Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(10): 3857-3869, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32833457

RESUMO

Disulfiram (DSF) is an FDA-approved anti-alcoholic drug that has recently proven to be effective in cancer treatment. However, the short half-life in the bloodstream and the metal ion-dependent antitumor activity significantly limited the further application of DSF in the clinical field. To this end, we constructed a silk fibroin modified disulfiram/zinc oxide nanocomposites (SF/DSF@ZnO) to solubilize and stabilize DSF, and, more importantly, achieve pH triggered Zn2+ release and subsequent synergistic antitumor activity. The prepared SF/DSF@ZnO nanocomposites were spherical and had a high drug loading. Triggered by the lysosomal pH, SF/DSF@ZnO could induce the rapid release of Zn2+ under the acidic conditions and caused nanoparticulate disassembly along with DSF release. In vitro experiments showed that cytotoxicity of DSF could be enhanced by the presence of Zn2+, and further amplified when encapsulated into SF/DSF@ZnO nanocomposites. It was confirmed that the significantly amplified cytotoxicity of SF/DSF@ZnO was resulted from pH-triggered Zn2+ release, inhibited cell migration, and increased ROS production. In vivo study showed that SF/DSF@ZnO nanocomposites significantly increased the tumor accumulation and prolonged the retention time. In vivo antitumor experiments in the xenograft model showed that SF/DSF@ZnO exerted the highest tumor-inhibition rate among all the drug treatments. Therefore, this exquisite study established silk fibroin-modified disulfiram/zinc oxide nanocomposites, SF/DSF@ZnO, where ZnO not only acted as a delivery carrier but also served as a metal ion reservoir to achieve synergistic antitumor efficacy. The established DSF nanoformulation displayed excellent therapeutic potential in future cancer treatment.


Assuntos
Antineoplásicos/farmacocinética , Nanocompostos/administração & dosagem , Neoplasias/tratamento farmacológico , Zinco/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Bombyx/química , Cátions Bivalentes/farmacocinética , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Dissulfiram/administração & dosagem , Dissulfiram/química , Dissulfiram/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Fibroínas/química , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/patologia , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/farmacocinética
2.
Pharmacol Res ; 145: 104256, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054312

RESUMO

Islet transplantation is the experimental strategy to treat type 1 diabetes by transplanting isolated islets from a donor pancreas into the recipient. While significant progress has been made in the islet transplantation field, islet loss before and after transplantation is still the major obstacle that currently precludes its widespread application. Islet must survive from possible cellular damages during the isolation procedure, storage time, islet injection process and post-transplantation immune rejection, only then the survived islets could produce insulin, actively regulating the blood glucose level. Therefore, islet protection needs to be addressed, especially regarding oxidative stress and immune response induced islet cell damages in diabetic patients. Many clinical data have shown that mildly elevated bilirubin levels in the body negatively correlate to the occurrence of an array of diseases that are related to increased oxidative stress, especially diabetes, and its complications. Recent studies confirmed that bilirubin helps receivers to suppress immune reaction and enable prolonged tolerance to islet transplantation. In this paper, we will review the pharmacological mechanism of bilirubin to modulate oxidative cellular damage and chronic inflammatory reaction in both diabetes and islet transplantation process. Also, we will present the clinical evidence of a strong correlation in bilirubin and diabetes. More importantly, we will summarize undergoing therapeutic applications of bilirubin in islet transplantation and discuss formulation approaches designed to overcome bilirubin delivery issues for future use.


Assuntos
Bilirrubina/uso terapêutico , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas , Animais , Bilirrubina/farmacologia , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(3): 334-338, 2019 May.
Artigo em Zh | MEDLINE | ID: mdl-31631599

RESUMO

OBJECTIVE: To study the mechanism of renal injury in Lepr db/ db mice with the leptin receptor homozygous deficiency. METHODS: Ten male of 28-week-old Lepr db/+ mice with leptin receptor heterozygous deficiency were selected as control group and ten male Lepr db/ db mice with leptin receptor homozygous deficiency were used in this study. After fasting for 8 hours, the body mass, fasting blood glucose (FBG) and glycosylated hemoglobulin (HbA1c) of the mice were measured. Blood of the mice was obtained from femoral artery before euthanasia. Serum creatinine (CRE), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione (GSH) and malonaldehyde (MDA) were detected by corresponding kits, and serum interleukin-1ß (IL-1ß), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) were measured using enzyme-linked immunosorbent assay (ELISA) method. The kidney was taken for pathological observation. The expression levels of nuclear factor E2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) in renal were analyzed by Western blot. The mitochondria of renal was isolated by the corresponding kit. Meanwhile, the expression level of lipoic acid synthase (LIAS) in renal mitochondria was measured by Western blot. RESULTS: The body mass, FPG, HbA1c, CRE and BUN levels of the Lepr db/ db mice were significantly increased in comparison with the Lepr db/+ mice ( P<0.05). Compared with the Lepr db/+ mice, the Lepr db/ db mice renal exhibited glomerular hypertrophy, thickened basement membrane and capillary wall, the mesangial matrix expansion and mesangial cell hyperplasia. Compared with the Lepr db/+ mice, the serum level of GSH in the Lepr db/ db mice was decreased significantly ( P<0.05). The levels of MDA and concentrations of MCP-1, IL-1ß and TNF-α in serum of the Lepr db/ db mice were higher than those of the Lepr db/+ mice ( P<0.05). Compared with the Lepr db/+ mice, the expression of LIAS and Nrf2 protein in the Lepr db/ db mice renal were decreased ( P<0.05), while the expression of NF-κB protein was increased ( P<0.05). CONCLUSION: LIAS, Nrf2 and NF-κB might play significant roles through regulation of oxidative stress and inflammation in the renal injury of Lepr db/ db mice.


Assuntos
Rim/patologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Receptores para Leptina/genética , Sulfurtransferases/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo
4.
Molecules ; 23(10)2018 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301216

RESUMO

Didymin (isosakuranetin 7-O-rutinoside) is an orally bioactive dietary flavonoid glycoside first found in citrus fruits. Traditionally, this flavonoid has long been used in Asian countries as a dietary antioxidant. Recent studies have provided newer insights into this pleiotropic compound, which could regulate multiple biological activities of many important signaling molecules in health and disease. Emerging data also presented the potential therapeutic application of dietary flavonoid glycoside didymin against cancer, neurological diseases, liver diseases, cardiovascular diseases, and other diseases. In this review, we briefly introduce the source and extraction methods of didymin, and summarize its potential therapeutic application in the treatment of various diseases, with an emphasis on molecular targets and mechanism that contributes to the observed therapeutic effects. The dietary flavonoid didymin can be used to affect health and disease with multiple therapeutic targets, and it is anticipated that this review will stimulate the future development of this potential dietary medicine.


Assuntos
Antioxidantes/uso terapêutico , Citrus/química , Flavonoides/uso terapêutico , Glicosídeos/uso terapêutico , Doenças Cardiovasculares/dietoterapia , Suplementos Nutricionais , Flavonoides/química , Glicosídeos/química , Humanos , Neoplasias/dietoterapia , Doenças do Sistema Nervoso/dietoterapia
5.
Cardiovasc Drugs Ther ; 30(3): 247-61, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947349

RESUMO

This study aims to investigate the preclinical performance and mechanism of a novel strategy of aFGF-loaded heparin-modified microbubbles (aFGF-HMB) combined with ultrasound-targeted microbubble destruction (UTMD) technique for diabetic cardiomyopathy (DCM) prevention. Type 1 diabetic rats were induced by streptozotocin. Twelve weeks after intervention, indexes from transthoracic echocardiography and cardiac catheterization showed that the left ventricular function in the aFGF-HMB/UTMD group was significantly improved compared with diabetes control (DM). From Picrosirius Red staining and TUNEL staining, the aFGF-HMB/UTMD group showed significant difference from the other groups. The cardiac collagen volume fraction (CVF) and myocardial cell apoptosis index (AI) in aFGF-HMB/UTMD group decreased to 7.2 % and 7.11 % respectively, compared with the DM group (CVF = 24.5 % and AI =20.3 % respectively). The results of myocardial microvascular density (MCD) also proved the strongest inhibition of aFGF-HMB/UTMD group on DCM progress. CD31 staining of aFGF-HMB/UTMD group reached 22 n/hrp, much higher than that of DM group (9 n/hrp). These results confirmed that the abnormalities including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and microvascular rarefaction could be suppressed by twice weekly aFGF treatments for 12 consecutive weeks (free aFGF or aFGF-HMB+/-UTMD), with the strongest improvements observed in the aFGF-HMB/UTMD group (P < 0.05 vs free aFGF or aFGF-HMB). Western blot analyses of heart tissue further revealed the highest aFGF, anti-apoptosis protein (Bcl-2), VEGF-C, pAkt, pFoxo-3a levels and strongest reduction in pro-apoptosis proteins (Bax) level in aFGF-HMB/UTMD group. Overall, aFGF-HMB combined with UTMD technique might be developed as an effective strategy to prevent DCM in future clinical therapy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Heparina/administração & dosagem , Hipoglicemiantes/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/metabolismo , Ecocardiografia , Fator 1 de Crescimento de Fibroblastos/farmacocinética , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Coração/diagnóstico por imagem , Heparina/química , Heparina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Masculino , Microbolhas , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Ondas Ultrassônicas , Proteína X Associada a bcl-2/metabolismo
6.
AAPS PharmSciTech ; 17(6): 1376-1382, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26753818

RESUMO

A critical issue for alcohol-induced liver disease (ALD) therapeutics is the lack of a highly efficient delivery system. In this study, a Puerarin-propylene glycol-liposome system was prepared for the purpose of targeting puerarin, an isoflavon, to the liver. Transmission electron microscope (TEM) results showed the liposomes to be spherical in shape with an average diameter of 182 nm with a polydispersity index of 0.239. The zeta potential of the particles was about -30 mV. The entrapment efficiency of puerarin was above 90%. MTT-based assay in HpeG2 cells showed no significant cytotoxicity in the presence of up to 25% concentration of the system containing 3% puerarin. In vivo performance of this system was studied in mice. Pharmacokinetics and distribution of puerarin-PG-liposome system was studied relative to puerarin solution at the same dose levels. The results show that puerarin-PG-liposome prolonged drug retention time and decreased elimination of puerarin in mice (AUC of liposome system and solution was 9.5 and 4.0 mg h L-1, respectively). Furthermore, propylene glycol (PG)-liposome system enhanced puerarin distribution into liver and spleen, while decreasing puerarin distribution in other tissues. Overall, the puerarin-PG-liposome system showed enhanced therapeutic effect in mice with ALD.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Isoflavonas/química , Isoflavonas/farmacologia , Lipossomos/química , Fígado/efeitos dos fármacos , Propilenoglicol/química , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Etanol/efeitos adversos , Células Hep G2 , Humanos , Isoflavonas/farmacocinética , Fígado/metabolismo , Camundongos , Tamanho da Partícula , Baço/metabolismo , Distribuição Tecidual
7.
Yao Xue Xue Bao ; 50(1): 99-103, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25924483

RESUMO

Ultrasonic microbubbles were used to open blood-brain barriers (BBB) with a reversed and limited behavior feature in the study, which could improve the brain-targeted delivery of anti-tumor drugs. The glioma rat model was prepared. Low-frequency ultrasound was combined with microbubbles to affect the permeability of BBB compared with the permeability of independently administered Evans blue (EB) crossing BBB. Time point and length of ultrasound were investigated whether they affect the permeability of BBB and the damage of brain tissue. The effect of the growth time of glioma on BBB permeability was explored. Only glioma had a very little impact on BBB permeability. However, ultrasonic microbubbles opened the BBB with the features of temporary, limited and reversed behavior and improved EB and magnetic resonance imaging contrast agent penetrating BBB. A length of 30 s ultrasound is appropriate for opening BBB and no damage of brain tissue. Drugs should be injected before ultrasound so that they enter into brain as BBB opening. Ultrasonic microbubbles can open BBB effectively and safely, which improve drugs penetrating BBB under proper time point and length.


Assuntos
Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Microbolhas , Animais , Barreira Hematoencefálica , Meios de Contraste , Imageamento por Ressonância Magnética , Permeabilidade , Ratos , Ultrassom
8.
Nanomedicine ; 10(4): 755-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24200526

RESUMO

Lipid nanoparticles with solid matrix have been given increasing attention due to their biodegradable status and ability to entrap a variety of biologically active compounds. In this study, new phospholipid-based gelatin nanoparticles encapsulating basic fibroblast growth factor (bFGF) were developed to target the brain via nasal administration. Treatment effects were assessed by quantifying rotational behavior, monoamine neurotransmitter levels and tyrosine hydroxylase expression in 6-hydroxydopamine induced hemiparkinsonian rats. The gelatin nanostructured lipid carriers (GNLs) were prepared by a water-in-water emulsion method and then freeze-dried. The GNLs possessed better profile than gelatin nanoparticles (GNs), with particle size 143±1.14nm and Zeta potential -38.2±1.2mV. The intranasal GNLs efficiently enriched exogenous bFGF in olfactory bulb and striatum without adverse impact on the integrity of nasal mucosa and showed obvious therapeutic effects on hemiparkinsonian rats. Thus, GNLs are attractive carriers for nose-to-brain drug delivery, especially for unstable macromolecular drugs such as bFGF. FROM THE CLINICAL EDITOR: This team of authors reports the development of phospholipid-based gelatin nanoparticles encapsulating basic fibroblast growth factor to target the brain via intranasal administration. A rat model of hemiparkinsonism was applied demonstrating a good safety profile and an obvious therapeutic effect.


Assuntos
Portadores de Fármacos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Gelatina/farmacologia , Lipídeos/farmacologia , Nanopartículas , Doença de Parkinson Secundária/tratamento farmacológico , Administração Intranasal , Animais , Corpo Estriado/fisiopatologia , Portadores de Fármacos/química , Fator 2 de Crescimento de Fibroblastos/química , Gelatina/química , Lipídeos/química , Bulbo Olfatório/fisiopatologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Ratos
9.
Drug Dev Ind Pharm ; 40(11): 1523-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24564824

RESUMO

Ca-alginate-poly-l-lysine-alginate (APA-Ca) and Ba-alginate-poly-l-lysine-alginate (APA-Ba) microcapsules were prepared and their thickness and surface were examined by light microscopy and scanning electron microscopy. Specifically, light microscopy with frozen section was used to visualize and quantify the thickness of APA membrane, and monitor temporal changes in the thickness of microcapsules during a month long culture in vitro. The section graph of APA microcapsule represents the accurate measurement of layer thickness of APA-Ca with diameter 900 ± 100 and 500 ± 100 µm at 6.01 ± 1.02 and 9.54 ± 2.42 µm (p < 0.05), and layer thickness of APA-Ba with diameter 900 ± 100 and 500 ± 100 µm at 5.47 ± 0.90 and 8.21 ± 1.97 µm (p < 0.05), regardless of the alginate composition used to generate the microcapsules. The microcapsule was stable during the culture for 30 days in vitro. Field emission scanning electron microscopy with freeze drying method was used to detect the surface and thickness of dried microcapsules. From the results, the outer surface of APA-Ca and APA-Ba membrane were smooth and dense, the film thickness of the APA-Ca was about 450-690 nm, while the APA-Ba was approximately 335 nm. In vivo experiment, little significant difference was seen in the change of film thickness of microcapsules in intrapertioneal site for 30 days after transplantation (p > 0.05), except that the recovery of APA-Ba was higher than the APA-Ca microcapsules. The paper showed an easy method to prepare APA-Ca and APA-Ba, and examine their thickness and surface, which could be utilized to study other types of microcapsules.


Assuntos
Alginatos/química , Bário/química , Cálcio/química , Cápsulas/química , Polilisina/análogos & derivados , Química Farmacêutica , Estabilidade de Medicamentos , Microscopia , Polilisina/química , Propriedades de Superfície
10.
Biomater Sci ; 12(4): 821-836, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168805

RESUMO

Islet transplantation holds significant promise as a curative approach for type 1 diabetes (T1D). However, the transition of islet transplantation from the experimental phase to widespread clinical implementation has not occurred yet. One major hurdle in this field is the challenge of insufficient vascularization and subsequent early loss of transplanted islets, especially in non-intraportal transplantation sites. The establishment of a fully functional vascular system following transplantation is crucial for the survival and secretion function of islet grafts. This vascular network not only ensures the delivery of oxygen and nutrients, but also plays a critical role in insulin release and the timely removal of metabolic waste from the grafts. This review summarizes recent advances in effective strategies to improve graft revascularization and enhance islet survival. These advancements include the local release and regulation of angiogenic factors (e.g., vascular endothelial growth factor, VEGF), co-transplantation of vascular fragments, and pre-vascularization of the graft site. These innovative approaches pave the way for the development of effective islet transplantation therapies for individuals with T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 1/cirurgia , Materiais Biocompatíveis , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transplante das Ilhotas Pancreáticas/fisiologia , Neovascularização Fisiológica
11.
Adv Healthc Mater ; 13(19): e2400125, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513154

RESUMO

Microglia-mediated inflammation is involved in the pathogenesis of Alzheimer's disease (AD), whereas human fibroblast growth factor 21 (hFGF21) has demonstrated the ability to regulate microglia activation in Parkinson's disease, indicating a potential therapeutic role in AD. However, challenges such as aggregation, rapid inactivation, and the blood-brain barrier hinder its effectiveness in treating AD. This study develops targeted delivery of hFGF21 to activated microglia using BV2 cell membrane-coated PEGylated liposomes (hFGF21@BCM-LIP), preserving the bioactivity of hFGF21. In vitro, hFGF21@BCM-LIP specifically targets Aß1-42-induced BV2 cells, with uptake hindered by anti-VCAM-1 antibody, indicating the importance of VCAM-1 and integrin α4/ß1 interaction in targeted delivery to BV2 cells. In vivo, following subcutaneous injection near the lymph nodes of the neck, hFGF21@BCM-LIP diffuses into lymph nodes and distributes along the meningeal lymphatic vasculature and brain parenchyma in amyloid-beta (Aß1-42)-induced mice. Furthermore, the administration of hFGF21@BCM-LIP to activated microglia improves cognitive deficits caused by Aß1-42 and reduces levels of tau, p-Tau, and BACE1. It also decreases interleukin-6  (IL-6) and tumor necrosis factor-α (TNF-α) release while increasing interleukin-10 (IL-10) release both in vivo and in vitro. These results indicate that hFGF21@BCM-LIP can be a promising treatment for AD, by effectively crossing the blood-brain barrier and targeting delivery to brain microglia via the neck-meningeal lymphatic vasculature-brain parenchyma pathways.


Assuntos
Doença de Alzheimer , Hipocampo , Lipossomos , Microglia , Polietilenoglicóis , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Lipossomos/química , Camundongos , Polietilenoglicóis/química , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Humanos , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Masculino , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
12.
Int J Biol Macromol ; 261(Pt 1): 129704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272431

RESUMO

Chronic diabetic wounds pose a serious threat to human health and safety because of their refractory nature and high recurrence rates. The formation of refractory wounds is associated with wound microenvironmental factors such as increased expression of proinflammatory factors and oxidative stress. Bilirubin is a potent endogenous antioxidant, and morin is a naturally active substance that possesses anti-inflammatory and antioxidant effects. Both hold the potential for diabetic wound treatment by intervening in pathological processes. In this study, we developed bilirubin/morin-based carrier-free nanoparticles (BMn) to treat chronic diabetic wounds. In vitro studies showed that BMn could effectively scavenge overproduced reactive oxygen species and suppress elevated inflammation, thereby exerting a protective effect. BMn was then loaded into a collagen/polyvinyl alcohol gel (BMn@G) for an in vivo study to maintain a moist environment for the skin and convenient biomedical applications. BMn@G exhibits excellent mechanical properties, water retention capabilities, and in vivo safety. In type I diabetic mice, BMn@G elevated the expression of the anti-inflammatory factor IL-10 and concurrently diminished the expression of the proinflammatory factor TNF-α in the tissues surrounding the wounds. Furthermore, BMn@G efficiently mediated macrophage polarization from the M1-type to the M2-type, thereby fostering anti-inflammatory effects. Additionally, BMn@G facilitated the conversion of type III collagen fiber bundles to type I collagen fiber bundles, resulting in a more mature collagen fiber structure. This study provides a promising therapeutic alternative for diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus , Flavonas , Nanopartículas , Camundongos , Humanos , Animais , Álcool de Polivinil/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Bilirrubina/metabolismo , Cicatrização , Colágeno/química , Inflamação/patologia , Anti-Inflamatórios/uso terapêutico , Flavonoides/uso terapêutico , Estresse Oxidativo , Hidrogéis/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
13.
Adv Sci (Weinh) ; 11(22): e2400713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593402

RESUMO

Osteoarthritis (OA) is a chronic inflammatory disease characterized by cartilage destruction, synovitis, and osteophyte formation. Disease-modifying treatments for OA are currently lacking. Because inflammation mediated by an imbalance of M1/M2 macrophages in the synovial cavities contributes to OA progression, regulating the M1 to M2 polarization of macrophages can be a potential therapeutic strategy. Basing on the inherent immune mechanism and pathological environment of OA, an immunoglobulin G-conjugated bilirubin/JPH203 self-assembled nanoparticle (IgG/BRJ) is developed, and its therapeutic potential for OA is evaluated. After intra-articular administration, IgG conjugation facilitates the recognition and engulfment of nanoparticles by the M1 macrophages. The internalized nanoparticles disassemble in response to the increased oxidative stress, and the released bilirubin (BR) and JPH203 scavenge reactive oxygen species (ROS), inhibit the nuclear factor kappa-B pathway, and suppress the activated mammalian target of rapamycin pathway, result in the repolarization of macrophages and enhance M2/M1 ratios. Suppression of the inflammatory environment by IgG/BRJ promotes cartilage protection and repair in an OA rat model, thereby improving therapeutic outcomes. This strategy of opsonization involving M1 macrophages to engulf carrier-free BR/JPH203 nanoparticles to suppress inflammation for OA therapy holds great potential for OA intervention and treatment.


Assuntos
Bilirrubina , Modelos Animais de Doenças , Inflamação , Macrófagos , Nanopartículas , Osteoartrite , Animais , Osteoartrite/imunologia , Osteoartrite/tratamento farmacológico , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ratos , Inflamação/imunologia , Bilirrubina/farmacologia , Bilirrubina/metabolismo , Masculino , Ratos Sprague-Dawley
14.
Drug Dev Ind Pharm ; 39(11): 1712-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23062067

RESUMO

Characterization and antitumor activity of basic fibroblast growth factor-mediated active targeting doxorubicin microbubbles (bFGF-DOX-MB) were investigated. Pluronic F68 with chemical conjugation of doxorubicin (DOX-P) and peptide KRTGQYKLC-conjugated DSPE-PEG2000 were prepared. bFGF-DOX-MB had a normal distribution of particle size, with average particle size of 2.7 µm. Using A549 mouse model, bFGF-DOX-MB combined ultrasound showed the best inhibition effect on tumor volume growth among all the test groups. Similar conclusion was obtained from experimental measurements of tumor weight change and blood cell count. From the results, chemotherapeutic drug inhibition on tumor growth could be enhanced by local ultrasound combined with active targeting bFGF-DOX-MB, which might provide a potential application for ultrasound-mediated chemotherapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Microbolhas/uso terapêutico , Oligopeptídeos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/efeitos adversos , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/efeitos adversos , Estudos de Viabilidade , Fator 2 de Crescimento de Fibroblastos/efeitos adversos , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Microbolhas/efeitos adversos , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/efeitos adversos , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Domínios e Motivos de Interação entre Proteínas , Distribuição Aleatória , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Microencapsul ; 30(6): 538-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23489016

RESUMO

Biotin was conjugated on poloxamer to prepare biotin-poloxamer (BP) conjugate micelles for chemotherapeutics. Epirubicin (EPI) was encapsulated in BP micelles. The EPI-loaded BP micelles were characterized in terms of size, ζ-potential, morphology, drug loading, drug encapsulation and drug release. Marrow leukemic HL-60 cells were used for evaluating the in vitro cytotoxicity of EPI-loaded BP micelles. Nude mice were axillainoculated subcutaneously HL-60 cells to establish tumour model for investigating the inhibition effects of EPI-loaded BP micelles. From the results, the sizes of these nanoparticles were about 100 nm. Fluorescence microscope observation supported the enhanced cellular uptake of the micelles. The order of the inhibition on tumour volume growth was: EPI-loaded BP micelles >EPI-loaded MATP micelles >EPI-loaded poloxamer micelles >EPI. BP micelles showed significant antitumour activity and low toxicity, compared with the non-targeted micelles. With the advantage of EPR effect and tumour-targeting potential, BP conjugate micelles might be developed as a new system for chemotherapeutics.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Biotina/química , Epirubicina/administração & dosagem , Micelas , Neoplasias/tratamento farmacológico , Poloxâmero/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Epirubicina/farmacocinética , Epirubicina/uso terapêutico , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/patologia
16.
Eur J Pharm Biopharm ; 187: 130-140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105362

RESUMO

Islet transplantation refers to the transfusion of healthy islet cells into the diabetic recipients and reconstruction of their endogenous insulin secretion to achieve insulin independence. It is a minimally invasive surgery that holds renewed prospect as a therapeutic method for type 1 diabetes mellitus. However, poor oxygenation in the early post-transplantation period is considered as one of the major causes of islet loss and dysfunction. Due to the metabolism chacteristics, islets required a high supply of oxygen for cell survival while a hypoxia environment would lead to severe islet loss and graft failure. Emerging strategies have been proposed, including providing external oxygen and speeding up revascularization. From the perspective of formulation science, it is feasible and practical to protect transplanted islets by oxygen-release before revascularization as opposed to local hypoxia. In this study, we review the potential formulation strategies that could provide oxygen-release by either delivering external oxygen or triggering localized oxygen generation for transplanted islets.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Oxigênio , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Insulina/metabolismo , Hipóxia/metabolismo
17.
Eur J Pharm Biopharm ; 183: 33-46, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563886

RESUMO

Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease. It weakens the motor function of patients and imposes a significant economic burden on society. The current medications commonly used in clinical practice do not meet the need for the treatment of OA. Recombinant protein drugs (RPDs) can treat OA by inhibiting inflammatory pathways, regulating catabolism/anabolism, and promoting cartilage repair, thereby showing promise as disease-modifying OA drugs (DMOADs). However, the rapid clearance and short half-life of them in the articular cavity limit their clinical translation. Therefore, the reliable drug delivery systems for extending drug treatment are necessary for the further development. This review introduces RPDs with therapeutic potential for OA, and summarizes their research progress on related drug delivery systems, and make proper discussion on the certain keys for optimal development of this area.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Osteoartrite/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Proteínas Recombinantes/uso terapêutico
18.
Acta Biomater ; 157: 467-486, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460288

RESUMO

Diabetic wounds are challenging to heal due to complex pathogenic abnormalities. Routine treatment with acid fibroblast growth factor (aFGF) is widely used for diabetic wounds but hardly offers a satisfying outcome due to its instability. Despite the emergence of various nanoparticle-based protein delivery approaches, it remains challenging to engineer a versatile delivery system capable of enhancing protein stability without the need for complex preparation. Herein, a polyphenol-driven facile assembly of nanosized coacervates (AE-NPs) composed of aFGF and Epigallocatechin-3-gallate (EGCG) was constructed and applied in the healing of diabetic wounds. First, the binding patterns of EGCG and aFGF were predicted by molecular docking analysis. Then, the characterizations demonstrated that AE-NPs displayed higher stability in hostile conditions than free aFGF by enhancing the binding activity of aFGF to cell surface receptors. Meanwhile, the AE-NPs also had a powerful ability to scavenge reactive oxygen species (ROS) and promote angiogenesis, which significantly accelerated full-thickness excisional wound healing in diabetic mice. Besides, the AE-NPs suppressed the early scar formation by improving collagen remodeling and the mechanism was associated with the TGF-ß/Smad signaling pathway. Conclusively, AE-NPs might be a potential and facile strategy for stabilizing protein drugs and achieving the scar-free healing of diabetic wounds. STATEMENT OF SIGNIFICANCE: Diabetic chronic wound is among the serious complications of diabetes that eventually cause the amputation of limbs. Herein, a polyphenol-driven facile assembly of nanosized coacervates (AE-NPs) composed of aFGF and EGCG was constructed. The EGCG not only acted as a carrier but also possessed a therapeutic effect of ROS scavenging. The AE-NPs enhanced the binding activity of aFGF to cell surface receptors on the cell surface, which improved the stability of aFGF in hostile conditions. Moreover, AE-NPs significantly accelerated wound healing and improved collagen remodeling by regulating the TGF-ß/Smad signaling pathway. Our results bring new insights into the field of polyphenol-containing nanoparticles, showing their potential as drug delivery systems of macromolecules to treat diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Cicatrização , Cicatriz , Colágeno/farmacologia , Fator de Crescimento Transformador beta/farmacologia
19.
Drug Dev Ind Pharm ; 38(3): 365-71, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21854252

RESUMO

In order to facilitate the intracellular delivery of therapeutic agents, a new type of liposomes-propylene glycol liposomes (PGL) were prepared, and their cell translocation capability in vitro was examined. PGL was composed of hydrogenated egg yolk lecithin, cholesterol, Tween 80 and propylene glycol. With curcumin as a model drug, characterization of loaded PGL were measured including surface morphology, particle size, elasticity, encapsulation efficiency of curcumin and physical stability. Using curcumin-loaded conventional liposomes as the control, the cell uptake capacity of loaded PGL was evaluated by detection the concentration of curcumin in cytoplasm. Compared with conventional liposomes, PGL exhibited such advantages as high encapsulation efficiency (92.74% ± 3.44%), small particle size (182.4 ± 89.2 nm), high deformability (Elasticity index = 48.6) and high stability both at normal temperature (about 25°C) and low temperature at 4°C. From cell experiment in vitro, PGL exhibited the highest uptake of curcumin compared with that of conventional liposomes and free curcumin solution. Little toxic effect on cellular viability was observed by methyl tetrazolium assay. In conclusion, PGL might be developed as a promising intracellular delivery carrier for therapeutic agents.


Assuntos
Curcumina/química , Lipossomos/química , Veículos Farmacêuticos/química , Propilenoglicol/química , Animais , Disponibilidade Biológica , Células Cultivadas , Química Farmacêutica , Cricetinae , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Tamanho da Partícula
20.
Drug Dev Ind Pharm ; 38(9): 1090-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22188116

RESUMO

Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Veículos Farmacêuticos/química , Terapia por Ultrassom/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Transporte Biológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Doxorrubicina/administração & dosagem , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Lecitinas/química , Lipossomos , Masculino , Camundongos , Camundongos Nus , Microbolhas , Sonicação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA