RESUMO
GPR34 translocation and mutation are specifically associated with salivary gland MALT lymphoma (SG-MALT-lymphoma). The majority of GPR34 mutations are clustered in its C-terminus, resulting in truncated proteins lacking the phosphorylation motif important for receptor desensitization. It is unclear why GPR34 genetic changes associate with SG-MALT-lymphoma and how these mutations contribute to the development of lymphoma. We generated isogenic Flp-InTRex293 cell lines that stably expressed a single copy of GPR34 or its various mutants and performed a range of in vitro assays. We found that the GPR34 Q340X truncation, but not the R84H and D151A mutants, conferred a significantly increased resistance to apoptosis and greater transforming potential than the GPR34 wild type. The GPR34 truncation mutant had a significantly delayed internalization compared with the wild type after ligand (lysophosphatidylserine) stimulation. Among the 9 signaling pathways examined, the GPR34 Q340X truncation, and to a lesser extent the D151A mutant, significantly activated CRE, NF-κB, and AP1 reporter activities, particularly in the presence of ligand stimulation. We further described the enhanced activities of phospholipase-A1/2 in the culture supernatant of Flp-InTRex293 cells that expressed the GPR34 Q340X mutant, as well as their potential to catalyze the synthesis of lysophosphatidylserine from phosphatidylserine. Importantly, phospholipase-A1 was abundantly expressed in the duct epithelium of salivary glands and those involved in lymphoepithelial lesions (LELs). Our findings advocate a model of paracrine stimulation of malignant B cells via GPR34, in which phospholipase A is released by LELs and hydrolyzes the phosphatidylserine exposed on apoptotic cells, generating lysophosphatidylserine, the ligand for GPR34. Thus, GPR34 activation potentially bridges LELs to genesis of SG-MALT-lymphoma.
Assuntos
Linfoma de Zona Marginal Tipo Células B , Receptores de Lisofosfolipídeos , Humanos , Ligantes , Linfoma de Zona Marginal Tipo Células B/patologia , Fosfatidilserinas , Fosfolipases , Receptores de Lisofosfolipídeos/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/patologiaRESUMO
The genesis of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by oncogenic co-operation among immunological stimulations and acquired genetic changes. We previously identified recurrent CCR6 mutations in MALT lymphoma, with majority predicted to result in truncated proteins lacking the phosphorylation motif important for receptor desensitization. Functional consequences of these mutational changes, the molecular mechanisms of CCR6 activation and how this receptor signaling contributes to MALT lymphoma development remain to be investigated. In the present study, we demonstrated that these mutations impaired CCR6 receptor internalization and were activating changes, being more potent in apoptosis resistance, malignant transformation, migration and intracellular signaling, particularly in the presence of the ligands CCL20, HBD2 (human b defensin 2) and HD5 (human a defensin 5). CCR6 was highly expressed in malignant B cells irrespective of the lymphoma sites. HBD2 and CCL20 were constitutively expressed by the duct epithelial cells of salivary glands, and also those involved in lymphoepithelial lesions (LEL) in salivary gland MALT lymphoma. While in the gastric setting, HBD2, and HD5, to a less extent CCL20, were highly expressed in epithelial cells of pyloric and intestinal metaplasia respectively including those involved in LEL, which are adaptive responses to chronic Helicobacter pylori infection. These findings suggest that CCR6 signaling is most likely active in MALT lymphoma, independent of its mutation status. The observations explain why the emergence of malignant B cells and their clonal expansion in MALT lymphoma are typically around LEL, linking the innate immune responses to lymphoma genesis.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Linfoma de Zona Marginal Tipo Células B , Defensinas , Helicobacter pylori/metabolismo , Humanos , Imunidade Inata , Linfoma de Zona Marginal Tipo Células B/genética , Receptores CCR6/genéticaRESUMO
Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.
Assuntos
Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Hiperaldosteronismo , Hipertensão , Humanos , Aldosterona , Citocromo P-450 CYP11B2 , Junções Comunicantes , Mutação , Molécula 1 de Adesão CelularRESUMO
Pervious concrete has good water permeability and, if used in construction, it can alleviate the heat island effect. However, its low strength and poor durability are major obstacles to its use. This study shows that nano-reinforced pervious concrete created by incorporating cellulose nanofibrils (CNFs) can improve the physical properties and increase the durability of pervious concrete. CNFs were added to the concrete mix in proportions ranging from 0.05% to 0.2% by weight of binder. The additions were found to alter matrix rheology. The hydration kinetics of matrix with differing CNF contents were compared and analyzed. The experimental results show the addition of CNFs delayed peak heat flow and maximum cumulative heat. The 28 d compressive strength of pervious concrete increased by up to 26.5% and 28 d flexural strength by up to 25.8% with the addition of 0.05-0.2% CNFs. Addition of 0.1% and 0.2% CNFs increased water permeability. Addition of 0.05-0.15% CNFs decreased mass loss by 73.2-83.7% after 150 freeze-thaw cycles, which corresponded to an increase in frost resistance. Denser matrices and stronger interfacial transition zones were observed using scanning electron microscopy when 0.05-0.2% CNFs were added.
RESUMO
Microarray comparison of the transcriptomes of human adrenal zona glomerulosa (ZG) and zona fasciculata found several ZG-specific genes that negatively regulate aldosterone secretion. The third and most significantly upregulated ZG-gene (19.9-fold compared with zona fasciculata, P=6.58×10-24) was ANO4, a putative Ca2+-activated chloride channel. We have investigated the role of ANO4 in human adrenal, and whether it functions like the prototype anoctamin, ANO1. We evaluated ANO4 mRNA and protein expression in human adrenal by qPCR and immunohistochemistry, compared the effects of ANO4 and ANO1 overexpression on baseline and stimulated aldosterone secretion and cell proliferation in H295R cells, and analyzed ANO4 activity as a Ca2+-activated chloride channel in comparison with other anoctamins by a fluorescence-based functional assay. The expression of ANO4 in ZG was confirmed by qPCR as 23.21-fold upregulated compared with zona fasciculata (n=18; P=4.93×10-7). Immunohistochemistry found cytoplasmic, ZG-selective expression of ANO4 (anoctamin 4) protein. ANO4 overexpression in H295R cells attenuated calcium-mediated aldosterone secretion and cell proliferation in comparison to controls. The latter effects were in a different direction to those of ANO1. The functional assay showed that, in contrast to ANO1, ANO4 expression results in low levels of calcium-dependent anion transport. In conclusion, ANO4 is one of the most highly expressed genes in ZG. It attenuates stimulated aldosterone secretion and cell proliferation. Although belonging to a family of Ca2+-activated chloride channels, it does not generate significant plasma membrane chloride channel activity.
Assuntos
Aldosterona/biossíntese , Anoctaminas/genética , Regulação da Expressão Gênica , Hiperaldosteronismo/genética , Hipertensão/fisiopatologia , Transdução de Sinais/genética , Zona Glomerulosa/metabolismo , Córtex Suprarrenal/citologia , Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/patologia , Análise de Variância , Comunicação Celular/genética , Proliferação de Células , Células Cultivadas , Imunofluorescência , Humanos , Hiperaldosteronismo/patologia , Hipertensão/etiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise Serial de Tecidos , Técnicas de Cultura de Tecidos , Transcriptoma/genética , Regulação para Cima , Zona Fasciculada/metabolismo , Zona Fasciculada/patologia , Zona Glomerulosa/patologiaRESUMO
Elucidation of mechanisms underlying the increased androgen receptor (AR) activity and subsequent development of aggressive prostate cancer (PrCa) is pivotal in developing new therapies. Using a systems biology approach, we interrogated the AR-regulated proteome and identified PDZ binding kinase (PBK) as a novel AR-regulated protein that regulates full-length AR and AR variants (ARVs) activity in PrCa. PBK overexpression in aggressive PrCa is associated with early biochemical relapse and poor clinical outcome. In addition to its carboxy terminus ligand-binding domain, PBK directly interacts with the amino terminus transactivation domain of the AR to stabilise it thereby leading to increased AR protein expression observed in PrCa. Transcriptome sequencing revealed that PBK is a mediator of global AR signalling with key roles in regulating tumour invasion and metastasis. PBK inhibition decreased growth of PrCa cell lines and clinical specimen cultured ex vivo. We uncovered a novel interplay between AR and PBK that results in increased AR and ARVs expression that executes AR-mediated growth and progression of PrCa, with implications for the development of PBK inhibitors for the treatment of aggressive PrCa.
Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptores Androgênicos/genéticaRESUMO
FGF signalling is critical for normal embryonic development. Sulf1 has been shown to inhibit FGF activity. The role of FGF4 in Sulf1 regulation was investigated during digital development of the quail autopod. Implantation of FGF4 beads in both the interdigit and at the tip of digit III differentially up-regulated Sulf1 as also confirmed in micromass cultures. FGF4 inhibited interdigital mesodermal apoptosis in a concentration dependent manner. The FGF inhibitor, SU5402, inhibited Sulf1 expression when placed in the interdigital mesoderm. However, when placed at the digital tip, SU5402 induced an ectopic domain of Sulf1 expression and inhibited further phalange formation.
Assuntos
Proteínas Aviárias/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Sulfotransferases/metabolismo , Dedos do Pé/embriologia , Animais , Proteínas Aviárias/genética , Células Cultivadas , Membro Posterior , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Mesoderma/citologia , Mesoderma/enzimologia , Pirróis/farmacologia , Codorniz/anatomia & histologia , Codorniz/embriologia , Codorniz/metabolismo , RNA Mensageiro/metabolismo , Sulfotransferases/genética , Falanges dos Dedos do Pé/anatomia & histologia , Falanges dos Dedos do Pé/embriologia , Regulação para CimaRESUMO
Heterogeneity among aldosterone-producing adenomas (APAs) has been highlighted by the discovery of somatic mutations. KCNJ5 mutations predominate in large zona fasciculata (ZF)-like APAs; mutations in CACNA1D, ATP1A1, ATP2B3, and CTNNB1 are more likely to be found in small zona glomerulosa (ZG)-like APAs. Microarray comparison of KCNJ5 mutant versus wild-type APAs revealed significant differences in transcriptomes. NEFM, encoding a neurofilament subunit which is a D1R (dopamine D1 receptor)-interacting protein, was 4-fold upregulated in ZG-like versus ZF-like APAs and 14-fold more highly expressed in normal ZG versus ZF. Immunohistochemistry confirmed selective expression of NEFM (neurofilament medium) polypeptide in ZG and in ZG-like APAs. Silencing NEFM in adrenocortical H295R cells increased basal aldosterone secretion and cell proliferation; silencing also amplified aldosterone stimulation by the D1R agonist, fenoldopam, and inhibition by the D1R antagonist, SCH23390. NEFM coimmunoprecipitated with D1R, and its expression was stimulated by fenoldopam. Immunohistochemistry for D1R was mainly intracellular in ZG-like APAs but membranous in ZF-like APAs. Aldosterone secretion in response to fenoldopam in primary cells from ZF-like APAs was higher than in cells from ZG-like APAs. Transfection of mutant KCNJ5 caused a large reduction in NEFM expression in H295R cells. We conclude that NEFM is a negative regulator of aldosterone production and cell proliferation, in part by facilitating D1R internalization from the plasma membrane. Downregulation of NEFM in ZF-like APAs may contribute to a D1R/D2R imbalance underlying variable pharmacological responses to dopaminergic drugs among patients with APAs. Finally, taken together, our data point to the possibility that ZF-like APAs are in fact ZG in origin.
Assuntos
Adenoma , Neoplasias das Glândulas Suprarrenais , Aldosterona/biossíntese , Hipertensão/metabolismo , Proteínas de Neurofilamentos , Receptores de Dopamina D1 , Zona Fasciculada/fisiologia , Zona Glomerulosa/fisiologia , Adenoma/complicações , Adenoma/genética , Adenoma/patologia , Neoplasias das Glândulas Suprarrenais/complicações , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Regulação da Expressão Gênica , Humanos , Hiperaldosteronismo/etiologia , Hiperaldosteronismo/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismoRESUMO
Primary aldosteronism is a common cause of hypertension, which becomes refractory if undiagnosed, but potentially curable when caused by an aldosterone-producing adenoma (APA). The discovery of somatic mutations and differences in clinical presentations led to recognition of small but common zona glomerulosa (ZG)-like adenomas, distinct from classical large zona fasciculata-like adenomas. The inverse correlation between APA size and aldosterone synthase expression prompted us to undertake a systematic study of genotype-phenotype relationships. After a microarray comparing tumor subtypes, in which NPNT (nephronectin) was the most highly (>12-fold) upregulated gene in ZG-like APAs, we aimed to determine its role in physiological and pathological aldosterone production. NPNT was identified by immunohistochemistry as a secreted matrix protein expressed exclusively around aldosterone-producing glomeruli in normal adrenal ZG and in aldosterone-dense ZG-like APAs; the highest expression was in ZG-like APAs with gain-of-function CTNNB1 mutations, whose removal cured hypertension in our patients. NPNT was absent from normal zona fasciculata, zona fasciculata-like APAs, and ZG adjacent to an APA. NPNT production was regulated by canonical Wnt pathway, and NPNT overexpression or silencing increased or reduced aldosterone, respectively. NPNT was proadhesive in primary adrenal and APA cells but antiadhesive and antiapoptotic in immortalized adrenocortical cells. The discovery of NPNT in the adrenal helped recognition of a common subtype of APAs and a pathway by which Wnt regulates aldosterone production. We propose that this arises through NPNT's binding to cell-surface integrins, stimulating cell-cell contact within glomeruli, which define ZG. Therefore, NPNT or its cognate integrin could present a novel therapeutic target.
Assuntos
Neoplasias do Córtex Suprarrenal/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Hiperaldosteronismo/genética , Glomérulos Renais/metabolismo , Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Neoplasias do Córtex Suprarrenal/cirurgia , Aldosterona/sangue , Citocromo P-450 CYP11B2/metabolismo , Humanos , Hiperaldosteronismo/patologia , Hiperaldosteronismo/cirurgia , Hipertensão/genética , Hipertensão/fisiopatologia , Imuno-Histoquímica , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real/métodos , Papel (figurativo) , Células Tumorais Cultivadas , Regulação para Cima , Via de Sinalização Wnt/genética , Zona Glomerulosa/metabolismoRESUMO
Emerging data demonstrate homologous recombination (HR) defects in castration-resistant prostate cancers, rendering these tumours sensitive to PARP inhibition. Here we demonstrate a direct requirement for the androgen receptor (AR) to maintain HR gene expression and HR activity in prostate cancer. We show that PARP-mediated repair pathways are upregulated in prostate cancer following androgen-deprivation therapy (ADT). Furthermore, upregulation of PARP activity is essential for the survival of prostate cancer cells and we demonstrate a synthetic lethality between ADT and PARP inhibition in vivo. Our data suggest that ADT can functionally impair HR prior to the development of castration resistance and that, this potentially could be exploited therapeutically using PARP inhibitors in combination with androgen-deprivation therapy upfront in advanced or high-risk prostate cancer.Tumours with homologous recombination (HR) defects become sensitive to PARPi. Here, the authors show that androgen receptor (AR) regulates HR and AR inhibition activates the PARP pathway in vivo, thus inhibition of both AR and PARP is required for effective treatment of high risk prostate cancer.
Assuntos
Colágeno Tipo XI/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Mutações Sintéticas Letais , Colágeno Tipo XI/genética , Recombinação Homóloga , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Transdução de SinaisRESUMO
Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.
Assuntos
Proteína de Ligação a CREB/deficiência , Proteína de Ligação a CREB/metabolismo , Transformação Celular Neoplásica/metabolismo , Células Progenitoras Linfoides/metabolismo , Linfoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Acetilação , Animais , Proteína de Ligação a CREB/genética , Proliferação de Células , Autorrenovação Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Cultivadas , Dano ao DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Histonas/metabolismo , Linfangiogênese , Células Progenitoras Linfoides/patologia , Linfoma/genética , Linfoma/patologia , Linfopoese , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células-Tronco Neoplásicas/patologia , Fenótipo , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 µM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 µM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3.
Assuntos
Aldosterona/metabolismo , Canais de Cálcio Tipo L/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Linhagem Celular , Células Cultivadas , Genótipo , Humanos , Mutação , Nifedipino/farmacologia , Transporte ProteicoRESUMO
Common somatic mutations in CACNAID and ATP1A1 may define a subgroup of smaller, zona glomerulosa (ZG)-like aldosterone-producing adenomas. We have therefore sought signature ZG genes, which may provide insight into the frequency and pathogenesis of ZG-like aldosterone-producing adenomas. Twenty-one pairs of zona fasciculata and ZG and 14 paired aldosterone-producing adenomas from 14 patients with Conn's syndrome and 7 patients with pheochromocytoma were assayed by the Affymetrix Human Genome U133 Plus 2.0 Array. Validation by quantitative real-time polymerase chain reaction was performed on genes >10-fold upregulated in ZG (compared with zona fasciculata) and >10-fold upregulated in aldosterone-producing adenomas (compared with ZG). DACH1, a gene associated with tumor progression, was further analyzed. The role of DACH1 on steroidogenesis, transforming growth factor-ß, and Wnt signaling activity was assessed in the human adrenocortical cell line, H295R. Immunohistochemistry confirmed selective expression of DACH1 in human ZG. Silencing of DACH1 in H295R cells increased CYP11B2 mRNA levels and aldosterone production, whereas overexpression of DACH1 decreased aldosterone production. Overexpression of DACH1 in H295R cells activated the transforming growth factor-ß and canonical Wnt signaling pathways but inhibited the noncanonical Wnt signaling pathway. Stimulation of primary human adrenal cells with angiotensin II decreased DACH1 mRNA expression. Interestingly, there was little overlap between our top ZG genes and those in rodent ZG. In conclusion, (1) the transcriptome profile of human ZG differs from rodent ZG, (2) DACH1 inhibits aldosterone secretion in human adrenals, and (3) transforming growth factor-ß signaling pathway is activated in DACH1 overexpressed cells and may mediate inhibition of aldosterone secretion in human adrenals.
Assuntos
Carcinoma Adrenocortical/genética , Aldosterona/metabolismo , Proteínas do Olho/genética , Regulação Neoplásica da Expressão Gênica , RNA Neoplásico/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Zona Glomerulosa/metabolismo , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Progressão da Doença , Proteínas do Olho/biossíntese , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Células Tumorais Cultivadas , Zona Glomerulosa/patologiaRESUMO
CONTEXT: Aldosterone synthesis and cellularity in the human adrenal zona glomerulosa (ZG) is sparse and patchy, presumably due to salt excess. The frequency of somatic mutations causing aldosterone-producing adenomas (APAs) may be a consequence of protection from cell loss by constitutive aldosterone production. OBJECTIVE: The objective of the study was to delineate a process in human ZG, which may regulate both aldosterone production and cell turnover. DESIGN: This study included a comparison of 20 pairs of ZG and zona fasciculata transcriptomes from adrenals adjacent to an APA (n = 13) or a pheochromocytoma (n = 7). INTERVENTIONS: Interventions included an overexpression of the top ZG gene (LGR5) or stimulation by its ligand (R-spondin-3). MAIN OUTCOME MEASURES: A transcriptome profile of ZG and zona fasciculata and aldosterone production, cell kinetic measurements, and Wnt signaling activity of LGR5 transfected or R-spondin-3-stimulated cells were measured. RESULTS: LGR5 was the top gene up-regulated in ZG (25-fold). The gene for its cognate ligand R-spondin-3, RSPO3, was 5-fold up-regulated. In total, 18 genes associated with the Wnt pathway were greater than 2-fold up-regulated. ZG selectivity of LGR5, and its absence in most APAs, were confirmed by quantitative PCR and immunohistochemistry. Both R-spondin-3 stimulation and LGR5 transfection of human adrenal cells suppressed aldosterone production. There was reduced proliferation and increased apoptosis of transfected cells, and the noncanonical activator protein-1/Jun pathway was stimulated more than the canonical Wnt pathway (3-fold vs 1.3-fold). ZG of adrenal sections stained positive for apoptosis markers. CONCLUSION: LGR5 is the most selectively expressed gene in human ZG and reduces aldosterone production and cell number. Such conditions may favor cells whose somatic mutation reverses aldosterone inhibition and cell loss.
Assuntos
Glândulas Suprarrenais/metabolismo , Aldosterona/biossíntese , Receptores Acoplados a Proteínas G/fisiologia , Via de Sinalização Wnt/genética , Glândulas Suprarrenais/citologia , Contagem de Células , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Análise em Microsséries , Células Tumorais Cultivadas , Regulação para Cima/genética , Zona Fasciculada/metabolismo , Zona Glomerulosa/citologia , Zona Glomerulosa/metabolismoRESUMO
At least 5% of individuals with hypertension have adrenal aldosterone-producing adenomas (APAs). Gain-of-function mutations in KCNJ5 and apparent loss-of-function mutations in ATP1A1 and ATP2A3 were reported to occur in APAs. We find that KCNJ5 mutations are common in APAs resembling cortisol-secreting cells of the adrenal zona fasciculata but are absent in a subset of APAs resembling the aldosterone-secreting cells of the adrenal zona glomerulosa. We performed exome sequencing of ten zona glomerulosa-like APAs and identified nine with somatic mutations in either ATP1A1, encoding the Na(+)/K(+) ATPase α1 subunit, or CACNA1D, encoding Cav1.3. The ATP1A1 mutations all caused inward leak currents under physiological conditions, and the CACNA1D mutations induced a shift of voltage-dependent gating to more negative voltages, suppressed inactivation or increased currents. Many APAs with these mutations were <1 cm in diameter and had been overlooked on conventional adrenal imaging. Recognition of the distinct genotype and phenotype for this subset of APAs could facilitate diagnosis.
Assuntos
Doenças do Córtex Suprarrenal/genética , Canais de Cálcio Tipo L/genética , Hipertensão/genética , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Doenças do Córtex Suprarrenal/complicações , Doenças do Córtex Suprarrenal/diagnóstico , Substituição de Aminoácidos , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Análise por Conglomerados , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Perfilação da Expressão Gênica , Humanos , Hipertensão/diagnóstico , Hipertensão/etiologia , Masculino , Conformação Proteica , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismoRESUMO
A very dynamic and localised spatiotemporal expression pattern of Sulf1 was observed in axial structures and different regions of developing quail somites that included myotomal and sclerotomal regions at specific levels. Sulf1 expression was also observed in not only the scapular and pelvic girdle forming regions of the quail limb that connect the appendicular skeleton to the body trunk but also the cartilage templates of the appendicular skeleton. The highest expression level of Sulf1 was observed in condensing mesenchyme, during the early differentiation stage of chondrogenesis, and highly dynamic expression was observed in the perichondrial and joint-forming regions. Overexpression of Sulf1 in quail micromass cultures enhanced aggregation and differentiation of prechondrocytes into chondrogenic lineage supporting its role in mesenchymal condensation and early differentiation of cartilaginous elements. The exposure of digital explants to high levels of Sulf1 expression in vitro led to increased growth of the original 1st phalange but complete inhibition of joint formation and generation of any further phalanges. Sulf1 thus plays a key role during multiple stages of cartilage development and joint formation.