Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(9): e2306187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857586

RESUMO

Low Coulombic efficiency (CE) and safety issues are huge problems that hinder the practical application of Li metal anodes. Constructing Li host structures decorated with functional species can restrain the growth of Li dendrites and alleviate the great volume change. Here, a 3D porous carbonaceous skeleton modified with rich lithiophilic groups (Zn, ZnO, and Zn(CN)2 ) is synthesized as a Li host via one-step carbonization of a triazole-containing metal-organic framework. The nano lithiophilic groups serve as preferred sites for Li nucleation and growth, regulating a uniform Li+ flux and uniform current density distribution. In addition, the 3D porous network functions as a Li reservoir that provides rich internal space to store Li, thus alleviating the volumetric expansion during Li plating/stripping process. Thanks to these component and structural merits, an ultra-low overpotential for Li deposition is achieved, together with high CE of over 99.5% for more than 500 cycles at 1 mA cm-2 and 1 mAh cm-2 in half cells. The symmetric cells exhibit a prolonged cycling of 900 h at 1 mA cm-2 . The full cells by coupling Zn/ZnO/Zn(CN)2 @C-Li anode with LiFePO4 cathode deliver a high capacity retention of 94.3% after 200 cycles at 1 C.

2.
Chem Rev ; 122(3): 3763-3819, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35015520

RESUMO

Solid-state batteries have fascinated the research community over the past decade, largely due to their improved safety properties and potential for high-energy density. Searching for fast ion conductors with sufficient electrochemical and chemical stabilities is at the heart of solid-state battery research and applications. Recently, significant progress has been made in solid-state electrolyte development. Sulfide-, oxide-, and halide-based electrolytes have been able to achieve high ionic conductivities of more than 10-3 S/cm at room temperature, which are comparable to liquid-based electrolytes. However, their stability toward Li metal anodes poses significant challenges for these electrolytes. The existence of non-Li cations that can be reduced by Li metal in these electrolytes hinders the application of Li anode and therefore poses an obstacle toward achieving high-energy density. The finding of antiperovskites as ionic conductors in recent years has demonstrated a new and exciting solution. These materials, mainly constructed from Li (or Na), O, and Cl (or Br), are lightweight and electrochemically stable toward metallic Li and possess promising ionic conductivity. Because of the structural flexibility and tunability, antiperovskite electrolytes are excellent candidates for solid-state battery applications, and researchers are still exploring the relationship between their structure and ion diffusion behavior. Herein, the recent progress of antiperovskites for solid-state batteries is reviewed, and the strategies to tune the ionic conductivity by structural manipulation are summarized. Major challenges and future directions are discussed to facilitate the development of antiperovskite-based solid-state batteries.

3.
Arch Insect Biochem Physiol ; 115(4): e22113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628056

RESUMO

The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.


Assuntos
Borboletas , Animais , Borboletas/genética , Interferência de RNA , RNA de Cadeia Dupla , Insetos/genética , Inativação Gênica
4.
Environ Toxicol ; 39(6): 3389-3399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445457

RESUMO

Breast cancer stands as the predominant malignancy and primary cause of cancer-related mortality among females globally. Approximately 25% of breast cancers exhibit HER2 overexpression, imparting a more aggressive tumor phenotype and correlating with poor prognoses. Patients with metastatic breast cancer receiving HER2 tyrosine kinase inhibitors (HER2 TKIs), such as Lapatinib, develop acquired resistance within a year, posing a critical challenge in managing this disease. Here, we explore the potential of Artemisia argyi, a Chinese herbal medicine known for its anti-cancer properties, in mitigating HER2 TKI resistance in breast cancer. Analysis of the Cancer Genome Atlas (TCGA) revealed diminished expression of transmembrane serine protease 2 (TMPRSS2), a subfamily of membrane proteolytic enzymes, in breast cancer patients, correlating with unfavorable outcomes. Intriguingly, lapatinib-responsive patients exhibited higher TMPRSS2 expression. Our study unveiled that the compounds from Artemisia argyi, eriodictyol, and umbelliferone could inhibit the growth of lapatinib-resistant HER2-positive breast cancer cells. Mechanistically, they suppressed HER2 kinase activation by enhancing TMPRSS2 activity. Our findings propose TMPRSS2 as a critical determinant in lapatinib sensitivity, and Artemisia argyi emerges as a potential agent to overcome lapatinib via activating TMPRSS2 in HER2-positive breast cancer. This study not only unravels the molecular mechanisms driving cell death in HER2-positive breast cancer cells induced by Artemisia argyi but also lays the groundwork for developing novel inhibitors to enhance therapy outcomes.


Assuntos
Artemisia , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Lapatinib , Extratos Vegetais , Receptor ErbB-2 , Serina Endopeptidases , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Artemisia/química , Feminino , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Angew Chem Int Ed Engl ; 63(28): e202400144, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624087

RESUMO

Li-rich antiperovskite (LiRAP) hydroxyhalides are emerging as attractive solid electrolyte (SEs) for all-solid-state Li metal batteries (ASSLMBs) due to their low melting point, low cost, and ease of scaling-up. The incorporation of rotational polyanions can reduce the activation energy and thus improve the Li ion conductivity of SEs. Herein, we propose a ternary rotational polyanion coupling strategy to fasten the Li ion conduction in tetrafluoroborate (BF4 -) ion doped LiRAP Li2OHCl. Assisted by first-principles calculation, powder X-ray diffraction, solid-state magnetic resonance and electrochemical impedance spectra, it is confirmed that Li ion transport in BF4 - ion doped Li2OHCl is strongly associated with the rotational coupling among OH-, BF4 - and Li2-O-H octahedrons, which enhances the Li ion conductivity for more than 1.8 times with the activation energy lowering 0.03 eV. This work provides a new perspective to design high-performance superionic conductors with multi-polyanions.

6.
Neurobiol Dis ; 179: 106044, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804285

RESUMO

Stroke is the second leading cause of death worldwide; however, the treatment choices available to neurologists are limited in clinical practice. Lipocalin 2 (LCN2) is a secreted protein, belonging to the lipocalin superfamily, with multiple biological functions in mediating innate immune response, inflammatory response, iron-homeostasis, cell migration and differentiation, energy metabolism, and other processes in the body. LCN2 is expressed at low levels in the brain under normal physiological conditions, but its expression is significantly up-regulated in multiple acute stimulations and chronic pathologies. An up-regulation of LCN2 has been found in the blood/cerebrospinal fluid of patients with ischemic/hemorrhagic stroke, and could serve as a potential biomarker for the prediction of the severity of acute stroke. LCN2 activates reactive astrocytes and microglia, promotes neutrophil infiltration, amplifies post-stroke inflammation, promotes blood-brain barrier disruption, white matter injury, and neuronal death. Moreover, LCN2 is involved in brain injury induced by thrombin and erythrocyte lysates, as well as microvascular thrombosis after hemorrhage. In this paper, we review the role of LCN2 in the pathological processes of ischemic stroke; intracerebral hemorrhage; subarachnoid hemorrhage; and stroke-related brain diseases, such as vascular dementia and post-stroke depression, and their underlying mechanisms. We hope that this review will help elucidate the value of LCN2 as a therapeutic target in stroke.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Astrócitos/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Lipocalina-2/metabolismo , Lipocalinas/metabolismo , Acidente Vascular Cerebral/patologia
7.
Mol Biol Evol ; 38(4): 1529-1536, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33283852

RESUMO

The rise and expansion of Tibetan Empire in the 7th to 9th centuries AD affected the course of history across East Eurasia, but the genetic impact of Tibetans on surrounding populations remains undefined. We sequenced 60 genomes for four populations from Pakistan and Tajikistan to explore their demographic history. We showed that the genomes of Balti people from Baltistan comprised 22.6-26% Tibetan ancestry. We inferred a single admixture event and dated it to about 39-21 generations ago, a period that postdated the conquest of Baltistan by the ancient Tibetan Empire. The analyses of mitochondrial DNA, Y, and X chromosome data indicated that both ancient Tibetan males and females were involved in the male-biased dispersal. Given the fact that the Balti people adopted Tibetan language and culture in history, our study suggested the impact of Tibetan Empire on Baltistan involved dominant cultural and minor demic diffusion.


Assuntos
Fluxo Gênico , Genoma Humano , Feminino , Humanos , Masculino , Paquistão , Tibet/etnologia , Sequenciamento Completo do Genoma
8.
Arch Insect Biochem Physiol ; 111(2): e21952, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35909310

RESUMO

Papilio machaon was assigned as the type species for all butterflies by Linnaeus and P. bianor is a congener but exhibits a great difference in morphology (especially larva and adult color pattern) and larval host plants from P. machaon. Thus, they are the ideal models to investigate genetic mechanisms underlying morphology and plasticity between congeners. The reference genomes of both species were dissected in our previous studies, but little is known about their regulatory genome and the epigenetic regulation of gene expression throughout developmental stages. Here, we profiled the chromatin accessibility and gene expression of three developmental stages (the 4th instar larva [L4], the 5th instar larva [L5], and pupa [P]) using transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq. Results showed that many accessible chromatin peaks were identified at three developmental stages (peak number, P. machaon: 44,977 [L4], 36,919 [L5], 47,147 [P]; P. bianor: 20,341 [L4], 44,668 [L5], 62,249 [P]). Moreover, the number of differentially accessible peaks and differentially expressed genes between larval stages of each butterfly species are significantly fewer than that between larval and pupal stages, suggesting a higher similarity within larvae and a significant difference between larvae and pupae. This study added the annotated information of chromatin accessibility genome-wide of the two papilionid species and will promote the investigation of gene regulation in butterfly evolution.


Assuntos
Borboletas , Animais , Borboletas/genética , Cromatina/genética , Epigênese Genética , Larva/genética , Pupa/genética
9.
PLoS Genet ; 15(1): e1007616, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668559

RESUMO

Like other domesticates, the efficient utilization of nitrogen resources is also important for the only fully domesticated insect, the silkworm. Deciphering the way in which artificial selection acts on the silkworm genome to improve the utilization of nitrogen resources and to advance human-favored domestication traits, will provide clues from a unique insect model for understanding the general rules of Darwin's evolutionary theory on domestication. Storage proteins (SPs), which belong to a hemocyanin superfamily, basically serve as a source of amino acids and nitrogen during metamorphosis and reproduction in insects. In this study, through blast searching on the silkworm genome and further screening of the artificial selection signature on silkworm SPs, we discovered a candidate domestication gene, i.e., the methionine-rich storage protein 1 (SP1), which is clearly divergent from other storage proteins and exhibits increased expression in the ova of domestic silkworms. Knockout of SP1 via the CRISPR/Cas9 technique resulted in a dramatic decrease in egg hatchability, without obvious impact on egg production, which was similar to the effect in the wild silkworm compared with the domestic type. Larval development and metamorphosis were not affected by SP1 knockout. Comprehensive ova comparative transcriptomes indicated significant higher expression of genes encoding vitellogenin, chorions, and structural components in the extracellular matrix (ECM)-interaction pathway, enzymes in folate biosynthesis, and notably hormone synthesis in the domestic silkworm, compared to both the SP1 mutant and the wild silkworm. Moreover, compared with the wild silkworms, the domestic one also showed generally up-regulated expression of genes enriched in the structural constituent of ribosome and amide, as well as peptide biosynthesis. This study exemplified a novel case in which artificial selection could act directly on nitrogen resource proteins, further affecting egg nutrients and eggshell formation possibly through a hormone signaling mediated regulatory network and the activation of ribosomes, resulting in improved biosynthesis and increased hatchability during domestication. These findings shed new light on both the understanding of artificial selection and silkworm breeding from the perspective of nitrogen and amino acid resources.


Assuntos
Evolução Molecular , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Seleção Genética , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Domesticação , Matriz Extracelular/genética , Técnicas de Inativação de Genes , Genoma de Inseto/genética , Desequilíbrio de Ligação , Filogenia , Transcriptoma/genética
10.
Photochem Photobiol Sci ; 20(8): 1053-1067, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34347281

RESUMO

Firefly adult bioluminescence functions as signal communication between sexes. How sympatric sibling species with similar glow pattern recognize their conspecific mates remains largely unknown. To better understand the role of the luciferases of sympatric fireflies in recognizing mates, we cloned the luciferase genes of three sympatric forest dwelling fireflies (Diaphanes nubilus, Diaphanes pectinealis, and Diaphanes sp2) and evaluated their enzyme characteristics. Our data show that the amino acid (AA) sequences of all three luciferases are highly conserved, including the identities (D. nubilus vs D. pectinealis: 99%; D. nubilus vs Diaphanes sp2: 98.5%; D. pectinealis vs Diaphanes sp2: 99.4%) and the protein structures. Three recombinant luciferases produced in vitro all possess significant luminescence activity at pH 7.8, and similar maximum emission spectrum (D. nubilus: 562 nm; D. pectinealis and Diaphanes sp2: 564 nm). They show the highest activity at 10 °C (D. pectinealis, Diaphanes sp2) and 15 °C (D. nubilus), and completely inactivation at 45 °C. Their KM for D-luciferin and ATP were 2.7 µM and 92 µM (D. nubilus), 3.7 µM and 49 µM (D. pectinealis), 3.5 µM and 46 µM (Diaphanes sp2). Phylogenetic analyses support that D. nubilus is sister to D. pectinealis with Diaphanes sp2 at their base, which further cluster with Pyrocoelia. All combined data indicate that sympatric Diaphanes species have similar luciferase characteristics, suggesting that other strategies (e.g., pheromone, active time, etc.) may be adopted to recognize mates. Our data provide new insights into Diaphanes luciferases and their evolution.


Assuntos
Evolução Molecular , Vaga-Lumes/genética , Luciferases/genética , Simpatria , Animais , Clonagem Molecular
11.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3330-3336, 2021 Jul.
Artigo em Zh | MEDLINE | ID: mdl-34396752

RESUMO

The present study aimed to explore the correlation between agronomic traits and quality indexes of Dendrobium nobile and its application value in agricultural breeding. The cultivated strains of D. nobile in Hejiang-Chishui producing areas were extensively collected,and the main agronomic traits and quality indexes were measured. The agronomic traits with significant correlation with quality indexes were screened out by the correlation analysis,and then the parental lines and self-bred F_1 generation plants were furtherverified. Among 96 lines of D. nobile,the content of soluble polysaccharides showed a significant negative correlation with dendrobine( P < 0. 01),and no significant correlation with agronomic traits in stems and leaves. The content of dendrobine exhibited a significant positive correlation with the stem width-thickness ratio( at the largest cross section; P < 0. 01),and no significant correlation with other agronomic traits. Regression analysis further verified the positive correlation between dendrobine content and stem width-thickness ratio( R2> 0. 9). Two lines,JC-10 and JC-35,with significant differences in stem width-thickness ratio were screened out( P <0. 05). The corresponding F1 generation plants by self-pollination both showed that the dendrobine content was higher with greater stem width-thickness ratio( P < 0. 01). The experimental results suggested that within a certain range,the dendrobine content was higher in D. nobile with flatter stem. Therefore,in the breeding of D. nobile,this specific trait could be used for screening plants with high content of quality indexes such as dendrobine.


Assuntos
Dendrobium , Agricultura , Dendrobium/genética , Melhoramento Vegetal , Folhas de Planta/genética , Polissacarídeos
12.
Small ; 16(2): e1905075, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31814261

RESUMO

Transition-metal phosphides have flourished as promising candidates for oxygen evolution reaction (OER) electrocatalysts. Herein, it is demonstrated that the electrocatalytic OER performance of CoP can be greatly improved by constructing a hybrid CoP/TiOx heterostructure. The CoP/TiOx heterostructure is fabricated using metal-organic framework nanocrystals as templates, which leads to unique hollow structures and uniformly distributed CoP nanoparticles on TiOx . The strong interactions between CoP and TiOx in the CoP/TiOx heterostructure and the conductive nature of TiOx with Ti3+ sites endow the CoP-TiOx hybrid material with high OER activity comparable to the state-of-the-art IrO2 or RuO2 OER electrocatalysts. In combination with theoretical calculations, this work reveals that the formation of CoP/TiOx heterostructure can generate a pathway for facile electron transport and optimize the water adsorption energy, thus promoting the OER electrocatalysis.

13.
Chemistry ; 26(18): 4001-4006, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31647595

RESUMO

Transition-metal-based phosphides (TMPs) have been considered as attractive electrocatalysts for water splitting due to their earth-abundance and remarkable catalytic activity. As a representative type of precursors, metal-organic frameworks (MOFs) provide ideal plateaus for the design of nanostructured TMPs. In this work, the hierarchically structured iron phosphide nanobundles (FeP-500) were fabricated by one-step phosphorization of an iron-based MOF (MET(Fe)) precursor. The derived FeP-500 nanobundles were constructed by quasi-paralleled one-dimensional nanorods with uneven surface, which provided channels for electrolyte penetration, mass transport, and effective exposure of active sites during the water-splitting process. With the addition of conductive Super P, the obtained FeP-500-S exhibited a good electrocatalytic performance towards the hydrogen evolution reaction in alkaline electrolyte (1 mol L-1 KOH). Furthermore, to investigate the influence of secondary metal doping, a series of isoreticular MOF precursors and bimetallic TMPs were fabricated. The results indicated that the catalytic performance is structure dominated.

14.
Analyst ; 145(10): 3605-3611, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32266898

RESUMO

A sensitive and enzyme-free electrochemical aptasensor was constructed for the sensing of 8-hydroxy-2'-deoxyguanosine (8-OH-dG). In the process of constructing the aptasensor, triple signal amplification strategies were introduced to enhance the sensitivity. First, every aptamer/pDNA complex immobilized on magnetic beads could release three kinds of pDNAs when 8-OH-dG was introduced, which caused three-fold magnification of the target. Second, the released three kinds of pDNAs initiated catalyzed hairpin assembly between two hairpin DNAs (HP1 and HP2) on a gold electrode. Meanwhile, the three kinds of pDNAs were released again by a strand displacement reaction to obtain the next catalyzed hairpin assembly. Third, the emerging toehold of HP2 further induced a hybridization chain reaction (HCR) between two hairpin DNAs (HP3 and HP4), forming a long double-stranded DNA concatemer on the surface of the electrode. Finally, [Ru(NH3)6]3+, an electroactive cation, was adsorbed onto the long dsDNA concatemer by electrostatic interactions and consequently, an electrochemical signal was generated. Under this triple signal amplification, a low detection limit down to 24.34 fM has been obtained for 8-OH-dG determination, which is superior to those of most previously reported methods.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/análise , Biocatálise , Técnicas Biossensoriais/métodos , DNA/química , DNA/genética , Sequências Repetidas Invertidas , 8-Hidroxi-2'-Desoxiguanosina/química , 8-Hidroxi-2'-Desoxiguanosina/urina , Aptâmeros de Nucleotídeos/metabolismo , Eletroquímica , Humanos , Hibridização de Ácido Nucleico
15.
J Invertebr Pathol ; 172: 107347, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119955

RESUMO

A fluorescent stain, calcofluor white (CFW), was used for detection of spores of the microsporidium Enterocytozoon hepatopenaei (EHP). EHP spores in suspension, in feces, or in the infected hepatopancreas of the shrimp Penaeus vannamei, can be easily stained with this chitin and cellulose binding dye to show distinct blue-white fluorescent oval walls. The dye does not stain the host tissues. EHP spores showed orange-red spots by staining with hematoxylin and phloxine (H&P) in the section. CFW staining provides a simple and rapid method for determining the presence of EHP spores in fecal or tissue samples.


Assuntos
Benzenossulfonatos/química , Enterocytozoon/isolamento & purificação , Penaeidae/microbiologia , Esporos Fúngicos/isolamento & purificação , Coloração e Rotulagem/métodos , Animais , Fezes/microbiologia , Hepatopâncreas/microbiologia
16.
J Invertebr Pathol ; 173: 107367, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251642

RESUMO

Decapod iridescent virus 1 (DIV1) was proven to be the aetiological agent of a disease causing mass die-offs of shrimp, prawn and crayfish. The specific purpose of this study was to develop a new sensitive real-time PCR method for the specific detection of DIV1. A pair of primers that amplify a 142 bp fragment and a TaqMan probe were selected for the major capsid protein gene of DIV1. They were shown to be specific for DIV1 and did not react with other common shrimp pathogens or healthy shrimp DNA. The method could detect as virus levels as low as 1.2 copies of DIV1 plasmid DNA.


Assuntos
Iridoviridae/isolamento & purificação , Penaeidae/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Sensibilidade e Especificidade , Carga Viral
17.
Zhongguo Zhong Yao Za Zhi ; 44(4): 765-773, 2019 Feb.
Artigo em Zh | MEDLINE | ID: mdl-30989890

RESUMO

Dendrobium denneanum have been used for a long time as rare medicinal herbs in traditional Chinese medicine. Our previous works found that ether extract of D. denneanum had higher anticancer activities than alcohol or water extract,thus with better development prospects. Quantitative proteomics based on SILAC technique was used to investigate the anticancer mechanism of D. denneanum on lung tumor cell line A549,and 4 855 proteins were detected in A549 cells. Quantitative proteomics experiments found that 193 proteins of A549 cells were up-regulated,and 44 proteins were down-regulated by ether extract of D. denneanum. Those proteins are associated with synthesis,transport and metabolism of biological macromolecules,chaperone,DNA repair,oxidoreductase,cell adhesion,cell cycle,apoptosis and autophagy. Through the function analysis of differentially expressed proteins,it was inferred that ether extract of D. denneanum caused cell protein metabolism disorder,endoplasmic reticulum stress response,abnormal self-repair mechanism of cells,damage of cell adhesion and proliferation; besides,it caused a dramatic increase in ROS level in A549 cells,and upset the balance of intracellular oxidation reduction system. Affected by the above factors,lung cancer cells initiated apoptosis and autophagy,which accelerated cell death. This research explains the anticancer mechanism of D. denneanum from the perspective of quantitative proteomics,and lays a foundation for future research and development of new anticancer drugs based on ether extract of D. denneanum.


Assuntos
Dendrobium , Neoplasias Pulmonares , Células A549 , Animais , Apoptose , Éter , Humanos , Proteômica
18.
Angew Chem Int Ed Engl ; 58(7): 1975-1979, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30520258

RESUMO

Large carbon networks featuring hierarchical pores and atomically dispersed metal sites (ADMSs) are ideal materials for energy storage and conversion due to the spatially continuous conductive networks and highly active ADMSs. However, it is a challenge to synthesize such ADMS-decorated carbon networks. Here, an innovative fusion-foaming methodology is presented in which energetic metal-organic framework (EMOF) nanoparticles are puffed up to submillimeter-scaled ADMS-decorated carbon networks via a one-step pyrolysis. Their extraordinary catalytic performance towards oxygen reduction reaction verifies the practicability of this synthetic approach. Moreover, this approach can be readily applicable to a wide range of unexplored EMOFs, expanding scopes for future materials design.

19.
Small ; 14(49): e1803500, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30345628

RESUMO

Construction of multifunctional highly active earth-abundant electrocatalysts on a large scale is a great challenge due to poor control over nanostructural features and limited active sites. Here, a simple methodology to tailor metal-organic frameworks (MOFs) to extract highly active multifunctional electrocatalysts on a large scale for oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution reaction (HER) is presented. The N, S codoped Fe2 N decorated highly porous and defect-rich carbon nanosheets are grown using MOF xerogels, melamine, and polyvinylpyrollidone. The resulting catalyst exhibits excellent activity for ORR with an onset (0.92 V) and half-wave (0.81 V) potential similar to state-of-the-art Pt/C catalysts. The catalyst also shows outstanding OER and HER activities with a small overpotential of 360 mV in 1 m KOH and -123 mV in 0.5 m H2 SO4 at a current density of 10 mA cm-2 , respectively. Excellent catalytic properties are further supported by theoretical calculations where relevant models are built and various possible activation sites are identified by first-principles calculations. The results suggest that the carbon atoms adjacent to heteroatoms as well as Fe2 -N sites present the active sites for improved catalytic response, which is in agreement with the experimental results.

20.
Planta ; 248(4): 769-784, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066218

RESUMO

MAIN CONCLUSION: This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n = 38. Only a few of genetic studies were reported in Dendrobium. After revealing of genomic sequences, the techniques of transcriptomics, proteomics and metabolomics could be employed on Dendrobium easily. Some other molecular biological techniques, such as gene cloning, gene editing, genetic transformation and molecular marker developing, had also been applied on the basic research of Dendrobium, successively. As medicinal plants, insights into the biosynthesis of some medicinal components were the most important. As ornamental plants, regulation of flower related characteristics was the most important. More, knowledge of growth and development, environmental interaction, evolutionary analysis, breeding of new cultivars, propagation, and identification of species and herbs were also required for commercial usage. All of these studies were improved using genomic sequences and related technologies. To answer some key scientific issues in Dendrobium, quality formation, flowering, self-incompatibility and seed germination would be the focus of future research. And genome related technologies and studies would be helpful.


Assuntos
Dendrobium/genética , Genoma de Planta/genética , Genômica , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Dendrobium/classificação , Dendrobium/fisiologia , Genoma de Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Plantas Medicinais , Reprodução , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA