension of PV pathogenesis. The objective of this study is to elucidate the signalling mechanisms underlying PV through proteomic analysis. Proteins and cell suspension were extracted from skin biopsies obtained from both PV patients and healthy volunteers and subsequently analysed using LC-MS/MS and scRNA-seq. Cultured keratinocytes were treated with PV serum, followed by an assessment of protein expression levels using immunofluorescence and western blotting. A total of 880, 605, and 586 differentially expressed proteins (DEPs) were identified between the lesion vs. control, non-lesion vs. control, and lesion vs. non-lesion groups, respectively. The oxidative phosphorylation (OXPHOS) pathway showed activation in PV. Keratinocytes are the major cell population in the epidermis and highly expressed ATP5PF, ATP6V1G1, COX6B1, COX6A1, and NDUFA9. In the cellular model, there was a notable increase in the expression levels of OXPHOS-related proteins (V-ATP5A, III-UQCRC2, II-SDHB, I-NDUFB8), along with STAT1, p-STAT1, and p-JAK1. Furthermore, both the OXPHOS inhibitor metformin and the JAK1 inhibitor tofacitinib demonstrated therapeutic effects on PV serum-induced cell separation, attenuating cell detachment. Metformin notably reduced the expression of V-ATP5A, III-UQCRC2, II-SDHB, I-NDUFB8, p-STAT1, p-JAK1, whereas tofacitinib decreased the expression of p-STAT1 and p-JAK1, with minimal impact on the expression of V-ATP5A, III-UQCRC2, II-SDHB, and I-NDUFB8. Our results indicate a potential involvement of the OXPHOS and JAK-STAT1 pathways in the pathogenesis of PV.
Assuntos
Queratinócitos , Fosforilação Oxidativa , Pênfigo , Piperidinas , Proteômica , Transdução de Sinais , Humanos , Pênfigo/metabolismo , Queratinócitos/metabolismo , Piperidinas/farmacologia , Janus Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Fatores de Transcrição STAT/metabolismo , Células Cultivadas , Feminino , Espectrometria de Massas em Tandem , MasculinoRESUMO
Aerolysin-like pore-forming protein (af-PFP) superfamily members are double-edge swords that assist the bacterial infection but shied bacteria from the host by various mechanisms in some species including the toad Bombina maxima and zebrafish. While members of this family are widely expressed in all kingdoms, especially non-bacteria species, it remains unclear whether their anti-bacterial function is conserved. LIN-24 is an af-PFP that is constitutively expressed throughout the Caenorhabditis elegans lifespan. Here, we observed that LIN-24 knockdown reduced the maximum lifespan of worms. RNA-seq analysis identified 323 differentially expressed genes (DEGs) post-LIN-24 knockdown that were enriched in "immune response" and "lysosome pathway," suggesting a possible role for LIN-24 in resisting microbial infection. In line with this, we found that Pseudomonas aeruginosa 14 (PA14) infection induced LIN-24 expression, and that survival after PA14 infection was significantly reduced by LIN-24 knockdown. In contrast, LIN-24 overexpression (LIN-24-OE) conferred protection against PA14 infection, with worms showing longer survival time and reduced bacterial load. Weighted gene co-expression network analysis of LIN-24-OE worms showed that the highest correlation module was enriched in factors related to immunity and the defense response. Finally, by predicting transcription factors from RNA-seq data and knocking down candidate transcription factors in LIN-24-OE worms, we revealed that LIN-24 may protect worms against bacterial infection by stimulating DAF-16-mediated immune responses. These findings agree with our previous studies showing an anti-microbial role for the amphibian-derived af-PFP complex ßγ-CAT, suggesting that af-PFPs may play a conserved role in combatting microbial infections. Further research is needed to determine the roles this protein family plays in other physio-pathological processes, such as metabolism, longevity, and aging.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Envelhecimento , Caenorhabditis elegans/genética , Longevidade , Proteínas de Caenorhabditis elegans/genéticaRESUMO
OBJECTIVES: To explore the clinical relevance of stent-specific perivascular fat attenuation index (FAI) in patients with stent implantation. METHODS: A total of 162 consecutive patients who underwent coronary computed tomography angiography (CCTA) following stent implantation were retrospectively included. The stent-specific FAI at 2 cm adjacent to the stent edge was calculated. The endpoints were defined as target vessel revascularization (TVR) on the stented vessel after CCTA and readmission times due to chest pain after stent implantation. Binary logistic regression analysis for TVR and ordinal regression models were conducted to identify readmission times (0, 1, and ≥ 2) with generalized estimating equations on a per-stent basis. RESULTS: On a per-stent basis, 9 stents (4.5%) experienced TVR after PCI at a median 30 months' follow-up duration. Stent-specific FAI differed significantly among subgroups of patients with stent implantation and different readmission times (p = 0.002); patients with at least one readmission had higher stent-specific FAI than those without readmission (p < 0.001). Bifurcated stents (odds ratio [OR]: 11.192, p = 0.001) and stent-specific FAI (OR: 1.189, p = 0.04) were independently associated with TVR. With no readmission as a reference, stent-specific FAI (OR: 0.984, p = 0.007) was an independent predictor for hospital readmission times ≥ 2 (p = 0.003). CONCLUSION: Non-invasive stent-specific FAI derived from CCTA was found to be associated with TVR, which was a promising imaging marker for functional assessment in patients who underwent stent implantation. CLINICAL RELEVANCE STATEMENT: Noninvasive fat attenuation index adjacent to the stents edge derived from CCTA, an imaging marker reflecting the presence of inflammation acting on the neointimal tissue at the sites of coronary stenting, might be relevant clinically with target vessel revascularization. KEY POINTS: ⢠Non-invasive stent-specific FAI derived from CCTA was associated with TVR (OR: 1.189 [95% CI: 1.007-1.043], p = 0.04) in patients who underwent stent implantation. ⢠Stent-specific FAI significantly differed among a subgroup of patients with chest pain after stent implantation and with different readmission times (p = 0.002); the patients with at least one readmission had higher stent-specific FAI than those without readmission (p < 0.001). ⢠Non-invasive stent-specific FAI derived from CCTA could be used as an imaging maker for the functional assessment of patients following stent implantation.
Assuntos
Doença da Artéria Coronariana , Intervenção Coronária Percutânea , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Angiografia Coronária/métodos , Estudos Retrospectivos , Stents , Dor no Peito , Resultado do TratamentoRESUMO
BACKGROUND AND PURPOSE: This study aimed to investigate the clinical efficacy and safety of telitacicept in patients with generalized myasthenia gravis (gMG) who tested positive for acetylcholine receptor antibodies or muscle-specific kinase antibodies and were receiving standard-of-care therapy. METHODS: Patients meeting the eligibility criteria were randomly assigned to receive telitacicept subcutaneously once a week for 24 weeks in addition to standard-of-care treatment. The primary efficacy endpoint was the mean change in the quantitative myasthenia gravis (QMG) score from baseline to week 24. Secondary efficacy endpoints included mean change in QMG score from baseline to week 12 and gMG clinical absolute score from baseline to week 24. Additionally, safety, tolerability and pharmacodynamics were assessed. RESULTS: Twenty-nine of the 41 patients screened were randomly selected and enrolled. The mean (± standard deviation [SD]) reduction in QMG score from baseline to week 24 was 7.7 (± 5.34) and 9.6 (± 4.29) in the 160 mg and 240 mg groups, respectively. At week 12, mean reductions in QMG scores for these two groups were 5.8 (± 5.85) and 9.5 (± 5.03), respectively, indicating rapid clinical improvement. Safety analysis revealed no adverse events leading to discontinuation or mortalities. All patients showed consistent reductions in serum immunoglobulin (Ig) A, IgG and IgM levels throughout the study. CONCLUSION: Telitacicept demonstrated safety, good tolerability and reduced clinical severity throughout the study period. Further validation of the clinical efficacy of telitacicept in gMG will be conducted in an upcoming phase 3 clinical trial.
Assuntos
Miastenia Gravis , Humanos , Miastenia Gravis/tratamento farmacológico , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Resultado do Tratamento , Receptores Colinérgicos/imunologiaRESUMO
Crustaceans such as shrimps and crabs, hold significant ecological significance and substantial economic value within marine ecosystems. However, their susceptibility to disease outbreaks and pathogenic infections has posed major challenges to production in recent decades. As invertebrate, crustaceans primarily rely on their innate immune system for defense, lacking the adaptive immune system found in vertebrates. Mucosal immunity, acting as the frontline defense against a myriad of pathogenic microorganisms, is a crucial aspect of their immune repertoire. This review synthesizes insights from comparative immunology, highlighting parallels between mucosal immunity in vertebrates and innate immune mechanisms in invertebrates. Despite lacking classical adaptive immunity, invertebrates, including crustaceans, exhibit immune memory and rely on inherent "innate immunity factors" to combat invading pathogens. Drawing on parallels from mammalian and piscine systems, this paper meticulously explores the complex role of mucosal immunity in regulating immune responses in crustaceans. Through the extrapolation from well-studied models like mammals and fish, this review infers the potential mechanisms of mucosal immunity in crustaceans and provides insights for research on mucosal immunity in crustaceans.
Assuntos
Crustáceos , Imunidade nas Mucosas , Animais , Crustáceos/imunologia , Imunidade InataRESUMO
Hemocyanin is the main respiratory protein of arthropods and is formed by hexameric and/or oligomeric subunits. Due to changes in the living environment and gene rearrangement, various hemocyanin subtypes and subunits evolved in crustaceans. This paper reviews the various hemocyanin subtypes and isoforms in shrimp and analyses published genomic data of sixteen hemocyanin family genes from Litopenaeus vannamei to explore the evolution of hemocyanin genes, subunits, and protein structure. Analysis of hemocyanin subtypes distribution and structure in various tissues was also performed and related to multiple and tissue-specific functions, i.e., immunological activity, immune signaling, phenoloxidase activity, modulation of microbiota homeostasis, and energy metabolism. The functional diversity of shrimp hemocyanin due to molecular polymorphism, transcriptional regulation, alternative splicing, degradation into functional peptides, interaction with other proteins or genes, and structural differences will also be highlighted for future research. Inferences would be drawn from other crustaceans to explain how evolution has changed the structure-function of hemocyanin and its implication for evolutionary research into the multifunctionality of hemocyanin and other related proteins in shrimp.
Assuntos
Hemocianinas , Penaeidae , Animais , Isoformas de Proteínas/genética , Peptídeos/genética , Processamento AlternativoRESUMO
Z-discs are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-disc-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-disc proteome in vivo. We found palmdelphin (PALMD) as a novel Z-disc-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific Palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed the transverse tubule (T-tubule)-sarcoplasmic reticulum (SR) ultrastructures, which formed the Z-disc-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with the reduction of nexilin (NEXN), a crucial Z-disc-associated protein that is essential for both Z-disc and JMC structures and functions. PALMD interacted with NEXN and enhanced its protein stability while the Nexn mRNA level was not affected. AAV-based NEXN addback rescued the exacerbated cardiac injury in isoproterenol-treated PALMD-depleted mice. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis.
RESUMO
BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.
Assuntos
Lesões Encefálicas Traumáticas , Doenças do Cão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças dos Roedores , Ratos , Animais , Cães , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/veterinária , Microglia , Macrófagos , Inflamação/veterinária , Transplante de Células-Tronco Mesenquimais/veterinária , Transplante de Células-Tronco Mesenquimais/métodosRESUMO
BACKGROUND: Although observational studies have suggested a correlation between vitiligo and rheumatic diseases, conclusive evidence supporting a causal relationship is still lacking. Therefore, this study aims to explore the potential causal relationship between vitiligo and rheumatic diseases. METHODS: Using genome-wide association studies, we performed a two-sample Mendelian randomization (MR) analysis. In our analysis, the random-effects inverse variance weighted (IVW) method was predominantly employed, followed by several sensitivity analyses, which include heterogeneity, horizontal pleiotropy, outliers, and "leave-one-out" analyses. RESULTS: The genetically predicted vitiligo was associated with an increased risk of rheumatoid arthritis (RA) (OR, 1.47; 95% confidence interval [CI], 1.29-1.68; p < 0.001), and systemic lupus erythematosus (SLE) (OR, 1.22; 95% CI, 1.06-1.39; p = 0.005). The causal associations were supported by sensitivity analyses. In Sjögren's syndrome and ankylosing spondylitis, no causal relationship with vitiligo was found in the study. CONCLUSION: Our MR results support the causal effect that vitiligo leads to a higher risk of RA and SLE. Individuals with vitiligo should be vigilant for the potential development of RA and SLE. Managing and addressing this potential requires regular monitoring.
Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Reumáticas , Vitiligo , Vitiligo/genética , Humanos , Predisposição Genética para Doença/genética , Doenças Reumáticas/genética , Doenças Reumáticas/complicações , Polimorfismo de Nucleotídeo Único/genética , Artrite Reumatoide/genética , Artrite Reumatoide/complicações , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/complicaçõesRESUMO
BACKGROUND: Lupus erythematosus (LE) is a spectrum of autoimmune diseases. Due to the complexity of cutaneous LE (CLE), clinical skin image-based artificial intelligence is still experiencing difficulties in distinguishing subtypes of LE. OBJECTIVES: We aim to develop a multimodal deep learning system (MMDLS) for human-AI collaboration in diagnosis of LE subtypes. METHODS: This is a multi-centre study based on 25 institutions across China to assist in diagnosis of LE subtypes, other eight similar skin diseases and healthy subjects. In total, 446 cases with 800 clinical skin images, 3786 multicolor-immunohistochemistry (multi-IHC) images and clinical data were collected, and EfficientNet-B3 and ResNet-18 were utilized in this study. RESULTS: In the multi-classification task, the overall performance of MMDLS on 13 skin conditions is much higher than single or dual modals (Sen = 0.8288, Spe = 0.9852, Pre = 0.8518, AUC = 0.9844). Further, the MMDLS-based diagnostic-support help improves the accuracy of dermatologists from 66.88% ± 6.94% to 81.25% ± 4.23% (p = 0.0004). CONCLUSIONS: These results highlight the benefit of human-MMDLS collaborated framework in telemedicine by assisting dermatologists and rheumatologists in the differential diagnosis of LE subtypes and similar skin diseases.
RESUMO
Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.
Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Contração Miocárdica/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Linhagem Celular , Tamanho Celular , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Miofibrilas/metabolismoRESUMO
Due to their low cost, good biocompatibility, and ease of structural modification, organic long-persistent luminescence (LPL) materials have garnered significant attention in organic light-emitting diodes, biological imaging, information encryption, and chemical sensing. Efficient charge separation and carrier migration by the host-guest structure or using polymers and crystal to build rigid environments are effective ways of preparing high-performance materials with long-lasting afterglow. In this study, four types of crystalline materials (MODPA: DDF-O, MODPA: DDF-CHO, MODPA: DDF-Br, and MODPA: DDF-TRC) were prepared by a convenient host-guest doping method at room temperature under ambient conditions, i.e., in the presence of oxygen. The first three types exhibited long-lived charge-separated (CS) states and achieved visible LPL emissions with durations over 7, 4, and 2 s, respectively. More surprisingly, for the DDF-O material prepared with PMMA as the polymer substrate, the afterglow time of DDF-O: PMMA was longer than 10 s. The persistent room-temperature phosphorescence effect caused by different CS state generation efficiencies and rigid environment were the main reason for the difference in LPL duration. The fourth crystalline material was without charge separation and exhibited no LPL because it was not a D-A system. The research results indicate that the CS state generation efficiency and a rigid environment are the key factors affecting the LPL properties. This work provides new understandings in designing organic LPL materials.
RESUMO
Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Senescência Vegetal , Ácido Salicílico , Fatores de Transcrição , Ácido Salicílico/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Senescência Vegetal/genética , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a DNARESUMO
The regulation of interfaces remains a critical and challenging aspect in the pursuit of highly efficient and stable perovskite solar cells (PSCs). Here, 2,2'-bipyridyl-4,4'-dicarboxylic acid (HBPDC) is incorporated as an interfacial layer between SnO2 and perovskite layers in PSCs. The two carboxylic acid moieties on HBPDC bind to SnO2 through esterification, while its nitrogen atoms, possessing lone electron pairs, interact with uncoordinated lead (Pb2+) atoms through Lewis acid-base interactions. This dual functionality enables simultaneous passivation of surface defects on both the SnO2 and buried perovskite layers. In addition, the electron-deficient nature of HBPDC enhances interfacial energy band alignment and facilitates electron transfer from the perovskite to SnO2. Furthermore, the incorporation of HBPDC strengthens the interfacial adhesion, improving mechanical reliability. As a result, the PSCs exhibited an impressive power conversion efficiency (PCE) of 25.41% under standard AM 1.5G conditions, along with remarkable environmental stability.