Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(3): E398-E406, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324260

RESUMO

Resveratrol, a natural polyphenol compound contained in numerous plants, has been proposed as a treatment for obesity-related disease processes such as insulin resistance. However, in humans there are conflicting results concerning the efficacy of resveratrol in improving insulin action; the purpose of the present study was to determine whether obesity status (lean, severely obese) affects the response to resveratrol in human skeletal muscle. Primary skeletal muscle cells were derived from biopsies obtained from age-matched lean and insulin-resistant women with severe obesity and incubated with resveratrol (1 µM) for 24 h. Insulin-stimulated glucose oxidation and incorporation into glycogen, insulin signal transduction, and energy-sensitive protein targets [AMP-activated protein kinase (AMPK), Sirt1, and PGC1α] were analyzed. Insulin-stimulated glycogen synthesis, glucose oxidation, and AMPK phosphorylation increased with resveratrol incubation compared with the nonresveratrol conditions (main treatment effect for resveratrol). Resveratrol further increased IRS1, Akt, and TBC1D4 insulin-stimulated phosphorylation and SIRT1 content in myotubes from lean women, but not in women with severe obesity. Resveratrol improves insulin action in primary human skeletal myotubes derived from lean women and women with severe obesity. In women with obesity, these improvements may be associated with enhanced AMPK phosphorylation with resveratrol treatment.NEW & NOTEWORTHY A physiologically relevant dose of resveratrol increases insulin-stimulated glucose oxidation and glycogen synthesis in myotubes from individuals with severe obesity. Furthermore, resveratrol improved insulin signal transduction in myotubes from lean individuals but not from individuals with obesity. Activation of AMPK plays a role in resveratrol-induced improvements in glucose metabolism in individuals with severe obesity.


Assuntos
Resistência à Insulina , Obesidade Mórbida , Humanos , Feminino , Obesidade Mórbida/metabolismo , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Obesidade/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Insulina/farmacologia , Insulina/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Glicogênio/metabolismo
2.
Am J Physiol Endocrinol Metab ; 325(3): E207-E213, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467021

RESUMO

Individuals with insulin resistance and obesity display higher skeletal muscle production of nonoxidized glycolytic products (i.e., lactate), and lower complete mitochondrial substrate oxidation to CO2. These findings have also been observed in individuals without obesity and are associated with an increased risk for metabolic disease. The purpose of this study was to determine if substrate preference is evident at the earliest stage of life (birth) and to provide a clinical blood marker (lactate) that could be indicative of a predisposition for metabolic disease later. We used radiolabeled tracers to assess substrate oxidation and insulin sensitivity of myogenically differentiated mesenchymal stem cells (MSCs), a proxy of infant skeletal muscle tissue, derived from umbilical cords of full-term infants. We found that greater production of nonoxidized glycolytic products (lactate, pyruvate, alanine) is directly proportional to lower substrate oxidation and insulin sensitivity in MSCs. In addition, we found an inverse relationship between the ratio of complete glucose oxidation to CO2 and infant blood lactate at 1 mo of age. Collectively, considering that higher lactate was associated with lower MSC glucose oxidation and has been shown to be implicated with metabolic disease, it may be an early indicator of infant skeletal muscle phenotype.NEW & NOTEWORTHY In infant myogenically differentiated mesenchymal stem cells, greater production of nonoxidized glycolytic products was directly proportional to lower substrate oxidation and insulin resistance. Glucose oxidation was inversely correlated with infant blood lactate. This suggests that innate differences in infant substrate oxidation exist at birth and could be associated with the development of metabolic disease later in life. Clinical assessment of infant blood lactate could be used as an early indicator of skeletal muscle phenotype.


Assuntos
Resistência à Insulina , Células-Tronco Mesenquimais , Humanos , Dióxido de Carbono , Glicólise/fisiologia , Glucose/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Insulina/metabolismo
3.
Am J Physiol Cell Physiol ; 319(6): C1011-C1019, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966127

RESUMO

The purpose of this study was to determine whether intramyocellular glucose partitioning was altered in primary human myotubes derived from severely obese women with type 2 diabetes. Human skeletal muscle cells were obtained from lean nondiabetic and severely obese Caucasian females with type 2 diabetes [body mass index (BMI): 23.6 ± 2.6 vs. 48.8 ± 1.9 kg/m2, fasting glucose: 86.9 ± 1.6 vs. 135.6 ± 12.0 mg/dL, n = 9/group]. 1-[14C]-Glucose metabolism (glycogen synthesis, glucose oxidation, and nonoxidized glycolysis) and 1- and 2-[14C]-pyruvate oxidation were examined in fully differentiated myotubes under basal and insulin-stimulated conditions. Tricarboxylic acid cycle intermediates were determined via targeted metabolomics. Myotubes derived from severely obese individuals with type 2 diabetes exhibited impaired insulin-mediated glucose partitioning with reduced rates of glycogen synthesis and glucose oxidation and increased rates of nonoxidized glycolytic products, when compared with myotubes derived from the nondiabetic individuals (P < 0.05). Both 1- and 2-[14C]-pyruvate oxidation rates were significantly blunted in myotubes from severely obese women with type 2 diabetes compared with myotubes from the nondiabetic controls. Lastly, concentrations of tricarboxylic acid cycle intermediates, namely, citrate (P < 0.05), cis-aconitic acid (P = 0.07), and α-ketoglutarate (P < 0.05), were lower in myotubes from severely obese women with type 2 diabetes. These data suggest that intramyocellular insulin-mediated glucose partitioning is intrinsically altered in the skeletal muscle of severely obese women with type 2 diabetes in a manner that favors the production of glycolytic end products. Defects in pyruvate dehydrogenase and tricarboxylic acid cycle may be responsible for this metabolic derangement associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Glicogênio/metabolismo , Glicólise/fisiologia , Humanos , Insulina/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Mulheres
4.
J Physiol ; 597(2): 449-466, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414190

RESUMO

KEY POINTS: Exercise/exercise training can enhance insulin sensitivity through adaptations in skeletal muscle, the primary site of insulin-mediated glucose disposal; however, in humans the range of improvement can vary substantially. The purpose of this study was to determine if obesity influences the magnitude of the exercise response in relation to improving insulin sensitivity in human skeletal muscle. Electrical pulse stimulation (EPS; 24 h) of primary human skeletal muscle myotubes improved insulin action in tissue from both lean and severely obese individuals, but responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and increased AMP accumulation and AMPK Thr172 phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects. ABSTRACT: Exercise/muscle contraction can enhance whole-body insulin sensitivity; however, in humans the range of improvements can vary substantially. In order, to determine if obesity influences the magnitude of the exercise response, this study compared the effects of electrical pulse stimulation (EPS)-induced contractile activity upon primary myotubes derived from lean and severely obese (BMI ≥ 40 kg/m2 ) women. Prior to muscle contraction, insulin action was compromised in myotubes from the severely obese as was evident from reduced insulin-stimulated glycogen synthesis, glucose oxidation, glucose uptake, insulin signal transduction (IRS1, Akt, TBC1D4), and insulin-stimulated GLUT4 translocation. EPS (24 h) increased AMP, IMP, AMPK Thr172 phosphorylation, PGC1α content, and insulin action in myotubes of both the lean and severely obese subjects. However, despite normalizing indices of insulin action to levels seen in the lean control (non-EPS) condition, responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and EPS increased AMP accumulation and AMPK Thr172 phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects.


Assuntos
Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Adulto , Células Cultivadas , Estimulação Elétrica , Exercício Físico/fisiologia , Feminino , Glucose/metabolismo , Humanos , Contração Muscular/fisiologia , Obesidade/fisiopatologia , Transdução de Sinais
5.
Int J Obes (Lond) ; 43(4): 895-905, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29892037

RESUMO

BACKGROUND/OBJECTIVE: The partitioning of glucose toward glycolytic end products rather than glucose oxidation and glycogen storage is evident in skeletal muscle with severe obesity and type 2 diabetes. The purpose of the present study was to determine the possible mechanism by which severe obesity alters insulin-mediated glucose partitioning in human skeletal muscle. SUBJECTS/METHODS: Primary human skeletal muscle cells (HSkMC) were isolated from lean (BMI = 23.6 ± 2.6 kg/m2, n = 9) and severely obese (BMI = 48.8 ± 1.9 kg/m2, n = 8) female subjects. Glucose oxidation, glycogen synthesis, non-oxidized glycolysis, pyruvate oxidation, and targeted TCA cycle metabolomics were examined in differentiated myotubes under basal and insulin-stimulated conditions. RESULTS: Myotubes derived from severely obese subjects exhibited attenuated response of glycogen synthesis (20.3%; 95% CI [4.7, 28.8]; P = 0.017) and glucose oxidation (5.6%; 95% CI [0.3, 8.6]; P = 0.046) with a concomitant greater increase (23.8%; 95% CI [5.7, 47.8]; P = 0.004) in non-oxidized glycolytic end products with insulin stimulation in comparison to the lean group (34.2% [24.9, 45.1]; 13.1% [8.6, 16.4], and 2.9% [-4.1, 12.2], respectively). These obesity-related alterations in glucose partitioning appeared to be linked with reduced TCA cycle flux, as 2-[14C]-pyruvate oxidation (358.4 pmol/mg protein/min [303.7, 432.9] vs. lean 439.2 pmol/mg protein/min [393.6, 463.1]; P = 0.013) along with several TCA cycle intermediates, were suppressed in the skeletal muscle of severely obese individuals. CONCLUSIONS: These data suggest that with severe obesity the partitioning of glucose toward anaerobic glycolysis in response to insulin is a resilient characteristic of human skeletal muscle. This altered glucose partitioning appeared to be due, at least in part, to a reduction in TCA cycle flux.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Glicogênio/metabolismo , Glicólise/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Obesidade Mórbida/metabolismo , Ácidos Tricarboxílicos/metabolismo , Adulto , Células Cultivadas/fisiologia , Feminino , Humanos , Masculino , Fibras Musculares Esqueléticas/patologia , Obesidade Mórbida/fisiopatologia , Cultura Primária de Células
6.
J Physiol ; 595(3): 677-693, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647415

RESUMO

KEY POINTS: Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. ABSTRACT: Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or ß-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.


Assuntos
Coenzima A Ligases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Coenzima A Ligases/genética , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Obesidade/metabolismo , Oxirredução , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Ratos Wistar
7.
Am J Physiol Endocrinol Metab ; 313(2): E195-E202, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28487439

RESUMO

Contractile activity (e.g., exercise) evokes numerous metabolic adaptations in human skeletal muscle, including enhanced insulin action and substrate oxidation. However, there is intersubject variation in the physiological responses to exercise, which may be linked with factors such as the degree of obesity. Roux-en-Y gastric bypass (RYGB) surgery reduces body mass in severely obese (body mass index ≥ 40 kg/m2) individuals; however, it is uncertain whether RYGB can potentiate responses to contractile activity in this potentially exercise-resistant population. To examine possible interactions between RYGB and contractile activity, muscle biopsies were obtained from severely obese patients before and after RYGB, differentiated into myotubes, and electrically stimulated, after which changes in insulin action and glucose oxidation were determined. Before RYGB, myotubes were unresponsive to electrical stimulation, as indicated by no changes in insulin-stimulated glycogen synthesis and basal glucose oxidation. However, myotubes from the same patients at 1 mo after RYGB increased insulin-stimulated glycogen synthesis and basal glucose oxidation when subjected to contraction. While unresponsive before surgery, contraction improved insulin-stimulated phosphorylation of AS160 (Thr642, Ser704) after RYGB. These data suggest that RYGB surgery may enhance the ability of skeletal muscle from severely obese individuals to respond to contractile activity.


Assuntos
Derivação Gástrica , Glucose/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Adulto , Metabolismo dos Carboidratos , Células Cultivadas , Feminino , Humanos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Cultura Primária de Células
8.
Am J Physiol Endocrinol Metab ; 312(4): E253-E263, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073778

RESUMO

Peroxisomes are indispensable organelles for lipid metabolism in humans, and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI = 24.0 ± 0.6 kg/m2; n = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (peroxins) and genes (PEXs) responsible for proliferation and functions were assessed by Western blotting and real-time qRT-PCR, respectively. [1-14C]palmitic acid and [1-14C]lignoceric acid (exclusive peroxisomal-specific substrate) were used to assess mitochondrial oxidation of peroxisomal-derived metabolites. After overexpression of PGC-1α, 1) peroxisomal membrane protein 70 kDa (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated (P < 0.05), 2) PGC-1α, PMP70, key PEXs, and peroxisomal ß-oxidation mRNA expression levels were significantly upregulated (P < 0.05), and 3) a concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed (P < 0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomal activity and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation, as observed in HSkM cells.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peroxissomos/metabolismo , Músculo Quadríceps/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/citologia , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Músculo Quadríceps/citologia
9.
J Biol Chem ; 290(29): 17985-17998, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26048986

RESUMO

Pregnancy promotes physiological adaptations throughout the body, mediated by the female sex hormones progesterone and estrogen. Changes in the metabolic properties of skeletal muscle enable the female body to cope with the physiological challenges of pregnancy and may also be linked to the development of insulin resistance. We conducted global microarray, proteomic, and metabolic analyses to study the role of the progesterone receptor and its transcriptional regulator, smoothelin-like protein 1 (SMTNL1) in the adaptation of skeletal muscle to pregnancy. We demonstrate that pregnancy promotes fiber-type changes from an oxidative to glycolytic isoform in skeletal muscle. This phenomenon is regulated through an interaction between SMTNL1 and progesterone receptor, which alters the expression of contractile and metabolic proteins. smtnl1(-/-) mice are metabolically less efficient and show impaired glucose tolerance. Pregnancy antagonizes these effects by inducing metabolic activity and increasing glucose tolerance. Our results suggest that SMTNL1 has a role in mediating the actions of steroid hormones to promote fiber switching in skeletal muscle during pregnancy. Our findings also bear on the management of gestational diabetes that develops as a complication of pregnancy in ~4% of women.


Assuntos
Deleção de Genes , Glicólise , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Fosfoproteínas/genética , Animais , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/ultraestrutura , Consumo de Oxigênio , Fosfoproteínas/metabolismo , Gravidez , Proteômica , Receptores de Progesterona/análise , Receptores de Progesterona/metabolismo
10.
Nat Prod Res ; : 1-8, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916532

RESUMO

Two new polycyclic polyprenylated acylphloroglucinols, hyperguanyes A and B (1-2) together with eight known compounds (3-10), were isolated from Hypericum perforatum L. Their structures were determined by using comprehensive spectroscopic techniques and quantum chemical calculation. The in vitro anti-cholinesterase activity of all compounds were studied. Among them, compounds 1-4, 8 and 9 exhibited anti-AchE and anti-BchE effects with IC50 ranging from 0.34 ± 0.04 to 15.68 ± 0.54 µM.

11.
Diabetes Metab Syndr ; 18(2): 102955, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310736

RESUMO

BACKGROUND AND AIM: Elevated fasting plasma lactate concentrations are evident in individuals with metabolic diseases. However, it has yet to be determined if these associations exist in a young, healthy population as a possible early marker for metabolic disease risk. The purpose of this study was to determine if indices of the metabolic syndrome are related to plasma lactate concentrations in this population. METHODS: Fifty (29 ± 7 yr) men (n = 19) and women (n = 31) classified as overweight (26.4 ± 1.8 kg/m2) participated in this observational study. Blood pressure and blood metabolites were measured after an overnight fast. Lactate was also measured before and after a three-day eucaloric high-fat (70 %) diet. The homeostatic model assessment for insulin resistance (HOMA-IR) was calculated as a measure of insulin resistance. Visceral adipose tissue mass was determined via dual X-ray absorptiometry. RESULTS: Triglycerides (r = 0.55, p=<0.0001), HOMA-IR (r = 0.53, p=<0.0001), and systolic and diastolic (both, r = 0.36, p = 0.01) blood pressures associated with fasting plasma lactate. No differences in visceral adipose tissue existed between the sexes (p = 0.41); however, the relationship between visceral adipose tissue and lactate existed only in females (r = 0.59, p = 0.02) but not in males (p = 0.53). Fasting lactate and HOMA-IR increased in males (p = 0.01 and p = 0.02, respectively), but not females, following a three-day high-fat diet. CONCLUSION: Indices of the metabolic syndrome associated with fasting plasma lactates in young relatively healthy individuals. Fasting lactate also increased in a sex-specific manner after a three-day high fat diet. Thus, lactate could become a clinical marker for metabolic disease risk.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Feminino , Humanos , Masculino , Biomarcadores , Jejum , Insulina , Ácido Láctico , Obesidade/complicações , Adulto Jovem , Adulto
12.
Physiol Rep ; 12(9): e16028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684442

RESUMO

Maternal exercise (ME) has been established as a useful non-pharmacological intervention to improve infant metabolic health; however, mechanistic insight behind these adaptations remains mostly confined to animal models. Infant mesenchymal stem cells (MSCs) give rise to infant tissues (e.g., skeletal muscle), and remain involved in mature tissue maintenance. Importantly, these cells maintain metabolic characteristics of an offspring donor and provide a model for the investigation of mechanisms behind infant metabolic health improvements. We used undifferentiated MSC to investigate if ME affects infant MSC mitochondrial function and insulin action, and if these adaptations are associated with lower infant adiposity. We found that infants from exercising mothers have improvements in MSC insulin signaling related to higher MSC respiration and fat oxidation, and expression and activation of energy-sensing and redox-sensitive proteins. Further, we found that infants exposed to exercise in utero were leaner at 1 month of age, with a significant inverse correlation between infant MSC respiration and infant adiposity at 6 months of age. These data suggest that infants from exercising mothers are relatively leaner, and this is associated with higher infant MSC mitochondrial respiration, fat use, and insulin action.


Assuntos
Composição Corporal , Exercício Físico , Insulina , Células-Tronco Mesenquimais , Mitocôndrias , Humanos , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Exercício Físico/fisiologia , Mitocôndrias/metabolismo , Insulina/metabolismo , Lactente , Gravidez , Masculino , Composição Corporal/fisiologia , Adulto , Recém-Nascido , Adiposidade/fisiologia
13.
J Clin Endocrinol Metab ; 108(7): e360-e370, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722208

RESUMO

CONTEXT: Maternal exercise positively influences pregnancy outcomes and metabolic health in progeny; however, data regarding the effects of different modes of prenatal exercise on offspring metabolic phenotype is lacking. OBJECTIVE: To elucidate the effects of different modes of maternal exercise on offspring umbilical cord derived mesenchymal stem cell (MSC) metabolism. DESIGN: Randomized controlled trial. SETTING: Clinical research facility. PATIENTS: Healthy females between 18 and 35 years of age and <16 weeks' gestation. INTERVENTION: Women were randomized to either 150 minutes of moderate intensity aerobic, resistance (RE), or combination exercise per week or to a non-exercising control. MAIN OUTCOME MEASURES: At delivery, MSCs were isolated from the umbilical cords. MSC glucose and fatty acid(s) metabolism was assessed using radiolabeled substrates. RESULTS: MSCs from offspring of all the exercising women demonstrated greater partitioning of oleate (P ≤ 0.05) and palmitate (P ≤ 0.05) toward complete oxidation relative to non-exercisers. MSCs from offspring of all exercising mothers also had lower rates of incomplete fatty acid oxidation (P ≤ 0.05), which was related to infant adiposity at 1 month of age. MSCs from all exercising groups exhibited higher insulin-stimulated glycogen synthesis rates (P ≤ 0.05), with RE having the largest effect (P ≤ 0.05). RE also had the greatest effect on MSC glucose oxidation rates (P ≤ 0.05) and partitioning toward complete oxidation (P ≤ 0.05). CONCLUSION: Our data demonstrates that maternal exercise enhances glucose and lipid metabolism of offspring MSCs. Improvements in MSC glucose metabolism seem to be the greatest with maternal RE. Clinical Trial: ClinicalTrials.gov Identifier: NCT03838146.


Assuntos
Glucose , Células-Tronco Mesenquimais , Gravidez , Humanos , Feminino , Glucose/metabolismo , Metabolismo dos Lipídeos , Obesidade/metabolismo , Ácidos Graxos/metabolismo
14.
J Appl Physiol (1985) ; 134(5): 1312-1320, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37055039

RESUMO

Type 2 diabetes is more prevalent in African American (AA) than Caucasian (C) adults. Furthermore, differential substrate utilization has been observed between AA and C adults, but data regarding metabolic differences between races at birth remains scarce. The purpose of the present study was to determine if there are racial differences in substrate metabolism evident at birth using a mesenchymal stem cells (MSCs) collected from offspring umbilical cords. Using radio-labeled tracers, MSCs from offspring of AA and C mothers were tested for glucose and fatty acid metabolism in the undifferentiated state and while undergoing myogenesis in vitro. Undifferentiated MSCs from AA exhibited greater partitioning of glucose toward nonoxidized glucose metabolites. In the myogenic state, AA displayed higher glucose oxidation, but similar fatty acid oxidation rates. In the presence of both glucose and palmitate, but not palmitate only, AA exhibit a higher rate of incomplete fatty acid oxidation evident by a greater production of acid-soluble metabolites. Myogenic differentiation of MSCs elicits an increase in glucose oxidation in AA, but not in C. Together, these data suggest that metabolic differences between AA and C races exist at birth.NEW & NOTEWORTHY African Americans, when compared with Caucasians, display greater insulin resistance in skeletal muscle. Differences in substrate utilization have been proposed as a factor for this health disparity; however, it remains unknown how early these differences manifest. Using infant umbilical cord-derived mesenchymal stem cells, we tested for in vitro glucose and fatty acid oxidation differences. Myogenically differentiated MSCs from African American offspring display higher rates of glucose oxidation and incomplete fatty acid oxidation.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Adulto , Humanos , Lactente , Recém-Nascido , Negro ou Afro-Americano , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , População Branca
15.
Obesity (Silver Spring) ; 31(9): 2349-2358, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551412

RESUMO

OBJECTIVE: In adults, skeletal muscle insulin sensitivity (SI ) and fatty acid oxidation (FAO) are linked with a predisposition to obesity. The current study aimed to determine the effects of maternal exercise on a model of infant skeletal muscle tissue (differentiated umbilical cord mesenchymal stem cells [MSCs]) SI and FAO and analyzed for associations with infant body composition. METHODS: Females <16 weeks' gestation were randomized to either 150 min/wk of moderate-intensity aerobic, resistance, or combination exercise or a nonexercising control. At delivery, MSCs were isolated from umbilical cords and myogenically differentiated, and SI and FAO were measured using radiolabeled substrates. Infant body fat percentage (BF%) and fat-free mass were calculated using standard equations at 1 and 6 months of age. RESULTS: MSCs from infants of all exercisers had significantly (p < 0.05) higher SI . MSC SI was inversely associated with infant BF% at 1 (r = -0.38, p < 0.05) and 6 (r = -0.65, p < 0.01) months of age. Infants with high SI had lower BF% at 1 (p = 0.06) and 6 (p < 0.01) months of age. MSCs in the high SI group had higher (p < 0.05) FAO. CONCLUSIONS: Exposure to any type of exercise in utero improves offspring SI and could reduce adiposity in early infancy.


Assuntos
Resistência à Insulina , Células-Tronco Mesenquimais , Feminino , Humanos , Lactente , Adiposidade , Composição Corporal , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo
16.
Chin J Integr Med ; 29(1): 3-9, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35915317

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of Cidan Capsule combined with adjuvant transarterial chemoembolization (TACE) in patients with a high risk of early recurrence after curative resection of hepatocellular carcinoma (HCC). METHODS: A multicenter, randomized controlled trial was conducted in patients with high-risk recurrence factors after curative resection of HCC from 9 medical centers between July 2014 and July 2018. Totally 249 patients were randomly assigned to TACE with or without Cidan Capsule administration groups by stratified block in a 1:1 ratio. Postoperative adjuvant TACE was given 4-5 weeks after hepatic resection in both groups. Additionally, 125 patients in the TACE plus Cidan group were administrated Cidan Capsule (0.27 g/capsule, 5 capsules every time, 4 times a day) for 6 months with a 24-month follow-up. Primary endpoints included disease-free survival (DFS) and tumor recurrence rate (TRR). Secondary endpoint was overall survival (OS). Any drug-related adverse events (AEs) were observed and recorded. RESULTS: As the data cutoff in July 9th, 2018, the median DFS was not reached in the TACE plus Cidan group and 234.0 days in the TACE group (hazard ratio, 0.420, 95% confidence interval, 0.290-0.608; P<0.01). The 1- and 2-year TRR in the TACE plus Cidan and TACE groups were 31.5%, 37.1%, and 60.8%, 63.4%, respectively (P<0.01). Median OS was not reached in both groups. The 1- and 2-year OS rates in TACE plus Cidan and TACE groups were 98.4%, 98.4%, and 89.5%, 87.9%, respectively (P<0.05). The most common grade 3-4 AEs included fatigue, abdominal pain, lumbar pain, and nausea. One serious AE was reported in 1 patient in the TACE plus Cidan group, the death was due to retroperitoneal mass hemorrhage and hemorrhagic shock, and was not related to study drug. CONCLUSIONS: Cidan Capsule in combination with TACE can reduce the incidence of early recurrence in HCC patients at high-risk of recurrence after radical hepatectomy and may be an appropriate option in postoperative anti-recurrence treatment. (Registration No. NCT02253511).


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Quimioembolização Terapêutica/efeitos adversos , Hepatectomia , Intervalo Livre de Doença , Resultado do Tratamento , Estudos Retrospectivos
17.
Am J Physiol Endocrinol Metab ; 303(12): E1440-5, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23047988

RESUMO

Obese individuals typically exhibit a reduced capacity for metabolic flexibility by failing to increase fatty acid oxidation (FAO) upon the imposition of a high-fat diet (HFD). Exercise training increases FAO in the skeletal muscle of obese individuals, but whether this intervention can restore metabolic flexibility is unclear. The purpose of this study was to compare FAO in the skeletal muscle of lean and obese subjects in response to a HFD before and after exercise training. Twelve lean (means ± SE) (age 21.8 ± 1.1 yr, BMI 22.6 ± 0.7 kg/m²) and 10 obese men (age 22.4 ± 0.8 yr, BMI 33.7 ± 0.7 kg/m²) consumed a eucaloric HFD (70% of energy from fat) for 3 days. After a washout period, 10 consecutive days of aerobic exercise (1 h/day, 70% V(O2(peak))) were performed, with the HFD repeated during days 8-10. FAO and indices of mitochondrial content were determined from muscle biopsies. In response to the HFD, lean subjects increased complete FAO (27.3 ± 7.4%, P = 0.03) in contrast to no change in their obese counterparts (1.0 ± 7.9%). After 7 days of exercise, citrate synthase activity and FAO increased (P < 0.05) regardless of body habitus; addition of the HFD elicited no further increase in FAO. These data indicate that obese, in contrast to lean, individuals do not increase FAO in skeletal muscle in response to a HFD. The increase in FAO with exercise training, however, enables the skeletal muscle of obese individuals to respond similarly to their lean counterparts when confronted with short-term excursion in dietary lipid.


Assuntos
Dieta Hiperlipídica , Exercício Físico , Ácidos Graxos/metabolismo , Renovação Mitocondrial , Obesidade/metabolismo , Obesidade/terapia , Músculo Quadríceps/metabolismo , Adolescente , Adulto , Ciclismo , Biópsia , Índice de Massa Corporal , Citrato (si)-Sintase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Lipólise , Masculino , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/metabolismo , Obesidade/patologia , Oxirredução , Educação de Pacientes como Assunto , Resistência Física , Músculo Quadríceps/enzimologia , Músculo Quadríceps/patologia , Adulto Jovem
18.
Diabetes ; 71(8): 1649-1659, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35621990

RESUMO

Preclinical rodent and nonhuman primate models investigating maternal obesity have highlighted the importance of the intrauterine environment in the development of insulin resistance in offspring; however, it remains unclear if these findings can be translated to humans. To investigate possible intrauterine effects in humans, we isolated mesenchymal stem cells (MSCs) from the umbilical cord tissue of infants born to mothers of normal weight or mothers with obesity. Insulin-stimulated glycogen storage was determined in MSCs undergoing myogenesis in vitro. There was no difference in insulin action based on maternal obesity. However, maternal free fatty acid (FFA) concentration, cord leptin, and intracellular triglyceride content were positively correlated with insulin action. Furthermore, MSCs from offspring born to mothers with elevated FFAs displayed elevated activation of the mTOR signaling pathway. Taken together, these data suggest that infants born to mothers with elevated lipid availability have greater insulin action in MSCs, which may indicate upregulation of growth and lipid storage pathways during periods of maternal overnutrition.


Assuntos
Células-Tronco Mesenquimais , Obesidade Materna , Animais , Ácidos Graxos não Esterificados/metabolismo , Feminino , Humanos , Lactente , Insulina/metabolismo , Insulina Regular Humana , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Gravidez
19.
J Clin Endocrinol Metab ; 107(8): e3353-e3365, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35511592

RESUMO

CONTEXT: Recent preclinical data suggest exercise during pregnancy can improve the metabolic phenotype not only of the mother, but of the developing offspring as well. However, investigations in human offspring are lacking. OBJECTIVE: To characterize the effect of maternal aerobic exercise on the metabolic phenotype of the offspring's mesenchymal stem cells (MSCs). DESIGN: Randomized controlled trial. SETTING: Clinical research facility. PATIENTS: Healthy female adults between 18 and 35 years of age and ≤ 16 weeks' gestation. INTERVENTION: Mothers were randomized into 1 of 2 groups: aerobic exercise (AE, n = 10) or nonexercise control (CTRL, n = 10). The AE group completed 150 minutes of weekly moderate-intensity exercise, according to American College of Sports Medicine guidelines, during pregnancy, whereas controls attended stretching sessions. MAIN OUTCOME MEASURES: Following delivery, MSCs were isolated from the umbilical cord of the offspring and metabolic tracer and immunoblotting experiments were completed in the undifferentiated (D0) or myogenically differentiated (D21) state. RESULTS: AE-MSCs at D0 had an elevated fold-change over basal in insulin-stimulated glycogen synthesis and reduced nonoxidized glucose metabolite (NOGM) production (P ≤ 0.05). At D21, AE-MSCs had a significant elevation in glucose partitioning toward oxidation (oxidation/NOGM ratio) compared with CTRL (P ≤ 0.05). Immunoblot analysis revealed elevated complex I expression in the AE-MSCs at D21 (P ≤ 0.05). Basal and palmitate-stimulated lipid metabolism was similar between groups at D0 and D21. CONCLUSIONS: These data provide evidence of a programmed metabolic phenotype in human offspring with maternal AE during pregnancy.


Assuntos
Glucose , Metabolismo dos Lipídeos , Adulto , Exercício Físico , Feminino , Humanos , Insulina , Gravidez , Células-Tronco
20.
Liver Cancer ; 11(4): 315-328, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35978596

RESUMO

Portal vein tumor thrombus (PVTT) is very common and it plays a major role in the prognosis and clinical staging of hepatocellular carcinoma (HCC). We have published the first version of the guideline in 2016 and revised in 2018. Over the past several years, many new evidences for the treatment of PVTT become available, especially for the advent of new targeted drugs and immune checkpoint inhibitors which have further improved the prognosis of PVTT. So, the Chinese Association of Liver Cancer and Chinese Medical Doctor Association revised the 2018 version of the guideline to adapt to the development of PVTT treatment. Future treatment strategies for HCC with PVTT in China would depend on new evidences from more future clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA