Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Nanobiotechnology ; 20(1): 55, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093073

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) biofilm-associated bacterial infection is the primary cause of nosocomial infection and has long been an ongoing threat to public health. MRSA biofilms are often resistant to multiple antimicrobial strategies, mainly due to the existence of a compact protective barrier; thus, protecting themselves from the innate immune system and antibiotic treatment via limited drug penetration. RESULTS: A hierarchically structured hydrogen sulfide (H2S)-releasing nano-disinfectant was presented, which was composed of a zinc sulfide (ZnS) core as a H2S generator and indocyanine green (ICG) as a photosensitizer. This nano-disinfectant (ICG-ZnS NPs) sensitively responded to the biofilm microenvironment and demonstrated efficient eradication of MRSA biofilms via a synergistic effect of Zn2+, gas molecule-mediated therapy, and hyperthermia. Physically boosted by released H2S and a near-infrared spectroscopy-induced hyperthermia effect, ICG-ZnS NPs destroyed the compactness of MRSA biofilms showing remarkable deep-penetration capability. Moreover, on-site generation of H2S gas adequately ameliorated excessive inflammation, suppressed secretion of inflammatory cytokines, and expedited angiogenesis, therefore markedly accelerating the in vivo healing process of cutaneous wounds infected with MRSA biofilms. CONCLUSION: ICG-ZnS NPs combined with NIR laser irradiation exhibited significant anti-biofilm activity in MRSA biofilms, can accelerate the healing process through deep-penetration and anti-inflammatory effectuation. The proposed strategy has great potential as an alternative to antibiotic treatment when combating multidrug-resistant bacterial biofilms.


Assuntos
Desinfetantes , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Biofilmes , Desinfetantes/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Infecção dos Ferimentos/tratamento farmacológico
2.
Biochem Biophys Res Commun ; 551: 14-20, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33714754

RESUMO

The blood-brain barrier (BBB) is the most critical obstacle in the treatment of central nervous system disorders, such as glioma, the most typical type of brain tumor. To overcome the BBB and enhance drug-penetration abilities, we used angiopep-2-modified liposomes to deliver arsenic trioxide (ATO) across the BBB, targeting the glioma. Angiopep-2-modified calcium arsenite-loaded liposomes (A2-PEG-LP@CaAs), with uniformly distributed hydrodynamic diameter (96.75 ± 0.57 nm), were prepared using the acetate gradient method with high drug-loading capacity (7.13 ± 0.72%) and entrapment efficiency (54.30 ± 9.81%). In the acid tumor microenvironment, arsenic was responsively released, thereby exerting an anti-glioma effect. The anti-glioma effect of A2-PEG-LP@CaAs was investigated both in vitro and in vivo. As a result, A2-PEG-LP@CaAs exhibited a potent, targeted anti-glioma effect mediated by the lipoprotein receptor-related (LRP) receptor, which is overexpressed in both the BBB and glioma. Therefore, A2-PEG-LP@CaAs could dramatically promote the anti-glioma effect of ATO, as a promising strategy for glioma therapy.


Assuntos
Arsenitos/química , Cálcio/química , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Lipossomos/química , Lipossomos/farmacocinética , Peptídeos/química , Animais , Trióxido de Arsênio/química , Trióxido de Arsênio/farmacocinética , Arsenitos/farmacocinética , Barreira Hematoencefálica/metabolismo , Cálcio/farmacocinética , Ciclo Celular , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Peptídeos/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biochem Biophys Res Commun ; 534: 902-907, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33162028

RESUMO

Glioma is the most typical malignant brain tumor, and the chemotherapy to glioma is limited by poor permeability for crossing blood-brain-barrier (BBB) and insufficient availability. In this study, angiopep-2 modified lipid-coated mesoporous silica nanoparticle loading paclitaxel (ANG-LP-MSN-PTX) was developed to transport paclitaxel (PTX) across BBB mediated by low-density lipoprotein receptor-related protein 1 (LRP1), which is over-expressed on both BBB and glioma cells. ANG-LP-MSN-PTX was characterized with homogeneous hydrodynamic size, high drug loading capacity (11.08%) and a sustained release. In vitro experiments demonstrated that the targeting efficiency of PTX was enhanced by ANG-LP-MSN-PTX with higher penetration ability (10.74%) and causing more C6 cell apoptosis. ANG-LP-MSN-PTX (20.6%) revealed higher targeting efficiency compared with LP-MSN-PTX (10.6%) via blood and intracerebral microdialysis method in the pharmacokinetic study. The therapy of intracranial C6 glioma bearing rats was increasingly efficient, and ANG-LP-MSN-PTX could prolong the survival time of model rats. Taken together, ANG-LP-MSN-PTX might hold great promise as a targeting delivery system for glioma treatment.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/metabolismo , Glioma/tratamento farmacológico , Paclitaxel/administração & dosagem , Peptídeos/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacocinética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glioma/metabolismo , Humanos , Camundongos , Nanopartículas/metabolismo , Paclitaxel/farmacocinética , Porosidade , Dióxido de Silício/metabolismo
4.
Acta Pharmacol Sin ; 42(5): 832-842, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33824461

RESUMO

Nanomedicine has attracted increasing attention and emerged as a safer and more effective modality in cancer treatment than conventional chemotherapy. In particular, the distinction of tumor microenvironment and normal tissues is often used in stimulus-responsive drug delivery systems for controlled release of therapeutic agents at target sites. In this study, we developed mesoporous silica nanoparticles (MSNs) coated with polyacrylic acid (PAA), and pH-sensitive lipid (PSL) for synergistic delivery and dual-pH-responsive sequential release of arsenic trioxide (ATO) and paclitaxel (PTX) (PL-PMSN-PTX/ATO). Tumor-targeting peptide F56 was used to modify MSNs, which conferred a target-specific delivery to cancer and endothelial cells under neoangiogenesis. PAA- and PSL-coated nanoparticles were characterized by TGA, TEM, FT-IR, and DLS. The drug-loaded nanoparticles displayed a dual-pH-responsive (pHe = 6.5, pHendo = 5.0) and sequential drug release profile. PTX within PSL was preferentially released at pH = 6.5, whereas ATO was mainly released at pH = 5.0. Drug-free carriers showed low cytotoxicity toward MCF-7 cells, but ATO and PTX co-delivered nanoparticles displayed a significant synergistic effect against MCF-7 cells, showing greater cell-cycle arrest in treated cells and more activation of apoptosis-related proteins than free drugs. Furthermore, the extracellular release of PTX caused an expansion of the interstitial space, allowing deeper penetration of the nanoparticles into the tumor mass through a tumor priming effect. As a result, FPL-PMSN-PTX/ATO exhibited improved in vivo circulation time, tumor-targeted delivery, and overall therapeutic efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/uso terapêutico , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Trióxido de Arsênio/farmacocinética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cetrimônio/química , Cetrimônio/toxicidade , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos Endogâmicos ICR , Nanopartículas/toxicidade , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Oligopeptídeos/toxicidade , Paclitaxel/química , Paclitaxel/farmacocinética , Porosidade , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochem Biophys Res Commun ; 527(1): 117-123, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446354

RESUMO

A poly(amidoamine) dendrimer (PAMAM, G5) based drug delivery system was developed for the treatment of glioma. PAMAM was modified with polyethylene glycol (PEG) to improve its in vivo stability and reduce immunogenicity. Further, the internalized RGD (iRGD) recognition ligand of the integrin αvß3 receptor and the blood-brain barrier (BBB)-targeting group TGN were introduced. Arsenic trioxide (ATO) was loaded into the internal cavity through electrostatic interactions to form iRGD/TGN-PEG-PAMAM-ATO. The drug delivery system of iRGD/TGN dual-modified PAMAM, which entrapped ATO, had a high entrapment efficiency of approximately 71.92% ± 1.17% and displayed sustainable acid-dependent drug release. Assessment of antiglioma effects revealed that survival rate was significantly higher in the iRGD/TGN comodified group than in the other groups. Overall, iRGD/TGN-based dual targeting by combining nanocarriers and targeting technology increased the amount of drug that crossed BBB, thus achieving targeted enrichment and activation of the drug in tumor tissue. This activation ultimately increased therapeutic effects and reduced side effects of ATO. This strategy using a multistep-targeted delivery system shows great promise for targeted glioma therapy.


Assuntos
Antineoplásicos/administração & dosagem , Trióxido de Arsênio/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Dendrímeros/química , Glioma/tratamento farmacológico , Oligopeptídeos/química , Antineoplásicos/farmacocinética , Trióxido de Arsênio/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Dendrímeros/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Glioma/metabolismo , Humanos , Oligopeptídeos/metabolismo , Distribuição Tecidual
6.
Mol Pharm ; 16(4): 1648-1657, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30802064

RESUMO

This study proposed a new nonviral gene delivery system for thrombus targeting therapy based on PEGlyation polyamides dendrimer (PAMAM) modified with RGDyC to condense the pDNA with recombinant hirudine (rHV) gene (RGDyC-rHV-EGFP). The RGDyC-mPEG-PAMAM was synthesized and characterized by 1H NMR, PAMAM/pDNA was characterized by particle size, zeta potential, cellular uptake, and gel retraction assay. The transfection was carried out between lipofectamine 2000 and PAMAM/pDNA on HUVEC cells at various N/P ratios. The antithrombotic effect in vivo was evaluated by venous thrombosis model on Wistar rats. It showed that the drug delivery system of RGDyC modified PAMMA, which entrapped pDNA could significantly improve the transfection efficiency. It was about 7.56-times higher than that of lipofectamine 2000. In addition, the expression level of hirudine fusion protein was the highest at N/P ratio of 0.5. The results of antithrombotic effect showed that the weight of thrombus was reduced in RGDyC modified group; compared with heparin group, there was no significant difference ( P > 0.05). Overall, we take the advantage of the unique advantages of hirudine, combining the genetic engineering, nanocarriers, and targeting technology, to achieve the targeted enrichment and activation the hirudine fusion protein in the thrombus site, to improve the concentration of drugs in the thrombus site, finally increasing the curative effect and reduce the risk of bleeding. The strategy of gene delivery system holds unique properties as a gene delivery system and has great promises in thrombus targeting therapy.


Assuntos
Antitrombinas/administração & dosagem , Dendrímeros/química , Técnicas de Transferência de Genes , Hirudinas/administração & dosagem , Plasmídeos/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Trombose/terapia , Animais , Proliferação de Células , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hirudinas/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Nanocompostos/administração & dosagem , Nanocompostos/química , Plasmídeos/genética , Agregação Plaquetária , Polietilenoglicóis , Coelhos , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Trombose/genética
7.
Mol Pharm ; 16(2): 786-797, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30620881

RESUMO

The poor capability of drugs to permeate through the blood-brain barrier (BBB) and further release inside glioma greatly limits the curative effects of glioma chemotherapies. In this study, we prepared angiopep-2-conjugated liposome-silica hybrid nanovehicles for targeted delivery and increased the permeation of arsenic trioxide (ATO) in glioma. Polyacrylic acid (PAA) was grafted on mesoporous silica nanoparticles (MSN) for pH-sensitive release and supporting the lipid membrane. The prepared "core-shell" nanovehicles (ANG-LP-PAA-MSN) were characterized with uniform size, high drug loading efficiency (8.19 ± 0.51%), and superior pH-sensitive release feature. From the experiments, the enhanced targeted delivery of ATO by ANG-LP-PAA-MSN (ANG-LP-PAA-MSN@ATO) was evidenced by the improvement of transport, enhanced cellular uptake, and apoptosis in vitro. In addition, the pharmacokinetic study was creatively carried out through the blood-glioma synchronous microdialysis and revealed that the half-life ( t1/2) of blood and glioma tissue in the ANG-LP-PAA-MSN@ATO treatment group was extended by 1.65 and 2.34 times compared with the ATO solution group (ATO-Sol). The targeting efficiency of ANG-LP-PAA-MSN@ATO (24.96%) was dramatically stronger than that of the ATO-Sol (5.94%). Importantly, ANG-LP-PAA-MSN@ATO had a higher accumulation (4.6 ± 2.6% ID per g) in tumor tissues and showed a better therapeutic efficacy in intracranial C6 glioma bearing rats. Taken together, the blood-glioma synchronous microdialysis was successful used for the pharmacokinetic study and real-time monitoring of drug concentrations in blood and glioma; ANG-LP-PAA-MSN could be a promising targeted drug delivery system for glioma therapy.


Assuntos
Trióxido de Arsênio/química , Trióxido de Arsênio/uso terapêutico , Portadores de Fármacos/química , Glioma/tratamento farmacológico , Nanopartículas/química , Peptídeos/química , Animais , Trióxido de Arsênio/administração & dosagem , Barreira Hematoencefálica/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glioma/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley
8.
Pharmazie ; 74(1): 39-46, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782249

RESUMO

Intranasal (i.n.) administration is an efficient route for enhancing drug delivery to the brain, bypassing the blood-brain barrier (BBB) and eliminating systemic side effects. The purpose of this study was to investigate the nose-to-brain delivery efficiency of adriamycin (ADM) loaded in cholesterol-modified pullulan self-assembled nanoparticles (CHSP-SAN) via i.n. administration. The prepared nanodrugs (ADM-CHSP-SAN) were characterized as uniform size (112.8±1.02 nm), high drug loading capacity (7.65±0.58 %), and sustained release. CHSP-SAN showed good biocompatibility and low toxicity on HBMEC and C6 cells. The enhanced delivery of ADM across the BBB with CHSP-SAN was demonstrated by the reduced half maximal inhibitory concentration (IC50) value and the increased apoptosis proportion of C6 cells. The pharmacokinetics of ADM-CHSP-SAN was accessed by cerebral microdialysis technique. The pharmacokinetic results showed higher peak concentration (Cmax), area under the curve (AUC0-12h) and shorter peak time (Tmax) after i.n. administration that after intravenous (i.v.) administration. The i.n. administration of CHSP-SAN greatly increased ADM availability in cerebral tissue compared to that of ADM solution. Collectively, CHSP-SAN strikingly increased ADM transport across the BBB and improved its availability in brain via i.n. administration.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Glucanos/química , Nanopartículas , Administração Intranasal , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Área Sob a Curva , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Doxorrubicina/farmacocinética , Células Endoteliais/metabolismo , Humanos , Concentração Inibidora 50 , Masculino , Microdiálise , Tamanho da Partícula , Ratos , Ratos Wistar , Distribuição Tecidual
9.
Analyst ; 141(14): 4495-501, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27175860

RESUMO

Neurotoxin (NT), a short-chain α-neurotoxin, is the main neurotoxic protein identified from the venom of Naja naja atra. As an effective drug for the analgesis of advanced cancer patients, NT lasts longer than morphine and does not cause addiction. However, achieving a sensitive and high-resolution measurement of NT is difficult because of the extra-low content of NT in vivo. Therefore, developing a novel method to quantify NT is essential to study its pharmacokinetics in vivo. Although NT contains four primary amine groups that could react with the thiourea in fluorescein isothiocyanate (FITC), we developed a simple and reproducible single-label fluorescent derivatization method for NT which is related to the reaction of N-terminal α-amino of NT alone under optimized derivatization conditions. Furthermore, neurotoxin labelled with fluorescein isothiocyanate (NT-FITC) was prepared by high-performance liquid chromatography (HPLC) with a purity value higher than 99.29% and identified by MALDI-TOF/TOF-MS. Finally, NT-FITC could be detected at 0.8 nmol L(-1) in rat plasma using capillary electrophoresis coupled with laser induced fluorescence detection (CE-LIF). In this paper, the established method robustly and reliably quantified NT labelled with FITC via intravenous and intramuscular administrations in vivo. In addition, this work fully demonstrated the pharmacokinetic characteristics of NT in vivo, which could reduce the risk of drug accumulation, optimize therapies, and provide sufficient evidence for the rational use of NT in clinical and research laboratories.


Assuntos
Analgésicos/análise , Proteínas Neurotóxicas de Elapídeos/análise , Eletroforese Capilar , Espectrometria de Fluorescência , Analgésicos/farmacocinética , Animais , Proteínas Neurotóxicas de Elapídeos/farmacocinética , Feminino , Fluoresceína , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Lasers , Masculino , Espectrometria de Massas , Camundongos Endogâmicos ICR , Ratos Sprague-Dawley
10.
Pharmaceutics ; 16(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794294

RESUMO

A nanoparticle's shape is a critical determinant of its biological interactions and therapeutic effectiveness. This study investigates the influence of shape on the performance of mesoporous silica nanoparticles (MSNs) in anticancer therapy. MSNs with spherical, rod-like, and hexagonal-plate-like shapes were synthesized, with particle sizes of around 240 nm, and their other surface properties were characterized. The drug loading capacities of the three shapes were controlled to be 47.46%, 49.41%, and 46.65%, respectively. The effects of shape on the release behaviors, cellular uptake mechanisms, and pharmacological behaviors of MSNs were systematically investigated. Through a series of in vitro studies using 4T1 cells and in vivo evaluations in 4T1 tumor-bearing mice, the release kinetics, cellular behaviors, pharmacological effects, circulation profiles, and therapeutic efficacy of MSNs were comprehensively assessed. Notably, hexagonal-plate-shaped MSNs loaded with PTX exhibited a prolonged circulation time (t1/2 = 13.59 ± 0.96 h), which was approximately 1.3 times that of spherical MSNs (t1/2 = 10.16 ± 0.38 h) and 1.5 times that of rod-shaped MSNs (t1/2 = 8.76 ± 1.37 h). This research underscores the significance of nanoparticles' shapes in dictating their biological interactions and therapeutic outcomes, providing valuable insights for the rational design of targeted drug delivery systems in cancer therapy.

11.
Acta Pharm Sin B ; 12(9): 3710-3725, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176903

RESUMO

Carrier-free multi-component self-assembled nano-systems have attracted widespread attention owing to their easy preparation, high drug-loading efficiency, and excellent therapeutic efficacy. Herein, MnAs-ICG nanospike was generated by self-assembly of indocyanine green (ICG), manganese ions (Mn2+), and arsenate (AsO4 3-) based on electrostatic and coordination interactions, effectively integrating the bimodal imaging ability of magnetic resonance imaging (MRI) and fluorescence (FL) imaging-guided synergistic therapy of photothermal/chemo/chemodynamic therapy within an "all-in-one" theranostic nano-platform. The as-prepared MnAs-ICG nanospike had a uniform size, well-defined nanospike morphology, and impressive loading capacities. The MnAs-ICG nanospike exhibited sensitive responsiveness to the acidic tumor microenvironment with morphological transformation and dimensional variability, enabling deep penetration into tumor tissue and on-demand release of functional therapeutic components. In vitro and in vivo results revealed that MnAs-ICG nanospike showed synergistic tumor-killing effect, prolonged blood circulation and increased tumor accumulation compared to their individual components, effectively resulting in synergistic therapy of photothermal/chemo/chemodynamic therapy with excellent anti-tumor effect. Taken together, this new strategy might hold great promise for rationally engineering multifunctional theranostic nano-platforms for breast cancer treatment.

12.
Asian J Pharm Sci ; 17(5): 713-727, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36382303

RESUMO

Photothermal therapy (PTT) has brought hope for cancer treatments, with hyperthermia-induced immunogenic cell death (ICD), which is a critical part of therapeutically induced antitumor immune responses. Limited immune stimulation response in PTT is the primary reason for incomplete tumor ablation, therefore demonstrating urgent requirements for ICD amplifier. Herein, a sub-10 nm supramolecular nanoassembly was formed by co-assembly of clinically approved aluminum adjuvant and commonly used indocyanine green (ICG) under the assistance of lignosulfonate (LS, a green and sustainable multifunctional lignin derivative) for localized photothermal-immunotherapy of breast cancer. The overall results revealed that LS-Al-ICG is capable of inducing amplified ICD, efficiently eliciting solid immune responses through dendritic cells (DCs) activation and cytotoxic T-cell responses initiation for tumor killing. Moreover, anti-PD-1 therapy blocked the PD-1 pathway and led to remarkable anti-tumor efficacy against laser-irradiated primary tumors and distant tumors by potentiating systemic tumor specific T cell immunity. The results of this study demonstrate a handy and extensible approach for engineering green natural lignin nanoparticles for cancer immunotherapy, which shows promise for delivering other therapeutics in biomedical applications.

13.
Nanomedicine (Lond) ; 17(26): 2037-2054, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36789952

RESUMO

Hepatocellular carcinoma (HCC) poses a severe threat to human health and economic development. Despite many attempts at HCC treatment, most are inevitably affected by the genetic instability and variability of tumor cells. Arsenic trioxide (ATO) has shown to be effective in HCC. However, time-consuming challenges, especially the optimal concentration in tumor tissue and bioavailability of ATO, remain to be overcome for its transition from the bench to the bedside. To bypass these issues, nanotechnology-based delivery systems have been developed for prevention, diagnosis, monitoring and treatment in recent years. This article is a systematic overview of the latest contributions and detailed insights into ATO-loaded nanocarriers, with particular attention paid to strategies for improving the efficacy of nanocarriers of ATO.


Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide; it is highly aggressive, has a poor prognosis and is often diagnosed late in the disease course. Arsenic trioxide (ATO), an established agent for the treatment of acute promyelocytic leukemia, has shown powerful therapeutic potential in the treatment of HCC. However, its narrow therapeutic window and severe toxicity, as well as resistance to ATO, limit its application for HCC treatment. Nanocarriers have been employed to deliver ATO to achieve effective therapeutic outcomes in HCC. This review describes the application of various nanocarrier-based delivery systems for ATO to enhance the effectiveness of tumor therapy and reduce its side effects, thus making it a promising therapeutic strategy for in HCC.


Assuntos
Antineoplásicos , Arsenicais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Trióxido de Arsênio/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Arsenicais/uso terapêutico , Óxidos/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico
14.
Acta Pharm Sin B ; 11(1): 271-282, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532192

RESUMO

The chemotherapy combined with photothermal therapy has been a favorable approach for the treatment of breast cancer. In present study, nanoparticles with the characteristics of photothermal/matrix metalloproteinase-2 (MMP-2) dual-responsive, tumor targeting, and size-variability were designed for enhancing the antitumor efficacy and achieving "on-demand" drug release markedly. Based on the thermal sensitivity of gelatin, we designed a size-variable gelatin nanoparticle (GNP) to encapsulate indocyanine green (ICG) and doxorubicin (DOX). Under an 808 nm laser irradiation, GNP-DOX/ICG responded photothermally and swelled in size from 71.58 ± 4.28 to 160.80 ± 9.51 nm, which was beneficial for particle retention in the tumor sites and release of the loaded therapeutics. Additionally, GNP-DOX/ICG showed a size reduction of the particles to 33.24 ± 4.11 nm and further improved drug release with the degradation of overexpressed MMP-2 in tumor. In the subsequently performed in vitro experiments, it was confirmed that GNP-DOX/ICG could provide a therapeutic effect that was enhanced and synergistic. Consequently, GNP-DOX/ICG could efficiently suppress the growth of 4T1 tumor in vivo. In conclusion, this study may provide a promising strategy in the rational design of drug delivery nanosystems based on gelatin for chemo-photothermal therapy to achieve synergistically enhanced therapeutic efficacy against breast cancer.

15.
J Immunol Res ; 2021: 6629531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212053

RESUMO

Baicalin (BA) magnesium salt (BA-Mg) is a good water-soluble ingredient extracted from Scutellaria baicalensis Georgi, a commonly used traditional Chinese medicine. This study is aimed at investigating whether BA-Mg could exert a better protective effect on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and illuminate the underlying mechanisms in vivo and in vitro. Mice were intraperitoneally administrated with equimolar BA-Mg, BA, and MgSO4 before LPS inducing ALI. Lung tissues and bronchoalveolar lavage fluid were collected for lung wet/dry ratio, histological examinations, cell counts, and biochemical analyses at 48 h post-LPS exposure. Meanwhile, the protein expressions of TLR4/NF-κB signaling pathway and proinflammatory cytokines in lung tissues and lung bronchial epithelial cells (BEAS-2B) were detected. The results showed BA-Mg pronouncedly ameliorated LPS-induced inflammatory response and histopathological damages, elevated antioxidant enzyme activity (SOD), and downregulated myeloperoxidase (MPO) and malonaldehyde (MDA) levels through the inhibition of TLR4/NF-κB signaling pathway activation. Moreover, the effect of BA-Mg was significantly better than that of BA and MgSO4 in ameliorating symptoms. Overall, BA-Mg can effectively relieve inflammatory response and oxidative stress triggered by LPS, indicating it may be a potential therapeutic candidate for treating ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Flavonoides/farmacologia , Extratos Vegetais/química , Scutellaria baicalensis/química , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Flavonoides/química , Flavonoides/uso terapêutico , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Magnésio/química , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
16.
Theranostics ; 10(21): 9865-9887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863964

RESUMO

Background: Glutathione (GSH), the primary antioxidant in cells, could fight against oxidative stress. Tumor cells display a higher GSH level than normal cells for coping with the hyperoxidative state, which meets the requirements of enhanced metabolism and vicious proliferation. Therefore, the consumption of GSH will lead to cell redox imbalance and impede life activities. Herein, targeted sorafenib (SFB) loaded manganese doped silica nanoparticle (FaPEG-MnMSN@SFB) was constructed, which could destroy the intracellular redox homeostasis by consuming GSH. Methods: In this study, MnMSN was prepared by an optimized one-pot Stober's method for loading SFB, and FaPEG chain was modified on the surface of MnMSN to achieve long circulation and targeted delivery. The anticancer efficacy and mechanism of the designed FaPEG-MnMSN@SFB were assessed both in vitro and in vivo.Results: FaPEG-MnMSN@SFB exhibited efficient antitumor activity by dual depleting intracellular GSH (the degradation of MnMSN would consume intracellular GSH and the SFB would inhibit the effect of Xc- transport system to inhibit GSH synthesis). Moreover, disruption of redox balance would lead to apoptosis and reactive oxygen species (ROS)-dependent ferroptosis of tumor cells. Conclusion: Such a GSH-starvation therapeutic strategy would cause multi-path programmed cell death and could be a promising strategy for cancer therapy.


Assuntos
Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Manganês/química , Nanopartículas/química , Oxirredução/efeitos dos fármacos , Dióxido de Silício/química , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe/química , Sorafenibe/farmacologia
17.
Int J Pharm ; 563: 91-100, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30890451

RESUMO

This study is directed towards the gentle transdermal delivery of Neurotoxin (NT) and study of the treatment of Rheumatoid Arthritis (RA) in rats by NT loaded dissolving Microneedles (DMNs-NT). The DMNs-NT fabrication involved a two-step centrifugation method. The quadrangular pyramid shape needles had great mechanical strength. The upper part of the needle contained 15.4 ±â€¯0.5 µg of drug per patch. Blank DMNs showed favorable biocompatibility and low toxicity on the chondrocyte cells. Both NT and DMNs-NT displayed anti-inflammatory capabilities ex-vitro. The results of ex-vitro evaluation of DMNs the skin penetration depth of DMNs-NT rats was higher than 70 µm and the cumulative penetration of NT in DMNs could reach 95.8% in 4 h, whereas, the NT solution could barely penetrate the skin, thereby proving the favorable facilitation of NT transdermal delivery. The needle structure dissolved completely after 10 min in vivo and the channel on the Stratum Corneum (SC) was closed after 6 h. There was no significant adverse reaction on the skin after 15 days of administration. The pharmacodynamic study showed that DMNs-NT significantly reduced the toe swelling of RA rats and reduced the levels of TNF-α and IL-1ß in serum to alleviate the injury of the ankle joints. DMNs-NT held favorable stability in 3 months. All these results established that DMNs-NT could penetrate the skin of rats in a biocompatible manner, and have a strong therapeutic effect on rat RA by transdermal delivery.


Assuntos
Anti-Inflamatórios/administração & dosagem , Artrite Reumatoide/tratamento farmacológico , Microinjeções , Agulhas , Neurotoxinas/administração & dosagem , Administração Cutânea , Animais , Anti-Inflamatórios/química , Artrite Reumatoide/sangue , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Interleucina-1beta/sangue , Neurotoxinas/química , Ratos Wistar , Pele/metabolismo , Absorção Cutânea , Solubilidade , Fator de Necrose Tumoral alfa/sangue
18.
Int J Nanomedicine ; 13: 5937-5952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323584

RESUMO

BACKGROUND: The Traditional Chinese Medicine, arsenic trioxide (ATO, As2O3) could inhibit growth and induce apoptosis in a variety of solid tumor cells, but it is severely limited in the treatment of glioma due to its poor BBB penetration and nonspecifcity distribution in vivo. PURPOSE: The objective of this study was encapsulating ATO in the modified PAMAM den-drimers to solve the problem that the poor antitumor effect of ATO to glioma, which provide a novel angle for the study of glioma treatment. METHODS: The targeting drug carrier (RGDyC-mPEG-PAMAM) was synthesized based on Arg-Gly-Asp (RGDyC) and αvß3 integrin targeting ligand, and conjugated to PEGylated fifth generation polyamidoamine dendrimer (mPEG-PAMAM). It was characterized by nuclear magnetic resonance, fourier transform infrared spectra, Nano-particle size-zeta potential analyzer,etc. The in vitro release characteristics were studied by dialysis bag method. MTT assay was used to investigate the cytotoxicity of carriers and the antitumor effect of ATO formulation. In vitro blood-brain barrier (BBB) and C6 cell co-culture models were established to investigate the inhibitory effect of different ATO formulation after transporting across BBB. Pharmacokinetic and antitumor efficacy studies were investigated in an orthotopic murine model of C6 glioma. RESULTS: The prepared RGDyC-mPEG-PAMAM was characterized for spherical dendrites, comparable size (21.60±6.81 nm), and zeta potential (5.36±0.22 mV). In vitro release showed that more ATO was released from RGDyC-mPEG-PAMAM/ATO (79.5%) at pH 5.5 than that of pH 7.4, during 48 hours. The cytotoxicity of PEG-modified carriers was lower than that of the naked PAMAM on both human brain microvascular endothelial cells and C6 cells. In in vitro BBB model, modification of RGDyC heightened the cytotoxicity of ATO loaded on PAMAM, due to an increased uptake by C6 cells. The results of cell cycle and apoptosis analysis revealed that RGDyC-mPEG-PAMAM/ATO arrested the cell cycle in G2-M and exhibited threefold increase in percentage of apoptosis to that in the PEG-PAMAM/ATO group. Compared with ATO-sol group, both RGDyC-mPEG-PAMAM/ATO and mPEG-PAMAM/ATO groups prolonged the half-life time, increased area under the curve, and improved antitumor effect, significantly. While the tumor volume inhibitory of RGDyC-mPEG-PAMAM/ATO was 61.46±12.26%, it was approximately fourfold higher than the ATO-sol group, and twofold to the mPEG-PAMAM/ATO group. CONCLUSION: In this report, RGDyC-mPEG-PAMAM could enhance the antitumor of ATO to glioma, it provides a desirable strategy for targeted therapy of glioma.


Assuntos
Arsenicais/uso terapêutico , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Oligopeptídeos/química , Óxidos/uso terapêutico , Polietilenoglicóis/química , Animais , Apoptose/efeitos dos fármacos , Trióxido de Arsênio , Arsenicais/administração & dosagem , Arsenicais/farmacocinética , Arsenicais/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Glioma/patologia , Humanos , Masculino , Camundongos , Óxidos/administração & dosagem , Óxidos/farmacocinética , Óxidos/farmacologia , Coelhos , Ratos , Eletricidade Estática , Resultado do Tratamento
19.
J Drug Target ; 26(1): 86-94, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28635335

RESUMO

Glioma is the most common primary malignant brain tumour and the effect of chemotherapy is hampered by low permeability across the blood-brain-barrier (BBB). Borneol is a time-honoured 'Guide' drug in traditional Chinese medicine and has been proved to be capable of promoting free drugs into the brain efficiently, but there are still risks that free drugs, especially anti-glioma drugs, may be disassembled and metabolised before penetrating the BBB and caused the whole brain distribution. The purpose of this paper was to investigate whether borneol intervention could facilitate the BBB penetration and assist glioma treatment by combining with doxorubicin (DOX) loaded PAMAM dendrimers drug delivery system modified with Angiopep-2 (a ligand of the low-density lipoprotein receptor-related protein, which overexpress both in the BBB and gliomas). The results demonstrated that Angiopep-2 modification could actually enhance the affinity between the dendrimers and the targeting cells and finally increase the cell uptake and boost the anti-tumour ability. Borneol physical combination could further enhance the anti-tumour efficiency of this targeting drug delivery system (TDDS) after penetrating BBB. Compared with free DOX solution, this TDDS illustrated obviously sustained and pH-dependent drug release. This suggested that this synergetic strategy provided a promising way for glioma therapy.


Assuntos
Canfanos/química , Dendrímeros/química , Doxorrubicina/uso terapêutico , Glioma/tratamento farmacológico , Peptídeos/química , Encéfalo/irrigação sanguínea , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células Endoteliais , Humanos
20.
Daru ; 25(1): 20, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870261

RESUMO

BACKGROUND: Exenatide (EXT), the first glucagon-like peptide-1 receptor agonist, has been approved as an adjunctive therapy for patients with type 2 diabetes. Due to EXT's short half-life, EXT must be administrated by continuous subcutaneous (s.c.) injection twice daily. In previous studies, many studies on EXT loaded into polymer materials carriers for sustained release had been reported. However, these carriers have some defects, such as hydrophobicity, low surface energy, low mechanical strength, and poor chemical stability. Therefore, this study aims to develop a novel drug delivery system, which is EXT loaded into well-ordered hexagonal mesoporous silica structures (EXT-SBA-15), to control the sustainability of EXT. METHODS: SBA-15 was prepared by hydrothermal method with uniform size. Morphology of SBA-15 was employed by transmission electron microscopy. The pore size of SBA-15 was characterized by N2 adsorption-desorption isotherms. The in vitro drug release behavior and pharmacokinetics of EXT-SBA-15 were investigated. Furthermore, the blood glucose levels of diabetic mice were monitored after subcutaneous injection of EXT-Sol and EXT-SBA-15 to evaluate further the stable hypoglycemic effect of EXT-SBA-15. RESULTS: EXT-SBA-15 showed a higher drug loading efficiency (15.2 ± 2.0%) and sustained-release features in vitro. In addition, pharmacokinetic studies revealed that the EXT-SBA-15 treatment group extended the half-life t 1/2(ß) to 14.53 ± 0.70 h compared with that of the EXT solution (EXT-Sol) treatment group (0.60 ± 0.08 h) in vivo. Results of the pharmacodynamics study show that the EXT-SBA-15 treatment group had inhibited blood glucose levels below 20 mmol/L for 25 days, and the lowest blood glucose level was 13 mmol/L on the 10th day. CONCLUSIONS: This study demonstrates that the EXT-SBA-15 delivery system can control the sustainability of EXT and contribute to improve EXT clinical use.


Assuntos
Hipoglicemiantes/administração & dosagem , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Peçonhas/administração & dosagem , Animais , Glicemia/análise , Preparações de Ação Retardada , Diabetes Mellitus Experimental/tratamento farmacológico , Exenatida , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Injeções Subcutâneas , Masculino , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Peptídeos/farmacocinética , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Dióxido de Silício , Peçonhas/farmacocinética , Peçonhas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA