Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(27): 8436-8444, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920089

RESUMO

Two-dimensional (2D) lead halide perovskites are excellent candidates for X-ray detection due to their high resistivity, high ion migration barrier, and large X-ray absorption coefficients. However, the high toxicity and long interlamellar distance of the 2D perovskites limit their wide application in high sensitivity X-ray detection. Herein, we demonstrate stable and toxicity-reduced 2D perovskite single crystals (SCs) realized by interlamellar-spacing engineering via a distortion self-balancing strategy. The engineered low-toxicity 2D SC detectors achieve high stability, large mobility-lifetime product, and therefore high-performance X-ray detection. Specifically, the detectors exhibit a record high sensitivity of 13488 µC Gy1- cm-2, a low detection limit of 8.23 nGy s-1, as well as a high spatial resolution of 8.56 lp mm-1 in X-ray imaging, all of which are far better than those of the high-toxicity 2D lead-based perovskite detectors. These advances provide a new technical solution for the low-cost fabrication of low-toxicity, scalable X-ray detectors.

2.
Small ; : e2405071, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221666

RESUMO

Design of hypotoxic lead-free perovskites, e.g. Bismuth(Bi)-based perovskites, is much beneficial for commercialization of perovskite X-ray detectors due to their strong radiation absorption. Nevertheless, the design principles governing the selection of A-site cations for achieving high-performance X-ray detectors remain elusive. Here, seven molecules (methylamine MA, amine NH3, dimethylbiguanide DGA, phenylethylamine PEA, 4-fluorophenethylamine p-FPEA, 1,3-propanediamine PDA, and 1,4-butanediamine BDA) and calculated their dipole moments and interaction strength with metal halide (BiI3) are selected. The first-principles calculations and related spectroscopy measurements confirm that organic molecules (DGA) with large dipole moments can have strong interactions with perovskite octahedron and improve the carrier transport between the organic and inorganic clusters. Consequently, zero-dimensional single crystal (SC) (DGA)BiI5∙H2O is synthesized. The (DGA)BiI5∙H2O SCs demonstrate an exceptional carrier mobility-lifetime product of 6.55 × 10-3 cm2 V-1, resulting in the high sensitivity of 5879.4 µCGyair -1cm-2, featuring a low detection limit (4.7 nGyair s-1) and remarkable X-ray irradiation stability even after 100 days of aging at a high electric field (100 V mm-1). Furthermore, the (DGA)BiI5∙H2O SCs for imaging, achieving a notable spatial resolution of 5.5 lp mm-1 are applied. This investigation establishes a pathway for systematically screening A-site cations to design low-dimensional SCs for high-performance X-ray detection.

3.
Small ; 17(6): e2006259, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33470525

RESUMO

Development of highly stabilized and reversible cathode materials has become a great challenge for sodium-ion batteries. O'3-type layered Mn-based oxides have deserved much attention as one of largely reversible-capacity cathodes featured by the resource-rich and low-toxic elements. However, the fragile slabs structure of typical layered oxides, low Mn-ion migration barriers, and Jahn-Teller distortion of Mn3+ have easily resulted in the severe degradation of cyclability and rate performances. Herein, a new queue-ordered superstructure is built up in the O'3-NaMn0.6 Al0.4 O2 cathode material. Through the light-metal Al substitution in O'3-NaMnO2 , the MnO6 and AlO6 octahedrons display the queue-ordered arrangements in the transition metal (TM) slabs. Interestingly, the presence of this superstructure can strengthen the layered structure, reduce the influence from Jahn-Teller effect, and suppress the TM-ions migrations during long-terms cycles. These characteristics results in O'3-NaMn0.6 Al0.4 O2 cathode deliver a high capacity of 160 mAh g-1 , an enhanced rate capability and the excellent cycling performance. This research strategy can provide the broaden insight for future electrode materials with high-performance sodium-ions storage.

4.
Adv Mater ; 36(24): e2310831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553988

RESUMO

0D Bi-based 329-type halide perovskite is demonstrated as a promising semiconductor for X-ray detection due to its strong X-ray absorption, superior stability, availability of large single crystals (SCs) and solution processibility at low temperature. However, its low mobility-lifetime product (µτ) limits its further improvement in detection sensitivity. Based on the first-principles calculations, this work designs a new 2D Bi-based 329-type halide perovskite using a mixed-halide-induced structural dimension regulation strategy. By using a continuous supply of a precursor solution, this work successfully grows inch-sized high-quality SCs. These SCs exhibit large µτ product, high resistivity, and low ion migration. The detectors fabricated using the SCs show X-ray detection sensitivity as high as 24,509 µC Gyair -1 cm-2, short response time of 315 µs, low detection limit of 4.3 nGy s-1, and superior stability. These properties are the best among all lead-free perovskite detectors and are comparable to those of the best lead-based perovskite detectors. The linear array detector assembled on the SCs for the first time also shows a high spatial resolution of 10.6 lp mm-1 during X-ray imaging. The high performance combined with superior stability of these new 329-type lead-free halide perovskite SCs is expected to promote a new generation of X-ray detection technologies.

5.
Adv Mater ; 36(3): e2305513, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37878999

RESUMO

Metal halide perovskite single crystals (MHP-SCs) are known for their facile fabrication into large sizes using inexpensive solution methods. Owing to their combination of large mobility-lifetime products and strong X-ray absorption, they are considered promising materials for efficient X-ray detection. However, they suffer from large dark currents and severe ion migration, which limit their sensitivity and stability in critical X-ray detection applications. Herein, a heterointerface design is proposed to reduce both the dark current and ion migration by forming a heterojunction. In addition, the carrier transport performance is significantly improved using heterointerface engineering by designing a gradient band structure in the SCs. The SC heterojunction detectors exhibit a high sensitivity of 3.98 × 105 µC Gyair -1 cm-2 with a low detection limit of 12.2 nGyair s-1 and a high spatial resolution of 10.2 lp mm-1 during imaging. These values are among the highest reported for state-of-the-art MHP X-ray detectors. Moreover, the detectors show excellent stability under continuous X-ray irradiation and maintainclear X-ray imaging after 240 d. This study provides novel insights into the design and fabrication of X-ray detectors with high detection efficiency and stability, which are beneficial for developing inexpensive, high-resolution X-ray imaging equipment.

6.
Adv Mater ; 35(18): e2211977, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36802105

RESUMO

Lead-free A3 Bi2 I9 -type perovskites are demonstrated as a class of promising semiconductors for high-performance X-ray detection due to their high bulk resistivity and strong X-ray absorption, as well as reduced ion migration. However, due to their long interlamellar distance along their c-axis, their limited carrier transport along the vertical direction is a bottleneck for their detection sensitivity. Herein, a new A-site cation of aminoguanidinium (AG) with all-NH2 terminals is designed to shorten the interlayer spacing by forming more and stronger NH···I hydrogen bonds. The prepared large AG3 Bi2 I9 single crystals (SCs) render shorter interlamellar distance for a larger mobility-lifetime product of 7.94 × 10-3  cm2  V-1 , which is three times higher than the value measured on the best MA3 Bi2 I9 SC (2.87 × 10-3  cm2  V-1 ). Therefore, the X-ray detectors fabricated on the AG3 Bi2 I9 SC exhibit high sensitivity of 5791 uC Gy-1  cm-2 , a low detection limit of 2.6 nGy s-1, and a short response time of 690 µs, all of which are far better than those of the state-of-the-art MA3 Bi2 I9 SC detectors. The combination of high sensitivity and high stability enables astonishingly high spatial resolution (8.7 lp mm-1 ) X-ray imaging. This work will facilitate the development of low-cost and high-performance lead-free X-ray detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA