Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(3): E376-E385, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049830

RESUMO

The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases.


Assuntos
Genoma Viral/genética , Schizosaccharomyces/virologia , Proteínas não Estruturais Virais/genética , Zika virus/genética , Ciclo Celular/genética , Morte Celular/genética , Proliferação de Células/genética , Estudo de Associação Genômica Ampla/métodos , Hipertrofia/genética , Proteínas de Membrana/genética , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/genética , Infecção por Zika virus/virologia
2.
J Med Virol ; 90(10): 1611-1619, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29797374

RESUMO

Cytomegalovirus (CMV) infection is a leading cause of loss of hearing, vision, and mental retardation in congenitally infected children. It is also associated with complications of organ transplant and opportunistic HIV coinfection. The Roche COBAS® AmpliPrep/COBAS® TaqMan® CMV test is an FDA-approved test that measures CMV DNA viral load in plasma for the diagnosis and management of patients at risk of CMV-associated diseases. Besides plasma, CMV is often found in bronchoalveolar lavage (BAL), cerebrospinal fluid (CSF), and urine. Thus, monitoring of CMV for critical care of patients in these nonplasma samples becomes necessary. The objective of this study was to conduct an analytic and clinical feasibility study of the Roche CMV test in BAL, CSF, and urine. The lower limit of detection, analytic measurement range, assay sensitivity, specificity, and precision were determined. Results of this study showed that the lower limit of detections were 50, 100, and 300 IU/mL for BAL, CSF, or urine, respectively. The analytic measurement ranges were from log10 2.48 to log10 5.48. The assay specificity was 94.4% for BAL and 100% for CSF and urine. The assay precision was all within the acceptable range. The performance of Roche test was further compared with 2 comparators including the RealTime CMV assay (Abbott Molecular) and a CMV Quantitative Polymerase Chain Reaction test (Vela Diagnostics). There was a general positive correlation between the Roche method and the Abbott or the Vela method. Overall, this study suggests that the Roche CMV test is suitable for the quantification of CMV viral load DNA in the described nonplasma samples.


Assuntos
Líquido da Lavagem Broncoalveolar/virologia , Líquido Cefalorraquidiano/virologia , Infecções por Citomegalovirus/diagnóstico , Citomegalovirus/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Urina/virologia , Carga Viral/métodos , Coinfecção , Humanos , Sensibilidade e Especificidade
3.
Int J Mol Sci ; 17(3): 403, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26999127

RESUMO

The Chinese Honghe Autonomous Prefecture (Honghe) in Yunnan Province is a unique ethnic area because it is inhabited by more than ten different minority ethnic groups. Geographically, Honghe directly shares a border with Vietnam. The objective of this study was to investigate genetic diversity and distribution of the Hepatitis C virus (HCV) in Honghe. Ninety nine subjects who were infected with HCV or HCV/HIV (Human Immunodeficiency Virus Type 1) were recruited into this study. HCV genotypes and subtypes were determined based on the sequences of the core/envelope 1 (C/E1) and the nonstructural protein 5B (NS5B) genomic regions. The viral diversity and origins of dissemination were examined by phylogenetic analyses. Three HCV genotypes (1, 3 and 6) with six subtypes (1b, 3b, 3a, 6a, 6n and 6v) were identified. The most predominant form was genotype 3 (54.6%) followed by 6 (34.3%), and 1 (9.1%). The HCV subtype 3b appeared to be the most frequent form (38.4%) followed by 6n (20.2%) and 3a (16.2%). Statistical analyses suggested a possible rise of the genotype 6a in Honghe among intravenous drug users with HCV/HIV co-infections. Further phylogenetic analyses suggested that similar HCV-6a viruses might have been circulating in the Honghe area for more than a decade, which likely originated from Vietnam or vice versa. Two HCV samples with single HCV infection (SC34 and SC45) were isolated that could represent new recombinant variants. Although the genetic prevalence of HCV in Honghe is in general agreement with that of Southwest China and Yunnan Province, the diversity of HCV genotypes and subtypes in Honghe is somewhat unique and evolving. Information presented here should provide useful information for future health surveillance and prevention of HCV infection in this area.


Assuntos
Genótipo , Hepacivirus/genética , Hepatite C/virologia , Polimorfismo Genético , China , Evolução Molecular , Feminino , Hepacivirus/classificação , Hepacivirus/isolamento & purificação , Hepatite C/epidemiologia , Humanos , Masculino , Filogenia , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
4.
Acta Biol Hung ; 66(3): 326-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26344028

RESUMO

The wild-type viral protein R (Vpr) of human immunodeficiency virus type 1 exerts multiple effects on cellular activities during infection, including the induction of cell cycle G2 arrest and the death of human cells and cells of the fission yeast Schizosaccharomyces pombe. In this study, wild-type Vpr (NL4-3Vpr) integrated as a single copy gene in S. pombe chromosome was used to investigate the molecular impact of Vpr on cellular oxidative stress. NL4-3Vpr triggered an atypical response in early (14-h), and a wellregulated oxidative stress response in late (35-h) log-phase cultures. Specifically, NL4-3Vpr expression induced oxidative stress in the 14-h cultures leading, to decreased levels of superoxide anion (O(2)(·-)), hydroxyl radical (·OH) and glutathione (GSH), and significantly decreased activities of catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione S-transferase. In the 35-h cultures, elevated levels of O(2)(·-) and peroxides were accompanied by increased activities of most antioxidant enzymes, suggesting that the Vpr-induced unbalanced redox state of the cells might contribute to the adverse effects in HIV-infected patients.


Assuntos
Cromossomos Fúngicos , HIV-1/genética , Oxirredutases , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Humanos , Oxirredução , Estresse Oxidativo/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/biossíntese , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
5.
Am J Med Genet C Semin Med Genet ; 166C(1): 76-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24616408

RESUMO

Despite a substantial evidence base, implementation of pharmacogenetics into routine patient care has been slow due to a number of non-trivial practical barriers. We implemented a Personalized Anti-platelet Pharmacogenetics Program (PAP3) for cardiac catheterization patients at the University of Maryland Medical Center and the Baltimore Veterans Administration Medical Center Patients' are offered CYP2C19 genetic testing, which is performed in our Clinical Laboratory Improvement Amendment (CLIA)-certified Translational Genomics Laboratory. Results are returned within 5 hr along with clinical decision support that includes interpretation of results and prescribing recommendations for anti-platelet therapy based on the Clinical Pharmacogenetics Implementation Consortium guidelines. Now with a working template for PAP3, implementation of other drug-gene pairs is in process. Lessons learned as described in this article may prove useful to other medical centers as they implement pharmacogenetics into patient care, a critical step in the pathway to personalized and genomic medicine.


Assuntos
Centros Médicos Acadêmicos/métodos , Farmacogenética/métodos , Inibidores da Agregação Plaquetária/uso terapêutico , Medicina de Precisão/métodos , Desenvolvimento de Programas/métodos , Centros Médicos Acadêmicos/tendências , Hidrocarboneto de Aril Hidroxilases/genética , Cateterismo Cardíaco/métodos , Citocromo P-450 CYP2C19 , Testes Genéticos/métodos , Humanos , Maryland , Farmacogenética/tendências , Medicina de Precisão/tendências , Desenvolvimento de Programas/estatística & dados numéricos
6.
Pathogens ; 13(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39057793

RESUMO

Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.

7.
mBio ; 15(1): e0303023, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38078754

RESUMO

IMPORTANCE: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tragically claimed millions of lives through coronavirus disease 2019 (COVID-19), and there remains a critical gap in our understanding of the precise molecular mechanisms responsible for the associated fatality. One key viral factor of interest is the SARS-CoV-2 ORF3a protein, which has been identified as a potent inducer of host cellular proinflammatory responses capable of triggering the catastrophic cytokine storm, a primary contributor to COVID-19-related deaths. Moreover, ORF3a, much like the spike protein, exhibits a propensity for frequent mutations, with certain variants linked to the severity of COVID-19. Our previous research unveiled two distinct types of ORF3a mutant proteins, categorized by their subcellular localizations, setting the stage for a comparative investigation into the functional and mechanistic disparities between these two types of ORF3a variants. Given the clinical significance and functional implications of the natural ORF3a mutations, the findings of this study promise to provide invaluable insights into the potential roles undertaken by these mutant ORF3a proteins in the pathogenesis of COVID-19.


Assuntos
COVID-19 , Retículo Endoplasmático , SARS-CoV-2 , Proteínas Viroporinas , Humanos , COVID-19/virologia , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Degradação Associada com o Retículo Endoplasmático , Proteínas Mutantes , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
8.
Pathogens ; 13(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38251382

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.

9.
J Clin Med ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37629211

RESUMO

Over 38 million people worldwide are living with HIV/AIDS, and more than half of them are affected by HIV-associated neurocognitive disorders (HAND). Such disorders are characterized by chronic neuroinflammation, neurotoxicity, and central nervous system deterioration, which lead to short- or long-term memory loss, cognitive impairment, and motor skill deficits that may show gender disparities. However, the underlying mechanisms remain unclear. Our previous study suggested that HIV-1 infection and viral protein R (Vpr) upregulate the SUR1-TRPM4 channel associated with neuroinflammation, which may contribute to HAND. The present study aimed to explore this relationship in a mouse model of HAND. This study employed the HIV transgenic Tg26 mouse model, comparing Tg26 mice with wildtype mice in various cognitive behavioral and memory tests, including locomotor activity tests, recognition memory tests, and spatial learning and memory tests. The study found that Tg26 mice exhibited impaired cognitive skills and reduced learning abilities compared to wildtype mice, particularly in spatial memory. Interestingly, male Tg26 mice displayed significant differences in spatial memory losses (p < 0.001), while no significant differences were identified in female mice. Consistent with our early results, SUR1-TRPM4 channels were upregulated in Tg26 mice along with glial fibrillary acidic protein (GFAP) and aquaporin 4 (AQP4), consistent with reactive astrocytosis and neuroinflammation. Corresponding reductions in neurosynaptic responses, as indicated by downregulation of Synapsin-1 (SYN1) and Synaptophysin (SYP), suggested synaptopathy as a possible mechanism underlying cognitive and motor skill deficits. In conclusion, our study suggests a possible relationship between SUR1-TRPM4-mediated neuroinflammation and synaptopathy with impairments of learning and memory in mice with HAND. These findings could help to develop new therapeutic strategies for individuals living with HAND.

10.
Biochem Biophys Res Commun ; 425(3): 696-700, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22713456

RESUMO

Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.


Assuntos
Flavina-Adenina Dinucleotídeo/análise , Nanopartículas Metálicas , Imagem Molecular/métodos , Ressonância de Plasmônio de Superfície/métodos , Coenzimas/análise , Fluorescência , Células HeLa , Humanos , Microscopia de Fluorescência
11.
Front Microbiol ; 13: 854567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356515

RESUMO

The ongoing SARS-CoV-2 pandemic has shocked the world due to its persistence, COVID-19-related morbidity and mortality, and the high mutability of the virus. One of the major concerns is the emergence of new viral variants that may increase viral transmission and disease severity. In addition to mutations of spike protein, mutations of viral proteins that affect virulence, such as ORF3a, also must be considered. The purpose of this article is to review the current literature on ORF3a, to summarize the molecular actions of SARS-CoV-2 ORF3a, and its role in viral pathogenesis and COVID-19. ORF3a is a polymorphic, multifunctional viral protein that is specific to SARS-CoV/SARS-CoV-2. It was acquired from ß-CoV lineage and likely originated from bats through viral evolution. SARS-CoV-2 ORF3a is a viroporin that interferes with ion channel activities in host plasma and endomembranes. It is likely a virion-associated protein that exerts its effect on the viral life cycle during viral entry through endocytosis, endomembrane-associated viral transcription and replication, and viral release through exocytosis. ORF3a induces cellular innate and pro-inflammatory immune responses that can trigger a cytokine storm, especially under hypoxic conditions, by activating NLRP3 inflammasomes, HMGB1, and HIF-1α to promote the production of pro-inflammatory cytokines and chemokines. ORF3a induces cell death through apoptosis, necrosis, and pyroptosis, which leads to tissue damage that affects the severity of COVID-19. ORF3a continues to evolve along with spike and other viral proteins to adapt in the human cellular environment. How the emerging ORF3a mutations alter the function of SARS-CoV-2 ORF3a and its role in viral pathogenesis and COVID-19 is largely unknown. This review provides an in-depth analysis of ORF3a protein's structure, origin, evolution, and mutant variants, and how these characteristics affect its functional role in viral pathogenesis and COVID-19.

12.
Pathogens ; 11(7)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35890048

RESUMO

Fission yeast can be used as a cell-based system for high-throughput drug screening. However, higher drug concentrations are often needed to achieve the same effect as in mammalian cells. Our goal here was to improve drug sensitivity so reduced drugs could be used. Three different methods affecting drug uptakes were tested using an FDA-approved HIV-1 protease inhibitor (PI) drug Darunavir (DRV). First, we tested whether spheroplasts without cell walls increase the drug sensitivity. Second, we examined whether electroporation could be used. Although small improvements were observed, neither of these two methods showed significant increase in the EC50 values of DRV compared with the traditional method. In contrast, when DRV was tested in a mutant strain PR836 that lacks key proteins regulating cellular efflux, a significant increase in the EC50 was observed. A comparison of nine FDA-approved HIV-1 PI drugs between the wild-type RE294 strain and the mutant PR836 strain showed marked enhancement of the drug sensitivities ranging from an increase of 0.56 log to 2.48 logs. Therefore, restricting cellular efflux through the adaption of the described fission yeast mutant strain enhances the drug sensitivity, reduces the amount of drug used, and increases the chance of success in future drug discovery.

13.
Front Cell Dev Biol ; 10: 1011221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506095

RESUMO

The ongoing SARS-CoV-2/COVID-19 pandemic caused a global public health crisis. Yet, everyone's response to SARS-CoV-2 infection varies, and different viral variants confer diverse pathogenicity. Thus, it is imperative to understand how viral determinants contribute to COVID-19. Viral ORF3a protein is one of those viral determinants, as its functions are linked to induction of cell and tissues damages, disease severity and cytokine storm that is a major cause of COVID-19-related death. ORF3a is a membrane-associated protein. Upon synthesis, it is transported from endoplasmic reticulum, Golgi apparatus to plasma membrane and subcellular endomembranes including endosomes and lysosomes. However, how ORF3a is transported intracellularly remains elusive. The goal of this study was to carry out a systematic mutagenesis study to determine the structural relationship of ORF3a protein with its subcellular locations. Single amino acid (aa) and deletion mutations were generated in the putative function-relevant motifs and other regions of interest. Immunofluorescence and ImageJ analyses were used to determine and quantitate subcellular locations of ORF3a mutants in comparison with wildtype ORF3a. The wildtype ORF3a localizes predominantly (Pearson's coefficients about 0.8) on the membranes of endosomes and lysosomes. Consistent with earlier findings, deletion of the YXXΦ motif, which is required for protein export, retained ORF3a in the Golgi apparatus. Interestingly, mutations in a double glycine (diG) region (aa 187-188) displayed a similar phenotype to the YXXΦ deletion, implicating a similar role of the diG motif in intracellular transport. Indeed, interrupting any one of the two glycine residues such as deletion of a single (dG188), both (dG187/dG188) or substitution (G188Y) of these residues led to ORF3a retention in the Golgi apparatus (Pearson's coefficients ≥0.8). Structural analyses further suggest that the diG motif supports a type-II ß-turn between the anti-parallel ß4 and ß5 sheets and connects to the YXXΦ motif via hydrogen bonds between two monomers. The diG- YXXΦ interaction forms a hand-in-hand configuration that could facilitate dimerization. Together, these observations suggest a functional role of the diG motif in intracellular transport of ORF3a.

14.
Biochem Biophys Res Commun ; 407(1): 63-7, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356199

RESUMO

Metal nanoparticle probes were used as molecular imaging agents to detect the expression levels and spatial distributions of the CCR5 receptors on the cell surfaces. Alexa Fluor 647-labeled anti-CCR5 monoclonal antibodies (mAbs) were covalently bound to 20 nm silver nanoparticles to synthesize the mAb-metal complexes. We measured the single nanoparticle emission of the mAb-metal complexes, showing that the complexes displayed enhanced intensities and reduced lifetimes in comparison with the metal-free mAbs. Six HeLa cell lines with various CCR5 expressions were incubated with the mAb-metal complexes for the target-specific binding to the cell surfaces. Fluorescence cell images were recorded on a time-resolved confocal microscope. The collected images expressed clear CCR5 expression-dependent optical properties. Two regression curves were obtained on the basis of the emission intensity and lifetime over the entire cell images against the number of the CCR5 expression on the cells. The emission from the single mAb-metal complexes could be distinctly identified from the cellular autofluorescence on the cell images. The CCR5 spatial distributions on the cells were analyzed on the cell images and showed that the low-expression cells have the CCR5 receptors as individuals or small clusters but the high expression cells have them as the dense and discrete clusters on the cell surfaces.


Assuntos
Técnica Direta de Fluorescência para Anticorpo , Nanopartículas Metálicas/química , Sondas Moleculares/química , Receptores CCR5/análise , Linfócitos T/química , Anticorpos Monoclonais/imunologia , Células HeLa , Humanos , Receptores CCR5/imunologia
15.
Biochem Biophys Res Commun ; 413(1): 53-7, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21867692

RESUMO

In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.


Assuntos
Corantes Fluorescentes/química , Queratina-19/análise , Nanopartículas Metálicas/química , Nanoconchas/química , Anticorpos Monoclonais/química , Carbocianinas/química , Células HeLa , Humanos , Dióxido de Silício/química , Prata/química
16.
Pathogens ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202872

RESUMO

Successful combination antiretroviral therapies (cART) eliminate active replicating HIV-1, slow down disease progression, and prolong lives. However, cART effectiveness could be compromised by the emergence of viral multidrug resistance, suggesting the need for new drug discoveries. The objective of this study was to further demonstrate the utility of the fission yeast cell-based systems that we developed previously for the discovery and testing of HIV protease (PR) inhibitors (PIs) against wild-type or multi-PI drug resistant M11PR that we isolated from an infected individual. All thirteen FDA-approved single-agent and fixed-dose combination HIV PI drugs were tested. The effect of these drugs on HIV PR activities was tested in pure compounds or formulation drugs. All FDA-approved PI drugs, except for a prodrug FPV, were able to suppress the wild-type PR-induced cellular and enzymatic activities. Relative drug potencies measured by EC50 in fission yeast were discussed in comparison with those measured in human cells. In contrast, none of the FDA-approved drugs suppressed the multi-PI drug resistant M11PR activities. Results of this study show that fission yeast is a reliable cell-based system for the discovery and testing of HIV PIs and further demonstrate the need for new PI drugs against viral multi-PI resistance.

17.
bioRxiv ; 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34845452

RESUMO

Therapeutic inhibition of critical viral functions is important for curtailing coronavirus disease-2019 (COVID-19). We sought to identify antiviral targets through genome-wide characterization of SARS-CoV-2 proteins that are crucial for viral pathogenesis and that cause harmful cytopathic effects. All twenty-nine viral proteins were tested in a fission yeast cell-based system using inducible gene expression. Twelve proteins including eight non-structural proteins (NSP1, NSP3, NSP4, NSP5, NSP6, NSP13, NSP14 and NSP15) and four accessory proteins (ORF3a, ORF6, ORF7a and ORF7b) were identified that altered cellular proliferation and integrity, and induced cell death. Cell death correlated with the activation of cellular oxidative stress. Of the twelve proteins, ORF3a was chosen for further study in mammalian cells. In human pulmonary and kidney epithelial cells, ORF3a induced cellular oxidative stress associated with apoptosis and necrosis, and caused activation of pro-inflammatory response with production of the cytokines TNF-α, IL-6, and IFN-ß1, possibly through the activation of NF-κB. To further characterize the mechanism, we tested a natural ORF3a Beta variant, Q57H, and a mutant with deletion of the highly conserved residue, ΔG188. Compared to wild type ORF3a, the ΔG188 variant yielded more robust activation of cellular oxidative stress, cell death, and innate immune response. Since cellular oxidative stress and inflammation contribute to cell death and tissue damage linked to the severity of COVID-19, our findings suggest that ORF3a is a promising, novel therapeutic target against COVID-19.

18.
mBio ; 13(1): e0016922, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164548

RESUMO

Therapeutic inhibition of critical viral functions is important for curtailing coronavirus disease 2019 (COVID-19). We sought to identify antiviral targets through the genome-wide characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins that are crucial for viral pathogenesis and that cause harmful cytopathogenic effects. All 29 viral proteins were tested in a fission yeast cell-based system using inducible gene expression. Twelve proteins, including eight nonstructural proteins (NSP1, NSP3, NSP4, NSP5, NSP6, NSP13, NSP14, and NSP15) and four accessory proteins (ORF3a, ORF6, ORF7a, and ORF7b), were identified that altered cellular proliferation and integrity and induced cell death. Cell death correlated with the activation of cellular oxidative stress. Of the 12 proteins, ORF3a was chosen for further study in mammalian cells because it plays an important role in viral pathogenesis and its activities are linked to lung tissue damage and a cytokine storm. In human pulmonary and kidney epithelial cells, ORF3a induced cellular oxidative stress associated with apoptosis and necrosis and caused activation of proinflammatory response with production of the cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IFN-ß1, possibly through the activation of nuclear factor kappa B (NF-κB). To further characterize the mechanism, we tested a natural ORF3a Beta variant, Q57H, and a mutant with deletion of the highly conserved residue, ΔG188. Compared with wild-type ORF3a, the ΔG188 variant yielded more robust activation of cellular oxidative stress, cell death, and innate immune response. Since cellular oxidative stress and inflammation contribute to cell death and tissue damage linked to the severity of COVID-19, our findings suggest that ORF3a is a promising, novel therapeutic target against COVID-19. IMPORTANCE The ongoing COVID-19 pandemic caused by SARS-CoV-2 has claimed over 5.5 million lives with more than 300 million people infected worldwide. While vaccines are effective, the emergence of new viral variants could jeopardize vaccine protection. Treatment of COVID-19 by antiviral drugs provides an alternative to battle against the disease. The goal of this study was to identify viral therapeutic targets that can be used in antiviral drug discovery. Utilizing a genome-wide functional analysis in a fission yeast cell-based system, we identified 12 viral candidates, including ORF3a, which cause cellular oxidative stress, inflammation, apoptosis, and necrosis that contribute to cytopathogenicity and COVID-19. Our findings indicate that antiviral agents targeting ORF3a could have a great impact on COVID-19.


Assuntos
COVID-19 , Schizosaccharomyces , Animais , Humanos , Antivirais , Inflamação , Mamíferos , Necrose , Pandemias , SARS-CoV-2 , Genoma Viral
19.
Retrovirology ; 7: 59, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20609246

RESUMO

BACKGROUND: Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. RESULTS: To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU) and ultraviolet light (UV) also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. CONCLUSIONS: These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.


Assuntos
Divisão Celular , Fase G2 , HIV-1/patogenicidade , Fase S , Fatores de Virulência/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Inativação Gênica , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Quinases/metabolismo , Fosfatases cdc25/metabolismo
20.
Biochem Biophys Res Commun ; 400(1): 111-6, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20705055

RESUMO

Chemokine receptor 5 (CCR5) is a cell surface protein required for HIV-1 infection. It is important to detect the amount and observe the spatial distribution of the CCR5 receptors on the cell surfaces. In this report, we describes the metal nanoparticles which were specially designed as molecular fluorescent probes for imaging of CCR5 receptors on the T-lymphocytic PM1 cell surfaces. These CCR5 monoclonal antibodies (mAbs) metal complexes were prepared by labeling mAbs with Alexa Fluor 680 followed by covalent binding the labeled mAbs on the 20 nm silver nanoparticles. Compared with the labeled mAbs without metal, the mAb-metal complexes were found to display enhanced emission intensity and shortened lifetime due to interactions between fluorophores and metal. The mAb-metal complexes were incubated with the PM1 cell lines. The confocal fluorescent intensity and lifetime cell images were recorded on single cells. It was observed that the mAb-metal complexes could be clearly distinguished from the cellular autofluorescence. By analyzing a pool of cell images, we observed that most CCR5 receptors appeared as clusters on the cell surfaces. The fluorophore-metal complexes developed in this report are generally useful for detection of cell surface receptors and provide a new class of probe to study the interaction between the CCR5 receptors with viral gp120 during HIV infections.


Assuntos
Membrana Celular/imunologia , Nanopartículas Metálicas/química , Receptores CCR5/análise , Espectrometria de Fluorescência/métodos , Linfócitos T/imunologia , Anticorpos Monoclonais/imunologia , Linhagem Celular , Membrana Celular/química , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Sondas Moleculares , Receptores CCR5/imunologia , Linfócitos T/química , Linfócitos T/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA