Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Magn Reson Imaging ; 55(1): 100-110, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160114

RESUMO

BACKGROUND: Multiparametric MRI (mpMRI) is commonly recommended as a triage test prior to any prostate biopsy. However, there exists limited consensus on which patients with a negative prostate mpMRI could avoid prostate biopsy. PURPOSE: To identify which patient could safely avoid prostate biopsy when the prostate mpMRI is negative, via a radiomics-based machine learning approach. STUDY TYPE: Retrospective. SUBJECTS: Three hundred thirty patients with negative prostate 3T mpMRI between January 2016 and December 2018 were included. FIELD STRENGTH/SEQUENCE: A 3.0 T/T2-weighted turbo spin echo (TSE) imaging (T2 WI) and diffusion-weighted imaging (DWI). ASSESSMENT: The integrative machine learning (iML) model was trained to predict negative prostate biopsy results, utilizing both radiomics and clinical features. The final study cohort comprised 330 consecutive patients with negative mpMRI (PI-RADS < 3) who underwent systematic transrectal ultrasound-guided (TRUS) or MR-ultrasound fusion (MRUS) biopsy within 6 months. A secondary analysis of biopsy naïve subcohort (n = 227) was also conducted. STATISTICAL TESTS: The Mann-Whitney U test and Chi-Squared test were utilized to evaluate the significance of difference of clinical features between prostate biopsy positive and negative groups. The model performance was validated using leave-one-out cross-validation (LOOCV) and measured by AUC, sensitivity, specificity, and negative predictive value (NPV). RESULTS: Overall, 306/330 (NPV 92.7%) of the final study cohort patients had negative biopsies, and 207/227 (NPV 91.2%) of the biopsy naïve subcohort patients had negative biopsies. Our iML model achieved NPVs of 98.3% and 98.0% for the study cohort and subcohort, respectively, superior to prostate-specific antigen density (PSAD)-based risk assessment with NPVs of 94.9% and 93.9%, respectively. DATA CONCLUSION: The proposed iML model achieved high performance in predicting negative prostate biopsy results for patients with negative mpMRI. With improved NPVs, the proposed model can be used to stratify patients who in whom we might obviate biopsies, thus reducing the number of unnecessary biopsies. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Biópsia , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Estudos Retrospectivos
2.
Eur Radiol ; 32(8): 5688-5699, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35238971

RESUMO

OBJECTIVE: To identify which patient with prostate cancer (PCa) could safely avoid extended pelvic lymph node dissection (ePLND) by predicting lymph node invasion (LNI), via a radiomics-based machine learning approach. METHODS: An integrative radiomics model (IRM) was proposed to predict LNI, confirmed by the histopathologic examination, integrating radiomics features, extracted from prostatic index lesion regions on MRI images, and clinical features via SVM. The study cohort comprised 244 PCa patients with MRI and followed by radical prostatectomy (RP) and ePLND within 6 months between 2010 and 2019. The proposed IRM was trained in training/validation set and evaluated in an internal independent testing set. The model's performance was measured by area under the curve (AUC), sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). AUCs were compared via Delong test with 95% confidence interval (CI), and the rest measurements were compared via chi-squared test or Fisher's exact test. RESULTS: Overall, 17 (10.6%) and 14 (16.7%) patients with LNI were included in training/validation set and testing set, respectively. Shape and first-order radiomics features showed usefulness in building the IRM. The proposed IRM achieved an AUC of 0.915 (95% CI: 0.846-0.984) in the testing set, superior to pre-existing nomograms whose AUCs were from 0.698 to 0.724 (p < 0.05). CONCLUSION: The proposed IRM could be potentially feasible to predict the risk of having LNI for patients with PCa. With the improved predictability, it could be utilized to assess which patients with PCa could safely avoid ePLND, thus reduce the number of unnecessary ePLND. KEY POINTS: • The combination of MRI-based radiomics features with clinical information improved the prediction of lymph node invasion, compared with the model using only radiomics features or clinical features. • With improved prediction performance on predicting lymph node invasion, the number of extended pelvic lymph node dissection (ePLND) could be reduced by the proposed integrative radiomics model (IRM), compared with the existing nomograms.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Humanos , Excisão de Linfonodo/métodos , Linfonodos/patologia , Metástase Linfática/patologia , Masculino , Prostatectomia/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
3.
Sci Rep ; 14(1): 5740, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459100

RESUMO

Multi-parametric MRI (mpMRI) is widely used for prostate cancer (PCa) diagnosis. Deep learning models show good performance in detecting PCa on mpMRI, but domain-specific PCa-related anatomical information is sometimes overlooked and not fully explored even by state-of-the-art deep learning models, causing potential suboptimal performances in PCa detection. Symmetric-related anatomical information is commonly used when distinguishing PCa lesions from other visually similar but benign prostate tissue. In addition, different combinations of mpMRI findings are used for evaluating the aggressiveness of PCa for abnormal findings allocated in different prostate zones. In this study, we investigate these domain-specific anatomical properties in PCa diagnosis and how we can adopt them into the deep learning framework to improve the model's detection performance. We propose an anatomical-aware PCa detection Network (AtPCa-Net) for PCa detection on mpMRI. Experiments show that the AtPCa-Net can better utilize the anatomical-related information, and the proposed anatomical-aware designs help improve the overall model performance on both PCa detection and patient-level classification.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética , Biópsia Guiada por Imagem
4.
Comput Biol Med ; 171: 108125, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340439

RESUMO

BACKGROUND: The accurate assessment of T4 stage of pancreatic ductal adenocarcinoma (PDAC) has consistently presented a considerable difficulty for radiologists. This study aimed to develop and validate an automated artificial intelligence (AI) pipeline for the prediction of T4 stage of PDAC using contrast-enhanced CT imaging. METHODS: The data were obtained retrospectively from consecutive patients with surgically resected and pathologically proved PDAC at two institutions between July 2017 and June 2022. Initially, a deep learning (DL) model was developed to segment PDAC. Subsequently, radiomics features were extracted from the automatically segmented region of interest (ROI), which encompassed both the tumor region and a 3 mm surrounding area, to construct a predictive model for determining T4 stage of PDAC. The assessment of the models' performance involved the calculation of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. RESULTS: The study encompassed a cohort of 509 PDAC patients, with a median age of 62 years (interquartile range: 55-67). The proportion of patients in T4 stage within the model was 16.9%. The model achieved an AUC of 0.849 (95% CI: 0.753-0.940), a sensitivity of 0.875, and a specificity of 0.728 in predicting T4 stage of PDAC. The performance of the model was determined to be comparable to that of two experienced abdominal radiologists (AUCs: 0.849 vs. 0.834 and 0.857). CONCLUSION: The automated AI pipeline utilizing tumor and peritumor-related radiomics features demonstrated comparable performance to that of senior abdominal radiologists in predicting T4 stage of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Pessoa de Meia-Idade , Inteligência Artificial , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia
5.
Front Psychiatry ; 14: 1125411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215678

RESUMO

Introduction: This study aimed to explore potential risk factors for mental health concerns, and the prediction model for mental health concerns in Chinese soldiers was constructed through combined eligible risk factors. Methods: This cross-sectional study was performed on soldiers under direct command from Gansu, Sichuan, and Chongqing in China, and the soldiers were selected by cluster convenient sampling from 16 October 2018 to 10 December 2018. The Symptom Checklist-90 (SCL-90) and three questionnaires (Military Mental Health Status Questionnaire, Military Mental Health Ability Questionnaire, and Mental Quality Questionnaire for Army Men) were administered, including demographics, military careers, and 18 factors. Results: Of 1,430 Chinese soldiers, 162 soldiers presented mental disorders, with a prevalence of 11.33%. A total of five risk factors were identified, including serving place (Sichuan vs. Gansu: OR, 1.846, 95% CI: 1.028-3.315, P = 0.038; Chongqing vs. Gansu: OR, 3.129, 95% CI, 1.669-5.869, P = 0.003), psychosis (OR, 1.491, 95% CI, 1.152-1.928, P = 0.002), depression (OR, 1.482, 95% CI, 1.349-1.629, P < 0.001), sleep problems (OR, 1.235, 95% CI, 1.162-1.311, P < 0.001), and frustration (OR, 1.050, 95% CI, 1.015-1.087, P = 0.005). The area under the ROC curve by combining these factors was 0.930 (95% CI: 0.907-0.952) for predicting mental disorders in Chinese soldiers. Conclusion: The findings of this study demonstrate that mental disorders and onset in Chinese soldiers can be predicted on the basis of these three questionnaires, and the predictive value of the combined model was high.

6.
IEEE Trans Med Imaging ; 42(1): 291-303, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194719

RESUMO

Prostate cancer is the second leading cause of cancer death among men in the United States. The diagnosis of prostate MRI often relies on accurate prostate zonal segmentation. However, state-of-the-art automatic segmentation methods often fail to produce well-contained volumetric segmentation of the prostate zones since certain slices of prostate MRI, such as base and apex slices, are harder to segment than other slices. This difficulty can be overcome by leveraging important multi-scale image-based information from adjacent slices, but current methods do not fully learn and exploit such cross-slice information. In this paper, we propose a novel cross-slice attention mechanism, which we use in a Transformer module to systematically learn cross-slice information at multiple scales. The module can be utilized in any existing deep-learning-based segmentation framework with skip connections. Experiments show that our cross-slice attention is able to capture cross-slice information significant for prostate zonal segmentation in order to improve the performance of current state-of-the-art methods. Cross-slice attention improves segmentation accuracy in the peripheral zones, such that segmentation results are consistent across all the prostate slices (apex, mid-gland, and base). The code for the proposed model is available at https://bit.ly/CAT-Net.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Próstata/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Pelve
7.
Bioengineering (Basel) ; 10(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38002382

RESUMO

Conditional image generation plays a vital role in medical image analysis as it is effective in tasks such as super-resolution, denoising, and inpainting, among others. Diffusion models have been shown to perform at a state-of-the-art level in natural image generation, but they have not been thoroughly studied in medical image generation with specific conditions. Moreover, current medical image generation models have their own problems, limiting their usage in various medical image generation tasks. In this paper, we introduce the use of conditional Denoising Diffusion Probabilistic Models (cDDPMs) for medical image generation, which achieve state-of-the-art performance on several medical image generation tasks.

8.
Proc IEEE Int Symp Biomed Imaging ; 2021: 877-881, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35082974

RESUMO

Multi-parametric MRI (mpMRI) is a powerful non-invasive tool for diagnosing prostate cancer (PCa) and is widely recommended to be performed before prostate biopsies. Prostate Imaging Reporting and Data System version (PI-RADS) is used to interpret mpMRI. However, when the pre-biopsy mpMRI is negative, PI-RADS 1 or 2, there exists no consensus on which patients should undergo prostate biopsies. Recently, radiomics has shown great abilities in quantitative imaging analysis with outstanding performance on computer-aid diagnosis tasks. We proposed an integrative radiomics-based approach to predict the prostate biopsy results when pre-biopsy mpMRI is negative. Specifically, the proposed approach combined radiomics features and clinical features with machine learning to stratify positive and negative biopsy groups among negative mpMRI patients. We retrospectively reviewed all clinical prostate MRIs and identified 330 negative mpMRI scans, followed by biopsy results. Our proposed model was trained and validated with 10-fold cross-validation and reached the negative predicted value (NPV) of 0.99, the sensitivity of 0.88, and the specificity of 0.63 in receiver operating characteristic (ROC) analysis. Compared with results from existing methods, ours achieved 11.2% higher NPV and 87.2% higher sensitivity with a cost of 23.2% less specificity.

9.
Front Oncol ; 11: 801876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993152

RESUMO

Whole-prostate gland (WPG) segmentation plays a significant role in prostate volume measurement, treatment, and biopsy planning. This study evaluated a previously developed automatic WPG segmentation, deep attentive neural network (DANN), on a large, continuous patient cohort to test its feasibility in a clinical setting. With IRB approval and HIPAA compliance, the study cohort included 3,698 3T MRI scans acquired between 2016 and 2020. In total, 335 MRI scans were used to train the model, and 3,210 and 100 were used to conduct the qualitative and quantitative evaluation of the model. In addition, the DANN-enabled prostate volume estimation was evaluated by using 50 MRI scans in comparison with manual prostate volume estimation. For qualitative evaluation, visual grading was used to evaluate the performance of WPG segmentation by two abdominal radiologists, and DANN demonstrated either acceptable or excellent performance in over 96% of the testing cohort on the WPG or each prostate sub-portion (apex, midgland, or base). Two radiologists reached a substantial agreement on WPG and midgland segmentation (κ = 0.75 and 0.63) and moderate agreement on apex and base segmentation (κ = 0.56 and 0.60). For quantitative evaluation, DANN demonstrated a dice similarity coefficient of 0.93 ± 0.02, significantly higher than other baseline methods, such as DeepLab v3+ and UNet (both p values < 0.05). For the volume measurement, 96% of the evaluation cohort achieved differences between the DANN-enabled and manual volume measurement within 95% limits of agreement. In conclusion, the study showed that the DANN achieved sufficient and consistent WPG segmentation on a large, continuous study cohort, demonstrating its great potential to serve as a tool to measure prostate volume.

10.
Diagnostics (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34679484

RESUMO

The current standardized scheme for interpreting MRI requires a high level of expertise and exhibits a significant degree of inter-reader and intra-reader variability. An automated prostate cancer (PCa) classification can improve the ability of MRI to assess the spectrum of PCa. The purpose of the study was to evaluate the performance of a texture-based deep learning model (Textured-DL) for differentiating between clinically significant PCa (csPCa) and non-csPCa and to compare the Textured-DL with Prostate Imaging Reporting and Data System (PI-RADS)-based classification (PI-RADS-CLA), where a threshold of PI-RADS ≥ 4, representing highly suspicious lesions for csPCa, was applied. The study cohort included 402 patients (60% (n = 239) of patients for training, 10% (n = 42) for validation, and 30% (n = 121) for testing) with 3T multiparametric MRI matched with whole-mount histopathology after radical prostatectomy. For a given suspicious prostate lesion, the volumetric patches of T2-Weighted MRI and apparent diffusion coefficient images were cropped and used as the input to Textured-DL, consisting of a 3D gray-level co-occurrence matrix extractor and a CNN. PI-RADS-CLA by an expert reader served as a baseline to compare classification performance with Textured-DL in differentiating csPCa from non-csPCa. Sensitivity and specificity comparisons were performed using Mcnemar's test. Bootstrapping with 1000 samples was performed to estimate the 95% confidence interval (CI) for AUC. CIs of sensitivity and specificity were calculated by the Wald method. The Textured-DL model achieved an AUC of 0.85 (CI [0.79, 0.91]), which was significantly higher than the PI-RADS-CLA (AUC of 0.73 (CI [0.65, 0.80]); p < 0.05) for PCa classification, and the specificity was significantly different between Textured-DL and PI-RADS-CLA (0.70 (CI [0.59, 0.82]) vs. 0.47 (CI [0.35, 0.59]); p < 0.05). In sub-analyses, Textured-DL demonstrated significantly higher specificities in the peripheral zone (PZ) and solitary tumor lesions compared to the PI-RADS-CLA (0.78 (CI [0.66, 0.90]) vs. 0.42 (CI [0.28, 0.57]); 0.75 (CI [0.54, 0.96]) vs. 0.38 [0.14, 0.61]; all p values < 0.05). Moreover, Textured-DL demonstrated a high negative predictive value of 92% while maintaining a high positive predictive value of 58% among the lesions with a PI-RADS score of 3. In conclusion, the Textured-DL model was superior to the PI-RADS-CLA in the classification of PCa. In addition, Textured-DL demonstrated superior performance in the specificities for the peripheral zone and solitary tumors compared with PI-RADS-based risk assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA