RESUMO
BACKGROUND: Within hours after intracerebral hemorrhage (ICH) onset, masses of polymorphonuclear neutrophils (PMNs) infiltrate the ICH-affected brain. After degranulation involving controlled release of many toxic antimicrobial molecules, the PMNs undergo rapid apoptosis and then are removed by phagocytic microglia/macrophages (MΦ) through a process called efferocytosis. Effective removal of PMNs may limit secondary brain damage and inflammation; however, the molecular mechanisms governing these cleanup activities are not well understood. We propose that scavenger receptor CD91 on myeloid phagocytes especially in presence of CD91 ligand, LTF (lactoferrin, protein abundant in PMNs), plays an important role in clearance of dead apoptotic PMNs (ANs). METHODS: Mice/rats were subjected to an autologous blood injection model of ICH. Primary cultured microglia were used to assess phagocytosis of ANs. Immunohistochemistry was employed to assess CD91 expression and PMN infiltration. CD91 knockout mice selectively in myeloid phagocytes (Mac-CD91-KO) were used to establish the CD91/LTF function in phagocytosis and in reducing ICH-induced injury, as assessed using behavioral tests, hematoma resolution, and oxidative stress. RESULTS: Masses of PMNs are found in ICH-affected brain, and they contain LTF. MΦ at the outer border of hematoma are densely packed, expressing CD91 and phagocytosing ANs. Microglia deficient in CD91 demonstrate defective phagocytosis of ANs, and mice deficient in CD91 (Mac-CD91-KO) subjected to ICH injury have increased neurological dysfunction that is associated with impaired hematoma resolution (hemoglobin and iron clearance) and elevated oxidative stress. LTF that normally ameliorates ICH injury in CD91-proficient control mice shows reduced therapeutic effects in Mac-CD91-KO mice. CONCLUSIONS: Our study suggests that CD91 plays a beneficial role in improving ANs phagocytosis and ultimately post-ICH outcome and that the beneficial effect of LTF in ICH is in part dependent on presence of CD91 on MΦ.
Assuntos
Lesões Encefálicas , Neutrófilos , Ratos , Camundongos , Animais , Neutrófilos/metabolismo , Lactoferrina/metabolismo , Encéfalo/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Macrófagos/metabolismo , Microglia/metabolismo , Hematoma/tratamento farmacológicoRESUMO
BACKGROUND: The dynamics of blood clot (combination of Hb [hemoglobin], fibrin, and a higher concentration of aggregated red blood cells) formation within the hematoma of an intracerebral hemorrhage is not well understood. A quantitative neuroimaging method of localized coagulated blood volume/distribution within the hematoma might improve clinical decision-making. METHODS: The deoxyhemoglobin of aggregated red blood cells within extravasated blood exhibits a higher magnetic susceptibility due to unpaired heme iron electrons. We propose that coagulated blood, with higher aggregated red blood cell content, will exhibit (1) a higher positive susceptibility than noncoagulated blood and (2) increase in fibrin polymerization-restricted localized diffusion, which can be measured noninvasively using quantitative susceptibility mapping and diffusion tensor imaging. In this serial magnetic resonance imaging study, we enrolled 24 patients with acute intracerebral hemorrhage between October 2021 to May 2022 at a stroke center. Patients were 30 to 70 years of age and had a hematoma volume >15 cm3 and National Institutes of Health Stroke Scale score >1. The patients underwent imaging 3×: within 12 to 24 (T1), 36 to 48 (T2), and 60 to 72 (T3) hours of last seen well on a 3T magnetic resonance imaging system. Three-dimensional anatomic, multigradient echo and 2-dimensional diffusion tensor images were obtained. Hematoma and edema volumes were calculated, and the distribution of coagulation was measured by dynamic changes in the susceptibilities and fractional anisotropy within the hematoma. RESULTS: Using a coagulated blood phantom, we demonstrated a linear relationship between the percentage coagulation and susceptibility (R2=0.91) with a positive red blood cell stain of the clot. The quantitative susceptibility maps showed a significant increase in hematoma susceptibility (T1, 0.29±0.04 parts per millions; T2, 0.36±0.04 parts per millions; T3, 0.45±0.04 parts per millions; P<0.0001). A concomitant increase in fractional anisotropy was also observed with time (T1, 0.40±0.02; T2, 0.45±0.02; T3, 0.47±0.02; P<0.05). CONCLUSIONS: This quantitative neuroimaging study of coagulation within the hematoma has the potential to improve patient management, such as safe resumption of anticoagulants, the need for reversal agents, the administration of alteplase to resolve the clot, and the need for surgery.
Assuntos
Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral Hemorrágico/complicações , Imagem de Tensor de Difusão , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/complicações , Imageamento por Ressonância Magnética/métodos , Hematoma/complicações , Coagulação Sanguínea , Hemoglobinas , FibrinaRESUMO
Piao chicken, a Chinese indigenous rumpless chicken breed, lacks pygostyle, caudal vertebra, uropygial gland and tail feathers. The rumplessness in Piao chicken presents an autosomal dominant inheritance pattern. However, the molecular genetic mechanisms underlying the rumplessness in Piao chicken remains unclear. In this study, whole-genome resequencing was performed for 146 individuals from 10 chicken breeds, including 9 tailed chicken breeds and Piao rumpless breed. Tailbone CT scan for Piao chickens and WL chickens, revealed that some Piao chicken tails were normal in number, and for a few Piao chickens tail length and tail bone numbers were between the rumpless and the normal tailed chickens. The results showed that the rumpless phenotype has not been completely fixed in Piao chicken breed. Using selection signature analysis and structural variation detection, we found a 4174 bp deletion located in the upstream region of IRX1 gene on chromosome 2 related to rumpless phenotype. Structural variation genotyping showed that the deletion was present in all 32 rumpless Piao chickens (del/del, wild/del) and absent from all 112 tailed chickens included in the dataset for the other 9 breeds and 2 tailed Piao chickens (wild/wild). In summary, all rumpless Piao chickens tested here carry this deletion mutation, to show a complete linkage association with rumplessness trait. We suggested that the 4174 bp deletion could be causative for rumpless phenotype in Piao chicken since this is the only mutation to show the complete linkage disequilibrium with rumplessness on whole genome level across all of 146 chickens from the 10 breeds. This study could facilitate a better understanding of the genetic characteristics of Piao chicken.
Assuntos
Galinhas , Animais , Galinhas/genéticaRESUMO
Under the pressure of natural and artificial selection, domestic animals, including chickens, have evolved unique mechanisms of genetic adaptations such as high-altitude adaptation, hot and arid climate adaptation, and desert adaptation. Here, we investigated the genetic basis of cold tolerance in chicken by integrating whole-genome and transcriptome sequencing technologies. Genome-wide comparative analyses of 118 chickens living in different latitudes showed 46 genes and several pathways that may be involved in cold adaptation. The results of the functional enrichment analysis of differentially expressed genes proved the important role of metabolic pathways and immune-related pathways in cold tolerance in chickens. The subsequent integration of whole genome and transcriptome sequencing technology further identified six genes - dnah5 (dynein axonemal heavy chain 5), ptgs2 (prostaglandin-endoperoxide synthase 2), inhba (inhibin beta A subunit), irx2 (iroquois homeobox 2), ensgalg00000054917, and ensgalg00000046652 - requiring more detailed studies. In addition, we also discovered different allele frequency distributions of five SNPs (single nucleotide polymorphisms) within ptgs2 and nine SNPs within dnah5 in chickens in different latitudes, suggesting strong selective pressure of these two genes in chickens. We provide a novel insight into the genetic adaptation in chickens to cold environments, and provide a reference for evaluating and developing adaptive chicken breeds in cold environments.
Assuntos
Galinhas , Genômica , Animais , Galinhas/genéticaRESUMO
Selection pressures driven by natural causes or human interference are key factors causing genome variants and signatures of selection in specific regions of the genome. Gamecocks were bred for cockfighting, presenting pea-combs, larger body sizes, stronger limbs, and higher levels of aggression than other chickens. In this study, we aimed to explore the genomic differences between Chinese gamecocks and commercial, indigenous, foreign, and cultivated breeds by detecting the regions or sites under natural or artificial selection using genome-wide association studies (GWAS), genome-wide selective sweeps based on the genetic differentiation index (FST), and transcriptome analyses. Ten genes were identified using GWAS and FST: gga-mir-6608-1, SOX5, DGKB, ISPD, IGF2BP1, AGMO, MEOX2, GIP, DLG5, and KCNMA1. The ten candidate genes were mainly associated with muscle and skeletal development, glucose metabolism, and the pea-comb phenotype. Enrichment analysis results showed that the differentially expressed genes between the Luxi (LX) gamecock and Rhode Island Red (RIR) chicken were mainly related to muscle development and neuroactive-related pathways. This study will help to understand the genetic basis and evolution of Chinese gamecocks and support the further use of gamecocks as an excellent breeding material from a genetic perspective.
Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Transcriptoma , Animais , Galinhas/genética , Perfilação da Expressão Gênica , Genômica , Polimorfismo de Nucleotídeo Único , Seleção GenéticaRESUMO
Astrocytes are an integral component of the neurovascular unit where they act as homeostatic regulators, especially after brain injuries, such as stroke. One process by which astrocytes modulate homeostasis is the release of functional mitochondria (Mt) that are taken up by other cells to improve their function. However, the mechanisms underlying the beneficial effect of Mt transfer are unclear and likely multifactorial. Using a cell culture system, we established that astrocytes release both intact Mt and humanin (HN), a small bioactive peptide normally transcribed from the Mt genome. Further experiments revealed that astrocyte-secreted Mt enter microglia, where they induce HN expression. Similar to the effect of HN alone, incorporation of Mt by microglia (1) upregulated expression of the transcription factor peroxisome proliferator-activated receptor gamma and its target genes (including mitochondrial superoxide dismutase), (2) enhanced phagocytic activity toward red blood cells (an in vitro model of hematoma clearance after intracerebral hemorrhage [ICH]), and (3) reduced proinflammatory responses. ICH induction in male mice caused profound HN loss in the affected hemisphere. Intravenously administered HN penetrated perihematoma brain tissue, reduced neurological deficits, and improved hematoma clearance, a function that normally requires microglia/macrophages. This study suggests that astrocytic Mt-derived HN could act as a beneficial secretory factor, including when transported within Mt to microglia, where it promotes a phagocytic/reparative phenotype. These findings also indicate that restoring HN levels in the injured brain could represent a translational target for ICH. These favorable biological responses to HN warrant studies on HN as therapeutic target for ICH.SIGNIFICANCE STATEMENT Astrocytes are critical for maintaining brain homeostasis. Here, we demonstrate that astrocytes secrete mitochondria (Mt) and the Mt-genome-encoded, small bioactive peptide humanin (HN). Mt incorporate into microglia, and both Mt and HN promote a "reparative" microglia phenotype characterized by enhanced phagocytosis and reduced proinflammatory responses. Treatment with HN improved outcomes in an animal model of intracerebral hemorrhage, suggesting that this process could have biological relevance to stroke pathogenesis.
Assuntos
Astrócitos/metabolismo , Hemorragia Cerebral , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Fenótipo , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Since the domestication of chicken, various breeds have been developed for food production, entertainment, and so on. Compared to indigenous chicken breeds which generally do not show elite production performance, commercial breeds or lines are selected intensely for meat or egg production. In the present study, in order to understand the molecular mechanisms underlying the dramatic differences of egg number between commercial egg-type chickens and indigenous chickens, we performed a genome-wide association study (GWAS) in a mixed linear model. RESULTS: We obtained 148 single nucleotide polymorphisms (SNPs) associated with egg number traits (57 significantly, 91 suggestively). Among them, 4 SNPs overlapped with previously reported quantitative trait loci (QTL), including 2 for egg production and 2 for reproductive traits. Furthermore, we identified 32 candidate genes based on the function of the screened genes. These genes were found to be mainly involved in regulating hormones, playing a role in the formation, growth, and development of follicles, and in the development of the reproductive system. Some genes such as NELL2 (neural EGFL like 2), KITLG (KIT ligand), GHRHR (Growth hormone releasing hormone receptor), NCOA1 (Nuclear receptor coactivator 1), ITPR1 (inositol 1, 4, 5-trisphosphate receptor type 1), GAMT (guanidinoacetate N-methyltransferase), and CAMK4 (calcium/calmodulin-dependent protein kinase IV) deserve our attention and further study since they have been reported to be closely related to egg production, egg number and reproductive traits. In addition, the most significant genomic region obtained in this study was located at 48.61-48.84 Mb on GGA5. In this region, we have repeatedly identified four genes, in which YY1 (YY1 transcription factor) and WDR25 (WD repeat domain 25) have been shown to be related to oocytes and reproductive tissues, respectively, which implies that this region may be a candidate region underlying egg number traits. CONCLUSION: Our study utilized the genomic information from various chicken breeds or populations differed in the average annual egg number to understand the molecular genetic mechanisms involved in egg number traits. We identified a series of SNPs, candidate genes, or genomic regions that associated with egg number, which could help us in developing the egg production trait in chickens.
Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
In this minireview we discuss the role of lactoferrin (LTF) in detoxifying hematoma after intracerebral hemorrhage (ICH). Subsequent to ICH, neutrophils enter the ICH-affected brain, where they release various granule contents, including LTF. LTF is an iron-binding glycoprotein that binds Fe3+ with high affinity. Unlike other iron-binding proteins, LTF can retain Fe3+ at the low pH associated with inflamed tissue. LTF's ability to sequester Fe3+ is of particular importance to ICH pathogenesis, because large quantities of free iron, which is pro-oxidative and pro-inflammatory, are generated in the ICH-affected brain owing to blood hemolysis. LTF delivered to ICH-affected brain, either as a therapeutic agent or through infiltrated polymorphonuclear neutrophils (cells containing high levels of LTF), could limit the pathogenesis of ICH. LTF is a protein with a high isoelectric point (8.7), a property that enables it to bind to negatively-charged apoptotic cells or proteins. Here, LTF could act as a bridging molecule that couples the apoptotic cells to LTF receptors on the cellular membranes of microglia/macrophages to facilitate the efferocytosis/erythrophagocytosis of apoptotic cells and damaged red blood cells. Thus, by virtue of sequestrating iron and facilitating efferocytosis, LTF may contribute to hematoma detoxification and hematoma/inflammation resolution after ICH.
Assuntos
Hemorragia Cerebral/metabolismo , Hematoma/metabolismo , Lactoferrina/metabolismo , Animais , Hemorragia Cerebral/patologia , Hemorragia Cerebral/terapia , Compostos Férricos/química , Compostos Férricos/metabolismo , Hematoma/patologia , Hematoma/terapia , Humanos , Concentração de Íons de Hidrogênio , Lactoferrina/química , Neutrófilos/química , Neutrófilos/metabolismoRESUMO
Background and Purpose- Phagocytic cells, such as microglia and blood-derived macrophages, are a key biological modality responsible for phagocytosis-mediated clearance of damaged, dead, or displaced cells that are compromised during senescence or pathological processes, including after stroke. This process of clearance is essential to eliminate the source of inflammation and to allow for optimal brain repair and functional recovery. Transcription factor, RXR (retinoic-X-receptor) is strongly implicated in phagocytic functions regulation, and as such could represent a novel target for brain recovery after stroke. Methods- Primary cultured microglia and bone marrow macrophages were used for phagocytic study. Mice with deleted RXR-α in myeloid phagocytes (Mac-RXR-α-/-) were subjected to transient middle cerebral artery occlusion to mimic ischemic stroke and then treated with RXR agonist bexarotene. RNA-sequencing and long-term recovery were evaluated. Results- Using cultured microglia, we demonstrated that the RXR-α promotes the phagocytic functions of microglia toward apoptotic neurons. Using mice with deleted RXR-α in myeloid phagocytes (Mac-RXR-α-/-), we have shown that despite behaving similarly to the control at early time points (up to 3 days, damage established histologically and behaviorally), these Mac-RXR-α-/- mice demonstrated worsened late functional recovery and developed brain atrophy that was larger in size than that seen in control mice. The RXR-α deficiency was associated with reduced expression of genes known to be under control of the prominent transcriptional RXR partner, PPAR (peroxisome proliferator-activated receptor)-γ, as well as genes encoding for scavenger receptors and genes that signify microglia/macrophages polarization to a reparative phenotype. Finally, we demonstrated that the RXR agonist, bexarotene, administered as late as 1 day after middle cerebral artery occlusion, improved neurological recovery, and reduced the atrophy volume as assessed 28 days after stroke. Bexarotene did not improve outcome in Mac-RXR-α-/- mice. Conclusions- Altogether, these data suggest that phagocytic cells control poststroke recovery and that RXR in these cells represents an attractive target with exceptionally long therapeutic window.
Assuntos
Isquemia Encefálica/imunologia , Encéfalo/imunologia , Regulação da Expressão Gênica/imunologia , Fagócitos/imunologia , Fagocitose , Receptor X Retinoide alfa/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Bexaroteno/farmacologia , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fagócitos/patologia , Receptor X Retinoide alfa/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologiaRESUMO
BACKGROUND AND PURPOSE: Intracerebral hemorrhage (ICH) is a devastating disease with a 30-day mortality of ~50%. There are no effective therapies for ICH. ICH results in brain damage in 2 major ways: through the mechanical forces of extravasated blood and then through toxicity of the intraparenchymal blood components including hemoglobin/iron. LTF (lactoferrin) is an iron-binding protein, uniquely abundant in polymorphonuclear neutrophils (PMNs). After ICH, circulating blood PMNs enter the ICH-afflicted brain where they release LTF. By virtue of sequestrating iron, LTF may contribute to hematoma detoxification. METHODS: ICH in mice was produced using intrastriatal autologous blood injection. PMNs were depleted with intraperitoneal administration of anti-Ly-6G antibody. Treatment of mouse brain cell cultures with lysed RBC or iron was used as in vitro model of ICH. RESULTS: LTF mRNA was undetectable in the mouse brain, even after ICH. Unlike mRNA, LTF protein increased in ICH-affected hemispheres by 6 hours, peaked at 24 to 72 hours, and remained elevated for at least a week after ICH. At the single cell level, LTF was detected in PMNs in the hematoma-affected brain at all time points after ICH. We also found elevated LTF in the plasma after ICH, with a temporal profile similar to LTF changes in the brain. Importantly, mrLTF (recombinant mouse LTF) reduced the cytotoxicity of lysed RBC and FeCl3 to brain cells in culture. Ultimately, in an ICH model, systemic administration of mrLTF (at 3, 24, and 48 hours after ICH) reduced brain edema and ameliorated neurological deficits caused by ICH. mrLTF retained the benefit in reducing behavioral deficit even with 24-hour treatment delay. Interestingly, systemic depletion of PMNs at 24 hours after ICH worsened neurological deficits, suggesting that PMN infiltration into the brain at later stages after ICH could be a beneficial response. CONCLUSIONS: LTF delivered to the ICH-affected brain by infiltrating PMNs may assist in hematoma detoxification and represent a powerful potential target for the treatment of ICH.
Assuntos
Encéfalo/metabolismo , Hemorragia Cerebral/metabolismo , Hematoma/metabolismo , Ferro/metabolismo , Lactoferrina/genética , Neutrófilos/metabolismo , RNA Mensageiro/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Edema Encefálico/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Eritrócitos , Técnicas In Vitro , Lactoferrina/metabolismo , Lactoferrina/farmacologia , CamundongosRESUMO
OBJECTIVE: The cerulein-induced mouse pancreatitis model is a well-established, commonly used representation of human chronic pancreatitis pathology. Although studies report sex-dependent differences in human chronic pancreatitis, there are no studies in this model directly comparing sex response to pancreatic injury and recovery. Therefore, we designed a study to investigate whether sex- dependent differences in chronic pancreatitis injury and recovery exist in the cerulein-induced pancreatitis model. METHODS: Adult male and female C57BL/6 mice were administered cerulein (50 µg/kg, 5 hourly intraperitoneal injections/day, 3 days/week) for 4 weeks to induce chronic pancreatitis; control mice received normal saline injections. Pancreata and blood were harvested at 4 days (as injury group) or 4 weeks (as recovery group) after the last injection. Amylase secretion was measured from the serum. Acinar injury was scored on H&E sections. Fibrosis was assessed by Sirius Red and collagen immunofluorescence staining. RESULTS: Compared to time-matched controls, injury group displayed decreased body and pancreas weight, and increased acinar injury and fibrosis, with no significant differences between males and females. Recovery group demonstrated recovery of body weight, partial recovery of pancreas weight, reversal of acinar injury, and partial reversal of fibrosis, with no significant differences between males and females. Amylase secretion/body weight was similar across all groups. CONCLUSIONS: Male and female mice of the cerulein-induced chronic pancreatitis demonstrate similar responses to chronic pancreatitis injury and recovery. Although this model may not sufficiently emulate sex-dependent responses in human chronic pancreatitis, our study supports that both sexes of mice from this model can be used for the study of chronic pancreatitis.
RESUMO
After ischemic stroke, various damage-associated molecules are released from the ischemic core and diffuse to the ischemic penumbra, activating microglia and promoting proinflammatory responses that may cause damage to the local tissue. Here we demonstrate using in vivo and in vitro models that, during sublethal ischemia, local neurons rapidly produce interleukin-4 (IL-4), a cytokine with potent anti-inflammatory properties. One such anti-inflammatory property includes its ability to polarize macrophages away from a proinflammatory M1 phenotype to a "healing" M2 phenotype. Using an IL-4 reporter mouse, we demonstrated that IL-4 expression was induced preferentially in neurons in the ischemic penumbra but not in the ischemic core or in brain regions that were spared from ischemia. When added to cultured microglia, IL-4 was able to induce expression of genes typifying the M2 phenotype and peroxisome proliferator activated receptor γ (PPARγ) activation. IL-4 also enhanced expression of the IL-4 receptor on microglia, facilitating a "feedforward" increase in (1) their expression of trophic factors and (2) PPARγ-dependent phagocytosis of apoptotic neurons. Parenteral administration of IL-4 resulted in augmented brain expression of M2- and PPARγ-related genes. Furthermore, IL-4 and PPARγ agonist administration improved functional recovery in a clinically relevant mouse stroke model, even if administered 24 h after the onset of ischemia. We propose that IL-4 is secreted by ischemic neurons as an endogenous defense mechanism, playing a vital role in the regulation of brain cleanup and repair after stroke. Modulation of IL-4 and its associated pathways could represent a potential target for ischemic stroke treatment. SIGNIFICANCE STATEMENT: Depending on the activation signal, microglia/macrophages (MΦ) can behave as "healing" (M2) or "harmful" (M1). In response to ischemia, damaged/necrotic brain cells discharge factors that polarize MΦ to a M1-like phenotype. This polarization emerges early after stroke and persists for days to weeks, driving secondary brain injury via proinflammatory mediators and oxidative damage. Our study demonstrates that, to offset this M1-like polarization process, sublethally ischemic neurons may instead secrete a potent M2 polarizing cytokine, interleukin-4 (IL-4). In the presence of IL-4 (including when IL-4 is administered exogenously), MΦ become more effective in the cleanup of ischemic debris and produce trophic factors that may promote brain repair. We propose that IL-4 could represent a potential target for ischemic stroke treatment/recovery.
Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Interleucina-4/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Interleucina-4/genética , Interleucina-4/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Neurônios/patologia , PPAR gama/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/patologiaRESUMO
BACKGROUND AND PURPOSE: Intracerebral hemorrhage (ICH) represents a devastating form of stroke for which there is no effective treatment. This preclinical study was designed to evaluate dimethyl fumarate (DMF), a substance recently approved for the treatment of multiple sclerosis, as therapy for ICH. We hypothesized that DMF through activating the master regulator of cellular self-defense responses, transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), would act as effective treatment for ICH-mediated damage. METHODS: Male rats and mice, including Nrf2 knockouts, were subjected to intracerebral injection of blood (to mimic ICH) and then treated with DMF. Neurological deficit, brain edema, gene induction profile and hematoma resolution were evaluated. Phagocytic functions of primary microglia in culture were used to study hematoma resolution. RESULTS: Treatment with DMF induced Nrf2-target genes, improved hematoma resolution, reduced brain edema, and ultimately enhanced neurological recovery in rats and wild-type, but not Nrf2 knockout, mice. Most importantly, the treatment of ICH with DMF showed a 24 h window of therapeutic opportunity. CONCLUSIONS: A clinically relevant dose of DMF demonstrates potent therapeutic efficacy and impressive 24 h therapeutic window of opportunity. This study merits further evaluation of this compound as potential treatment for ICH in humans.
Assuntos
Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/prevenção & controle , Fumaratos/uso terapêutico , Fator 2 Relacionado a NF-E2/biossíntese , Fármacos Neuroprotetores/uso terapêutico , Animais , Hemorragia Cerebral/patologia , Fumarato de Dimetilo , Fumaratos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/deficiência , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
As a consequence of intracerebral hemorrhage (ICH), blood components enter brain parenchyma causing progressive damage to the surrounding brain. Unless hematoma is cleared, the reservoirs of blood continue to inflict injury to neurovascular structures and blunt the brain repair processes. Microglia/macrophages (MMΦ) represent the primary phagocytic system that mediates the cleanup of hematoma. Thus, the efficacy of phagocytic function by MMΦ is an essential step in limiting ICH-mediated damage. Using primary microglia to model red blood cell (main component of hematoma) clearance, we studied the role of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a master-regulator of antioxidative defense, in the hematoma clearance process. We showed that in cultured microglia, activators of Nrf2 (i) induce antioxidative defense components, (ii) reduce peroxide formation, (iii) up-regulate phagocytosis-mediating scavenger receptor CD36, and (iv) enhance red blood cells (RBC) phagocytosis. Through inhibiting Nrf2 or CD36 in microglia, by DNA decoy or neutralizing antibody, we documented the important role of Nrf2 and CD36 in RBC phagocytosis. Using autologous blood injection ICH model to measure hematoma resolution, we showed that Nrf2 activator, sulforaphane, injected to animals after the onset of ICH, induced CD36 expression in ICH-affected brain and improved hematoma clearance in rats and wild-type mice, but expectedly not in Nrf2 knockout (KO) mice. Normal hematoma clearance was impaired in Nrf2-KO mice. Our experiments suggest that Nrf2 in microglia play an important role in augmenting the antioxidative capacity, phagocytosis, and hematoma clearance after ICH.
Assuntos
Hemorragia Cerebral/metabolismo , Microglia/metabolismo , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Animais , Encéfalo/patologia , Antígenos CD36/biossíntese , Contagem de Células , Células Cultivadas , Hemorragia Cerebral/patologia , Peróxido de Hidrogênio/metabolismo , Hidroquinonas/farmacologia , Isotiocianatos/farmacologia , Camundongos , Camundongos Knockout , Subunidade p45 do Fator de Transcrição NF-E2/genética , Fagocitose/efeitos dos fármacos , SulfóxidosRESUMO
In the late growth stage of commercial Pekin ducks, a significant increase in feed intake and a decline in body weight gain have been observed, leading to impaired feed conversion efficiency. To address this issue, we investigated alterations in production performance, blood biochemical indices, ileum tissue architecture, and microbial community structure in Pekin ducks. The primary objective was to provide robust data supporting the improvement of meat duck production efficiency during the late growth stage (28-42-days-old). Forty 28-day-old Pekin ducks were randomly assigned to 8 replicates, with five ducks per replicate. The rearing period lasted 14 days, with feed and water provided ad libitum. Our findings indicated a significant increase in Pekin duck body and heart weights with advancing age (P < 0.05). Moreover, serum antioxidant enzyme and high-density lipoprotein concentrations significantly increased, whereas triglyceride levels decreased (P < 0.05). Notably, the height of the ileal villi was significantly reduced (P < 0.05). The microbial community structure of the ileum exhibited significant changes as ducks aged, accompanied by a substantial increase in microbial flora diversity, particularly with the formation of more tightly connected microbial network modules. Time-dependent enrichment was observed in microbial gene functions related to energy metabolism pathways. At the genus level, Sphingomonas and Subdoligranulum have emerged as crucial players in microbial differential functional pathways and network formation. These bacteria likely serve as the key driving factors in the dynamic microbial changes that occur in Pekin ducks over time. Overall, our findings suggest a potential decline in the absorption function of the small intestine and fat deposition performance of Pekin ducks during later growth stages, which may be attributed to the maturation and proliferation of the gut microbial community.
Assuntos
Patos , Microbioma Gastrointestinal , Estresse Oxidativo , Animais , Patos/crescimento & desenvolvimento , Patos/fisiologia , Íleo/microbiologia , Distribuição Aleatória , Biomarcadores , MasculinoRESUMO
BACKGROUND: Chicken is one of the most numerous and widely distributed species around the world, and many studies support the multiple ancestral origins of domestic chickens. The research regarding the yellow skin phenotype in domestic chickens (regulated by BCO2) likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens. However, beyond the BCO2 gene region, much remains unknown about the introgression from the grey junglefowl into domestic chickens. Therefore, in this study, based on whole-genome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds, we explored the introgression events from the grey junglefowl to domestic chickens. RESULTS: We successfully detected introgression regions besides BCO2, including two associated with growth trait (IGFBP2 and TKT), one associated with angiogenesis (TIMP3) and two members of the heat shock protein family (HSPB2 and CRYAB). Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens. Furthermore, we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds, indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained. Additionally, our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens, possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens. CONCLUSIONS: In summary, our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens, laying the foundation for a deeper understanding of the genetic composition within domestic chickens, and offering new perspectives on the impact of introgression on domestic chickens.
RESUMO
OBJECTIVE: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is primarily composed of cancer-associated fibroblasts (CAFs) and immune cells. Gremlin1 (Grem1) is a profibrogenic factor that promotes tumorigenesis in several cancers. However, the role of Grem1 in the PDAC microenvironment is not adequately defined. METHODS: We correlated Grem1 levels with activated stroma and immune cells in human PDAC using The Cancer Genome Atlas (TCGA) RNA-sequencing data and characterized the expression of Grem1 transcripts and isoforms in pancreatic cell lines and PDAC tissues. We assessed the role of Grem1 in the microenvironment by in vitro studies. RESULTS: Grem1 expression is associated with an activated stroma and increased M1 and M2 macrophages. Only full length Grem1 variant 1 and isoform 1 were detectable in human pancreatic cells, and remarkably high levels of Grem1 were observed in pancreatic fibroblasts (P < 0.05). Immunohistochemistry detected Grem1 protein in PDAC tumor cells and stromal cells, which correlated with infiltrating macrophages in PDAC tumors. Grem1 knockdown in CAFs suppressed transforming growth factor (TGF)-ß-induced extracellular matrix proteins (P < 0.05). Grem1 recombinant protein treatment in vitro increased M1 and M2 macrophages (P < 0.05). CONCLUSIONS: Grem1 acts as a profibrogenic factor in the PDAC microenvironment via modulation of fibroblasts and macrophages. Grem1 may have the potential to be developed as a therapeutic target for PDAC.
RESUMO
Spurs, which mainly appear in roosters, are protrusions near the tarsometatarsus on both sides of the calves of chickens, and are connected to the tarsometatarsus by a bony core. As a male-biased morphological characteristic, the diameter and length of spurs vary significantly between different individuals, mainly related to genetics and age. As a specific behavior of hens, egg-laying also varies greatly between individuals in terms of traits such as age at first egg (AFE), egg weight (EW), and so on. At present, there are few studies on chicken spurs. In this study, we investigated the inheritance pattern of the spur trait in roosters with different phenotypes and the correlations between spur length, body weight at 18 weeks of age (BW18), shank length at 18 weeks of age (SL18), and the egg-laying trait in hens (both hens and roosters were from the same population and were grouped according to their family). These traits related to egg production included AFE, body weight at first egg (BWA), and first egg weight (FEW). We estimated genetic parameters based on pedigree and phenotype data, and used variance analysis to calculate broad-sense heritability for correcting the parameter estimation results. The results showed that the heritability of male left and right spurs ranged from 0.6 to 0.7. There were significant positive correlations between left and right spur length, BW18, SL18, and BWA, as well as between left and right spur length and AFE. We selected 35 males with the longest spurs and 35 males with the shortest spurs in the population, and pooled them into two sets to obtain the pooled genome sequencing data. After genome-wide association and genome divergency analysis by FST, allele frequency differences (AFDs), and XPEHH methods, we identified 7 overlapping genes (CENPE, FAT1, FAM149A, MANBA, NFKB1, SORBS2, UBE2D3) and 14 peak genes (SAMD12, TSPAN5, ENSGALG00000050071, ENSGALG00000053133, ENSGALG00000050348, CNTN5, TRPC6, ENSGALG00000047655,TMSB4X, LIX1, CKB, NEBL, PRTFDC1, MLLT10) related to left and right spur length through genome-wide selection signature analysis and a genome-wide association approach. Our results identified candidate genes associated with chicken spurs, which helps to understand the genetic mechanism of this trait and carry out subsequent research around it.
RESUMO
As a Chinese local chicken breed, Hongshan chickens have 2 kinds of tail feather phenotypes, normal and taillessness. Our previous studies showed that taillessness was a sex-linked dominant trait. Abnormal development of the tail vertebrae could be explained this phenomenon in some chicken breeds. However, the number of caudal vertebrae in rumpless Hongshan chickens was normal, so rumplessness in Hongshan chicken was not related to the development of the caudal vertebrae. Afterwards, we found that rumplessness in Hongshan was due to abnormal development of tail feather rather than abnormal development of caudal vertebrae. In order to understand the genetic foundation of the rumplessness of Hongshan chickens, we compared and reanalyzed 2 sets of data in normal and rumpless Hongshan chickens from our previous studies. By joint analysis of genome-wide selection signature analysis and genome-wide association approach, we found that 1 overlapping gene (EDIL3) and 16 peak genes (ENSGALG00000051843, ENSGALG00000053498, ENSGALG00000054800, KIF27, PTPRD, ENSGALG00000047579, ENSGALG00000041052, ARHGEF28, CAMK4, SERINC5, ENSGALG00000050776, ERCC8, MCC, ADAMTS19, ENSGALG00000053322, CHRNA8) located on the Z chromosome was associated with the rumpless trait. The results of this study furtherly revealed the molecular mechanism of the rumpless trait in Hongshan chickens, and identified the candidate genes associated with this trait. Our results will help to improve the shape of chicken tail feathers and to rise individual economic value in some specific market in China.
Assuntos
Galinhas , Animais , Galinhas/genética , Masculino , Feminino , Plumas , Cauda/anatomia & histologia , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , ChinaRESUMO
Plumage color is a characteristic trait of ducks that originates as a result of natural and artificial selection. As a conspicuous phenotypic feature, it is a breed characteristic. Previous studies have identified some genes associated with the formation of black and white plumage in ducks. However, studies on the genetic basis underlying the red plumage phenotype in ducks are limited. Here, genome-wide association analysis (GWAS) and selection signal detection (Fst, θπ ratio, and cross-population composite likelihood ratio [XP-CLR]) were conducted to identify candidate regions and genes underlying duck plumage color phenotype. Selection signal detection revealed 29 overlapping genes (including ENPP1 and ULK1) significantly associated with red plumage color in Ji'an Red ducks. ENSAPLG00000012679, ESRRG, and SPATA5 were identified as candidate genes associated with red plumage using GWAS. Selection signal detection revealed that 19 overlapping genes (including GMDS, PDIA6, and ODC1) significantly correlated with light brown plumage in Brown Tsaiya ducks. GWAS to narrow down the significant regions further revealed nine candidate genes (AKT1, ATP6V1C2, GMDS, LRP4, MAML3, PDIA6, PLD5, TMEM63B, and TSPAN8). Notably, in Brown Tsaiya ducks, GMDS, ODC1, and PDIA6 exhibit significantly differentiated allele frequencies among other feather-colored ducks, while in Ji'an Red ducks, ENSAPLG00000012679 has different allele frequency distributions compared with that in other feather-colored ducks. This study offers new insights into the variation and selection of the red plumage phenotype using GWAS and selective signals.