Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3890, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890161

RESUMO

Cortical and subcortical structural alteration has been extensively reported in schizophrenia, including the unusual expansion of gray matter volumes (GMVs) of basal ganglia (BG), especially putamen. Previous genome-wide association studies pinpointed kinectin 1 gene (KTN1) as the most significant gene regulating the GMV of putamen. In this study, the role of KTN1 variants in risk and pathogenesis of schizophrenia was explored. A dense set of SNPs (n = 849) covering entire KTN1 was analyzed in three independent European- or African-American samples (n = 6704) and one mixed European and Asian Psychiatric Genomics Consortium sample (n = 56,418 cases vs. 78,818 controls), to identify replicable SNP-schizophrenia associations. The regulatory effects of schizophrenia-associated variants on the KTN1 mRNA expression in 16 cortical or subcortical regions in two European cohorts (n = 138 and 210, respectively), the total intracranial volume (ICV) in 46 European cohorts (n = 18,713), the GMVs of seven subcortical structures in 50 European cohorts (n = 38,258), and the surface areas (SA) and thickness (TH) of whole cortex and 34 cortical regions in 50 European cohorts (n = 33,992) and eight non-European cohorts (n = 2944) were carefully explored. We found that across entire KTN1, only 26 SNPs within the same block (r2 > 0.85) were associated with schizophrenia across ≥ 2 independent samples (7.5 × 10-5 ≤ p ≤ 0.048). The schizophrenia-risk alleles, which increased significantly risk for schizophrenia in Europeans (q < 0.05), were all minor alleles (f < 0.5), consistently increased (1) the KTN1 mRNA expression in 12 brain regions significantly (5.9 × 10-12 ≤ p ≤ 0.050; q < 0.05), (2) the ICV significantly (6.1 × 10-4 ≤ p ≤ 0.008; q < 0.05), (3) the SA of whole (9.6 × 10-3 ≤ p ≤ 0.047) and two regional cortices potentially (2.5 × 10-3 ≤ p ≤ 0.042; q > 0.05), and (4) the TH of eight regional cortices potentially (0.006 ≤ p ≤ 0.050; q > 0.05), and consistently decreased (1) the BG GMVs significantly (1.8 × 10-19 ≤ p ≤ 0.050; q < 0.05), especially putamen GMV (1.8 × 10-19 ≤ p ≤ 1.0 × 10-4; q < 0.05, (2) the SA of four regional cortices potentially (0.010 ≤ p ≤ 0.048), and (3) the TH of four regional cortices potentially (0.015 ≤ p ≤ 0.049) in Europeans. We concluded that we identified a significant, functional, and robust risk variant block covering entire KTN1 that might play a critical role in the risk and pathogenesis of schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/patologia , Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Proteínas de Membrana/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-34046650

RESUMO

Genome-wide association studies (GWASs) have reported numerous associations between risk variants and major psychiatric disorders (MPDs) including schizophrenia (SCZ), bipolar disorder (BPD), major depressive disorder (MDD) and others. We reviewed all of the published GWASs, and extracted the genome-wide significant (p<10-6) and replicated associations between risk SNPs and MPDs. We found the associations of 6 variants located in 6 genes, including L type voltage-gated calcium channel (LTCCs) subunit alpha1 C gene (CACNA1C), that were genome-wide significant (2.0×10 -8 ≤p≤1.0×10 -6 ) and replicated at single-point level across at least two GWASs. Among them, the associations between MPDs and rs1006737 within CACNA1C are most robust. Thus, as a next step, the expression of the replicated risk genes in human hippocampus was analyzed. We found CACNA1C had significant mRNA expression in human hippocampus in two independent cohorts. Finally, we tried to elucidate the roles of venlafaxine and ω-3 PUFAs in the mRNA expression regulation of the replicated risk genes in hippocampus. We used cDNA chip-based microarray profiling to explore the transcriptome-wide mRNA expression regulation by ω-3 PUFAs (0.72/kg/d) and venlafaxine (0.25/kg/d) treatment in chronic mild stress (CMS) rats. ω-3 PUFAs and venlafaxine treatment elicited significant CACNA1C up-regulation. We concluded that CACNA1C might confer the genetic vulnerability to the shared depressive symptoms across MPDs and CACNA1C might be the therapeutic target for depressive endophenotype as well.

3.
Front Neurosci ; 14: 651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655362

RESUMO

BACKGROUND: Selective loss of dopaminergic neurons and diminished putamen gray matter volume (GMV) represents a central feature of Parkinson's disease (PD). Recent studies have reported specific effects of kinectin 1 gene (KTN1) variants on the putamen GMV. OBJECTIVE: To examine the relationship of KTN1 variants, KTN1 mRNA expression in the putamen and substantia nigra pars compacta (SNc), putamen GMV, and PD. METHODS: We examined the associations between PD and a total of 1847 imputed KTN1 single nucleotide polymorphisms (SNPs) in one discovery sample [2,000 subjects with PD vs. 1,986 healthy controls (HC)], and confirmed the nominally significant associations (p < 0.05) in two replication samples (900 PD vs. 867 HC, and 940 PD vs. 801 HC, respectively). The regulatory effects of risk variants on the KTN1 mRNA expression in putamen and SNc and the putamen GMV were tested. We also quantified the expression levels of KTN1 mRNA in the putamen and/or SNc for comparison between PD and HC in five independent cohorts. RESULTS: Six replicable and two non-replicable KTN1-PD associations were identified (0.009 ≤ p ≤ 0.049). The major alleles of five SNPs, including rs12880292, rs8017172, rs17253792, rs945270, and rs4144657, significantly increased risk for PD (0.020 ≤ p ≤ 0.049) and putamen GMVs (19.08 ≤ ß ≤ 60.38; 2.82 ≤ Z ≤ 15.03; 5.0 × 10-51 ≤ p ≤ 0.018). The risk alleles of five SNPs, including rs8017172, rs17253792, rs945270, rs4144657, and rs1188184 also significantly increased the KTN1 mRNA expression in the putamen or SNc (0.021 ≤ p ≤ 0.046). The KTN1 mRNA was abundant in the putamen and/or SNc across five independent cohorts and differentially expressed in the SNc between PD and HC in one cohort (p = 0.047). CONCLUSION: There was a consistent, significant, replicable, and robust positive relationship among the KTN1 variants, PD risk, KTN1 mRNA expression in putamen, and putamen volumes, and a modest relation between PD risk and KTN1 mRNA expression in SNc, suggesting that KTN1 may play a functional role in the development of PD.

4.
Jacobs J Genet ; 4(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32149191

RESUMO

OBJECTIVE: Piwi-interacting RNAs (piRNAs) represent a molecular feature shared by all nonaging biological systems, including the germline and somatic cancer stem cells, which display an indefinite renewal capacity and lifespan-stable genomic integrity and are potentially immortal. Here, we tested the hypothesis that piRNA is a critical genetic determinant of aging in humans. METHODS: Expression of transcriptome-wide piRNAs (n=24k) was profiled in the human prefrontal cortex of 12 subjects (84.9±9.5, range 68-100, years of age) using microarray technology. We examined the correlation between these piRNAs' expression levels and age, adjusting for covariates including disease status. RESULTS: A total of 9,453 piRNAs were detected in brain. Including seven intergenic and three intronic piRNAs, ten piRNAs were significantly associated with age after correction for multiple testing (|r|=0.9; 1.9×10-5≤p≤9.9×10-5). CONCLUSION: We conclude that piRNAs might play a potential role in determining the years of survival of humans. The underlying mechanisms might involve the suppression of transposable elements (TEs) and expression regulation of aging-associated genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA