Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurochem Res ; 48(1): 238-249, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36063295

RESUMO

Lead (Pb) is considered to be a major environmental pollutant and occupational health hazard worldwide which may lead to neuroinflammation. However, an effective treatment for Pb-induced neuroinflammation remains elusive. The aim of this study was to investigate the mechanisms of Pb-induced neuroinflammation, and the therapeutic effect of sodium para-aminosalicylic acid (PAS-Na, a non-steroidal anti-inflammatory drug) in rat cerebral cortex. The results indicated that Pb exposure induced pathological damage in cerebral cortex, accompanied by increased levels of inflammatory factors tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). Moreover, Pb decreased the expression of silencing information regulator 2 related enzyme 1 (SIRT1) and brain-derived neurotrophic factor (BDNF), and increased the levels of high mobile group box 1 (HMGB1) expression and p65 nuclear factor-κB (NF-κB) phosphorylation. PAS-Na treatment ameliorated Pb-induced histopathological changes in rat cerebral cortex. Moreover, PAS-Na reduced the Pb-induced increase of TNF-α and IL-1ß levels concomitant with a significant increase in SIRT1 and BDNF levels, and a decrease in HMGB1 and the phosphorylation of p65 NF-κB expression. Thus, PAS-Na may exert anti-inflammatory effects by mediating the SIRT1/HMGB1/NF-κB pathway and BDNF expression. In conclusion, in this novel study PAS-Na was shown to possess an anti-inflammatory effect on cortical neuroinflammation, establishing its efficacy as a potential treatment for Pb exposures.


Assuntos
Ácido Aminossalicílico , Proteína HMGB1 , Ratos , Animais , NF-kappa B/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Sódio , Sirtuína 1/metabolismo , Chumbo/toxicidade , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Anti-Inflamatórios
2.
Ecotoxicol Environ Saf ; 241: 113829, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068756

RESUMO

Lead (Pb) is a naturally occurring heavy metal, which can damage the brain and affect learning and memory. Sodium para-aminosalicylic acid (PAS-Na), a non-steroidal anti-inflammatory drug, can readily cross the blood-brain barrier. Our previous studies have found that PAS-Na alleviated Pb-induced hippocampal ultrastructural damage and neurodegeneration, but the mechanism has yet to be defined. Here, we investigated the molecular mechanisms that mediate Pb-induced apoptosis in hippocampal neurons, and the efficacy of PAS-Na in alleviating its effects. This work showed that juvenile developmental Pb exposure impaired rats cognitive ability by inducing apoptotic cell death in hippocampal neurons. Pb-induced neuronal apoptosis was accompanied by increased inositol 1,4,5-trisphosphate receptor (IP3R) expression and enhanced intracellular calcium [Ca2+]i levels, which resulted in increased phosphorylation of neuronal apoptosis signal-regulating kinase 1 (ASK1) and p38. Activation of ASK1 and p38 was blocked by IP3R inhibitor and a Ca2+ chelator. Importantly, PAS-Na treatment improved the Pb-induced effects on cognitive deficits in rats, concomitant with rescued neuronal apoptosis. In addition, PAS-Na reduced the expression of IP3R and the ensuing increase in intracellular Ca2+ and decreased the phosphorylation of ASK1 and p38 in Pb-exposed neurons. Taken together, this study demonstrates that the IP3R-Ca2+-ASK1-p38 signaling pathway mediates Pb-induced apoptosis in hippocampal neurons, and that PAS-Na, at a specific dose-range, ameliorates these changes. Collectively, this study sheds novel light on the cellular mechanisms that mediate PAS-Na efficacy, laying the groundwork for future research to examine the treatment potential of PAS-Na upon Pb poisoning.


Assuntos
Ácido Aminossalicílico , Ácido Aminossalicílico/farmacologia , Animais , Apoptose , Hipocampo , Chumbo/toxicidade , Ratos , Transdução de Sinais , Sódio
3.
Toxicol Lett ; 375: 48-58, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586703

RESUMO

Lead (Pb) is a developmental neurotoxin that can disrupt brain development and damage the brain regions responsible for executive function, behavioral regulation and fine motor control. Sodium para-aminosalicylic acid (PAS-Na) is a non-steroidal anti-inflammatory drug that can cross the blood-brain barrier. The purpose of this study was to examine the effects of juvenile rat Pb exposure on behavioral changes and brain inflammation, and the efficacy of PAS-Na in ameliorating these effects. The results showed that Pb exposure during the juvenile period (from weaning to adult period) delayed rats' growth development and impaired their motor learning. Pb exposure not only increased Pb concentrations in several brain regions (including hippocampus, striatum and substantia nigra), but also disrupted metal-homeostasis in the brain, as higher levels of iron (Fe) and calcium (Ca) were observed in the substantia nigra. Moreover, Pb activated the MAPK pathway and increased levels of inflammatory factors such as IL-1ß, TNF-α and IL-6 in the hippocampus, striatum and substantia nigra. Furthermore, Pb increased the levels of alpha-synuclein (α-syn) in these brain sites. PAS-Na improved the motor deficits and brain inflammation in the Pb-exposed rats. Moreover, the elevated Pb, Fe and Ca concentrations in the brain were significantly reduced by PAS-Na, which contains amino, carboxyl and hydroxyl functional groups, suggesting that it may act as a chelator of brain metals. In addition, PAS-Na inhibited the Pb-induced MAPK pathway activation and α-syn accumulation in the same brain regions. Taken together, our novel study suggest that PAS-Na shows efficacy in improving the Pb-induced behavioral changes in rats by inhibiting MAPK-dependent inflammatory pathways and reducing α-syn accumulation.


Assuntos
Ácido Aminossalicílico , Encefalite , Ratos , Animais , Ácido Aminossalicílico/farmacologia , Ácido Aminossalicílico/uso terapêutico , alfa-Sinucleína , Chumbo/toxicidade , Doenças Neuroinflamatórias , Sódio , Encéfalo , Encefalite/induzido quimicamente , Encefalite/tratamento farmacológico , Sistema de Sinalização das MAP Quinases
4.
Neurotox Res ; 41(1): 1-15, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36598679

RESUMO

Lead (Pb) is a common heavy metal contaminant in the environment, and it may perturb autophagy and cause neurodegeneration. Although sodium para-aminosalicylic (PAS-Na) has been shown to protect the brain from lead-induced toxicity, the mechanisms associated with its efficacy have yet to be fully understood. In this study, we evaluated the efficacy of PAS-Na in attenuating the neurotoxic effects of lead, as well as the specific mechanisms that mediate such protection. Lead exposure resulted in weight loss and injury to the liver and kidney, and PAS-Na had a protective effect against this damage. Both short-term and subchronic lead exposure impaired learning ability, and this effect was reversed by PAS-Na intervention. Lead exposure also perturbed autophagic processes through the modulation of autophagy-related factors. Short-term lead exposure downregulated LC3 and beclin1 and upregulated the expression of p62; subchronic lead exposure upregulated the expression of LC3, beclin1, and P62. It follows that PAS-Na had an antagonistic effect on the activation of the above autophagy-related factors. Overall, our novel findings suggest that PAS-Na can protect the rat cortex from lead-induced toxicity by regulating autophagic processes. (1) Short-term lead exposure inhibits autophagy, whereas subchronic lead exposure promotes autophagy. (2) PAS-NA ameliorated the abnormal process of lead-induced autophagy, which had a protective effect on the cerebral cortex.


Assuntos
Ácido Aminossalicílico , Autofagia , Córtex Cerebral , Animais , Ratos , Ácido Aminossalicílico/farmacologia , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Chumbo/toxicidade , Ratos Sprague-Dawley , Sódio , Córtex Cerebral/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia
5.
Biol Trace Elem Res ; 200(6): 2807-2815, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34398420

RESUMO

Lead (Pb) is a toxic heavy metal and environmental pollutant that adversely affects the nervous system. However, effective therapeutic drugs for Pb-induced neurotoxicity have yet to be developed. In the present study, we investigated the ameliorative effect of sodium para-aminosalicylic acid (PAS-Na) on Pb-induced neurotoxicity. Male Sprague-Dawley rats were treated with (CH3COO)2 Pb•4H2O (6 mg/kg) for 4 weeks, followed by 3 weeks of PAS-Na (100, 200, and 300 mg/kg). The results showed that subacute Pb exposure significantly decreased rats body-weight gains and increased liver coefficient, and impaired spatial learning and memory. HE staining showed that Pb damaged the structure of the hippocampus. Moreover, Pb activated the ERK1/2-p90RSK/ NF-κB pathway concomitant with increased inflammatory cytokine IL-1ß levels in rat hippocampus. PAS-Na reversed the Pb-induced increase in the liver coefficient as well as the learning and memory deficits. In addition, PAS-Na reduced the phosphorylation of ERK1/2, p90RSK and NF-κB p65, decreasing IL-1ß levels in hippocampus. Our findings indicated that PAS-Na showed efficacy in reversing Pb-induced rats cognitive deficits and triggered an anti-inflammatory response. Thus, PAS-Na may be a promising therapy for treating Pb-induced neurotoxicity.


Assuntos
Ácido Aminossalicílico , Ácido Aminossalicílico/farmacologia , Animais , Cognição , Chumbo/toxicidade , Sistema de Sinalização das MAP Quinases , Masculino , Manganês/toxicidade , NF-kappa B , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 90-kDa , Sódio , Aprendizagem Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA