Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 23067, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155283

RESUMO

Apoptosis, a programmed cell death mechanism, is a regulatory process controlling cell proliferation as cells undergo demise. Caspase-8 serves as a pivotal apoptosis-inducing factor that initiates the death receptor-mediated apoptosis pathway. In this investigation, we have devised an optogenetic method to swiftly modulate caspase-8 activation in response to blue light. The cornerstone of our optogenetic tool relies on the PHR domain of Arabidopsis thaliana cryptochrome 2, which self-oligomerizes upon exposure to blue light. In this study, we have developed two optogenetic approaches for rapidly controlling caspase-8 activation in response to blue light in cellular systems. The first strategy, denoted as Opto-Casp8-V1, entails the fusion expression of the Arabidopsis blue light receptor CRY2 N-terminal PHR domain with caspase-8. The second strategy, referred to as Opto-Casp8-V2, involves the independent fusion expression of caspase-8 with the PHR domain and the CRY2 blue light-interacting protein CIB1 N-terminal CIB1N. Upon induction with blue light, PHR undergoes aggregation, leading to caspase-8 aggregation. Additionally, the blue light-dependent interaction between PHR and CIB1N also results in caspase-8 aggregation. We have validated these strategies in both HEK293T and HeLa cells. The findings reveal that both strategies are capable of inducing apoptosis, with Opto-Casp8-V2 demonstrating significantly superior efficiency compared to Opto-Casp8-V1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Optogenética/métodos , Caspase 8/genética , Caspase 8/metabolismo , Células HeLa , Células HEK293 , Luz , Fatores de Transcrição/metabolismo , Apoptose
2.
Ying Yong Sheng Tai Xue Bao ; 23(5): 1247-53, 2012 May.
Artigo em Zh | MEDLINE | ID: mdl-22919834

RESUMO

Plant calcium (Ca) is composed of dissociated Ca2+ and easily soluble, slightly soluble, and hard soluble combined Ca salts. The hard soluble Ca salts can often engender Ca crystals. To understand the Ca status in different growth form plants in salinized habitats, 54 plant species were sampled from the salinized habitats in Tianjin, with the Ca crystals examined by microscope and the Ca components determined by sequential fractionation procedure. More Ca crystals were found in 38 of the 54 plant species. In 37 of the 38 plant species, drusy and prismatic Ca oxalate crystals dominated, whereas the cystolith of Ca carbonate crystal only appeared in the leaves of Ficus carica of Moraceae. The statistics according to growth form suggested that deciduous arbors and shrubs had more Ca oxalate crystal, liana had lesser Ca oxalate crystal, and herbs and evergreen arbors had no Ca oxalate crystal. From arbor, shrub, liana to herb, the concentration of HCl-soluble Ca decreased gradually, while that of water soluble Ca was in adverse. The concentration of water soluble Ca in herbs was significantly higher than that in arbors and shrubs. This study showed that in salinized habitats, plant Ca crystals and Ca components differed with plant growth form, and the Ca oxalate in deciduous arbors and shrubs played an important role in withstanding salt stress.


Assuntos
Compostos de Cálcio/química , Cálcio/química , Ecossistema , Plantas/química , Plantas/classificação , Salinidade , Carbonato de Cálcio/química , Oxalato de Cálcio/química , China , Cristalização , Desenvolvimento Vegetal , Solo/análise , Solubilidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA