Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(14): e2206465, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587977

RESUMO

Given severe harmfulness of pesticides, unique characteristics of peroxidase-mimetic nanozymes, and favorable prospects of paper-based analytical devices (PADs), it is highly desirable to construct a nanozyme-based PAD for intelligent analysis of pesticide without enzyme/aptamer/antibody and interference of O2 . Herein, 2D nanosheet-like V2 O5 (2D-VONz) with exclusive peroxidase-mimetic activity is controllably prepared under the optimal reactants concentration and reaction temperature. Experimental characterizations demonstrate that 2D-VONz exhibits high affinity and catalytic rate, and catalytic oxidation is dependent on •OH yielded from the decomposition of H2 O2 catalyzed by 2D-VONz, and the catalytic performance is relevant to π-π stacking force-controlled surface zeta potential of 2D-VONz changed by substrates, giving a comprehensive understand of the inherent mechanism. Interestingly, 2D-VONz activity is inhibited by pesticide glyphosate (Gly), and then is exploited to develop a PAD, on which, Gly declines 2D-VONz activity to prevent it from catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine, contributing to rapid, naked-eye, and portable analysis of pesticide using a smartphone. The current strategy on preparing exclusive peroxidase-mimetic 2D nanozyme, investigating catalytic mechanism, developing nanozyme-based PAD, and achieving direct pesticide sensing will set up new avenues to improve the analytical performance, strengthen the practicability, and broaden the application scope of nanozymes.


Assuntos
Peroxidase , Praguicidas , Peroxidases , Corantes , Oxirredução
2.
Talanta ; 278: 126490, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38955106

RESUMO

Sensitive and accurate analysis of pyrophosphate (PPi) is of great importance for preventing health hazard in environment. Nevertheless, most of sensors focus on sensitivity and selectivity, but practicality is also a significant quota. How to reconciling sensitivity, selectivity and practicability in one single sensor is desirable but remains challenging. Here, we created a novel metal-carbon nanozyme V2O5@C with two-dimensional (2D) morphology and high yet exclusive peroxidase (POD)-like activity via a glucose and NH4NO4-co-directed avenue, and further showed its application in constructing a portable and disposable paper-based analytical chip (PA-chip) for rapid, visual and onsite analysis of PPi. PPi etched V2O5 to prevent the decomposition of H2O2 into ·OH, resulting in weakened POD-like activity. In comparison with PPi deficiency, colorless TMB couldn't be oxidized into oxidized TMB with a dropped absorption at 652 nm. Therefore, obviously shallowed blue color on PA-chip surface was recorded, and demonstrated a negative relationship with PPi dosage, enabling rapid and visual detection of PPi with a limit of detection of 2.6 nM. This study demonstrated the burgeoning applications of nanozymes with POD-like activity in construction of PA-chips for PPi and will quicken the advancement of practical sensors, guaranteeing environmental safety.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121758, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36029744

RESUMO

In consideration of relevance of antibiotic with food security, it is extremely desirable to propose sensitive and credible methods for antibiotic screening. Nevertheless, most of known approaches are developed based on fluorescence technique, which suffered from the interferences of background fluorescence and autoluminescence, and tedious labeling procedures, ascribing to the deficiency of high-performance and multifunctional dyes. Herein, we developed a novel iridium (III) complex (Ir-QAU)-based aptamer-promoted phosphorescence sensor for label-free, enzyme-free and highly sensitive detection of target antibiotic (kanamycin, Kan) based on target-switched hybridizing chain reaction (HCR). Ir-QAU was elaborately devised to present a signal-on response to G-quadruplex (G4) DNA against other DNAs due to its specific intercalation in G4 DNA and subsequent restriction of intra-molecular rotation. The recognition of H1 by Kan promoted the formation of Kan@H1 complexes, which hybridized with H2 and H3 via toehold-mediated hybridization reaction, subsequently switching HCR to produce large numbers of G4 DNA. Compared to Kan absence, abundant Ir-QAU was locked in G4 DNA to yield a significantly increased luminescence, which switches the luminescence analysis process of Kan with a limit of detection down to 0.38 pM. Furthermore, the Ir-QAU-based sensor was triumphantly applied to detect Kan in milk sample. We anticipate this work will disclose a new way to development of high-efficiency and practical luminescence sensor, and show a great potential for antibiotic-related food security.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quadruplex G , Antibacterianos/análise , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , Corantes , DNA , Irídio , Canamicina/análise , Limite de Detecção
4.
Food Chem ; 393: 133349, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691064

RESUMO

Electrochemiluminescent (ECL) sensors for organophosphorus pesticides (OPs) have received considerable attention, whereas complicated electrode's immobilization, response to single hydrolysate and anodic emission correlated with ECL assays restrict their potential utilization. Herein, we developed a homogeneous dual-response cathodic ECL system for highly sensitive and reliable analysis of OP using CdTe QDs as emitters. CdTe QDs, emitting red light, were fabricated through a hydrothermal reaction and generated anodic and cathodic ECL emission upon stimulation of tripropyl amine and K2S2O8, respectively. Notably, CdTe QDs-K2S2O8 showed a simultaneous response to thiol and acidic pH, and were regarded as a ECL sensor for methidathion with limit of detection of 0.016 ng/mL based on hydrolysis of acetylthiocholine into thiocholine and CH3COOH by acetylcholinesterase (AChE) and OPs' inhibition on AChE activity. This sensor also exhibited good practicability to detect methidathion in Chinese cabbage. Overall, the sensor will supply more useful information for ensuring OPs-related food safety.


Assuntos
Técnicas Biossensoriais , Brassica , Compostos de Cádmio , Praguicidas , Pontos Quânticos , Acetilcolinesterase/química , Compostos de Cádmio/química , China , Eletrodos , Concentração de Íons de Hidrogênio , Compostos Organofosforados/análise , Praguicidas/análise , Pontos Quânticos/química , Compostos de Sulfidrila , Telúrio/química
5.
J Agric Food Chem ; 70(2): 680-686, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35012307

RESUMO

Given the significance of food safety, it is highly urgent to develop a sensitive yet reliable sensor for the practical analysis of algal toxins. As most of the developed sensors are disturbed by interfering substances and the target toxin is detected in a single-signal manner based on the immunoassay technology. Herein, we developed an aptamer-based dual-signal ratiometric electrochemical sensor for the sensitive and accurate analysis of microcystin-LR (MC-LR), using it as a proof-of-concept analyte. Methylene blue-tagged ssDNA (MB-ssDNA) was immobilized at the gold electrode surface accompanied with the absence of ferrocene-tagged ssDNA (Fc-ssDNA), resulting in a high differential pulse voltammetry (DPV) current of MB and a low DPV current of Fc. The recognition of MB-ssDNA by MC-LR stimulated the formation of MC-LR@MB-ssDNA, which induced the removal of MB-ssDNA from the electrode and the exposure of SH-ssDNA, enabling Fc-ssDNA to be captured at the electrode surface via nucleic acid hybridization. In comparison with MC-LR deficiency, the DPV signal of MB dropped along with an improved DPV signal of Fc, contributing to the ratiometric detection of MC-LR, with the limit of detection down to 0.0015 nM. Furthermore, this ratiometric electrochemical sensor was successfully explored to assess the bioaccumulated amount of MC-LR in the liver and meat of fish. The aptamer-based ratiometric strategy to develop an electrochemical MC-LR assay will offer a promising avenue to develop high-performance sensors, and the sensor will find more useful application in MC-LR-related aquatic product safety studies.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Toxinas Marinhas , Microcistinas
6.
Dalton Trans ; 46(36): 12019-12026, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28853483

RESUMO

Herein, olivine LiFePO4 covered with graphene and carbon layers is prepared via a sol-gel method, followed by calcination, and the resultant composite is used as a cathode material in aqueous rechargeable lithium-ion batteries (ARLBs). The phase structure and morphology of the composite are characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and specific surface area analysis (BET). The ARLB system is fabricated using LiFePO4/C/graphene as the cathode and a zinc anode in 1 mol L-1 ZnSO4·7H2O and saturated LiNO3 aqueous solution without dissolved oxygen, which delivers a capacity of 153 mA h g-1 at 0.5C rate. Even at a 50C rate, it maintains a capacity of 95 mA h g-1 after 200 cycles. The excellent rate capabilities show that this cathode material exhibits good electrochemical performance and this novel ARLB has great potential in the fields of energy storage and high power sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA