Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39405464

RESUMO

In response to variable environments, rice (Oryza sativa) roots have developed lignified and suberized diffusion barriers at the endodermis to permit selective nutrient uptake for optimal growth. Here, we demonstrate that endodermal suberization and non-localized lignification are redundantly regulated by four MYB transcription factors: OsMYB39a, OsMYB41, OsMYB92a, and OsMYB92b. These transcription factors function downstream of the OsMYB36a/b/c, CASPARIAN STRIP INTEGRITY FACTOR (OsCIF)-SCHENGEN3 (OsSGN3), and stress-inducible signaling pathways in rice. Knockout of all four MYB genes resulted in the complete absence of endodermal suberin lamellae (SL) and almost no lignin deposition between the Casparian strip and the cortex-facing lignified band at cell corners under all conditions examined. In contrast, endodermis-specific overexpression of any of these MYB genes was sufficient to induce strong endodermal suberization and non-localized lignification near the root tip. Furthermore, OsMYB92a-overexpressing lines showed an altered ionomic profile and enhanced salinity tolerance. Transcriptome analysis identified 152 downstream genes regulated by OsMYB39a/41/92a/92b, including the key SL formation gene OsCYP86A1 and other genes involved in endodermal lignification and suberization under normal and stress conditions. Our results provide important insights into the molecular mechanisms underlying suberization and non-localized lignification at the root endodermis and their physiological significance in ion homeostasis and acclimation to environmental stress.

2.
Plant Cell ; 36(2): 383-403, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37847118

RESUMO

The Casparian strip (CS) is a ring-like lignin structure deposited between endodermal cells that forms an apoplastic barrier to control the selective uptake of nutrients in vascular plants. However, the molecular mechanism of CS formation in rice (Oryza sativa), which possesses one CS each in the endodermis and exodermis, is relatively unknown. Here, we functionally characterized CS INTEGRITY FACTOR1 (OsCIF1a, OsCIF1b), OsCIF2, and SCHENGEN3 (OsSGN3a, OsSGN3b) in rice. OsCIF1s and OsCIF2 were mainly expressed in the stele, while OsSGN3s localized around the CS at the endodermis. Knockout of all three OsCIFs or both OsSGN3s resulted in a discontinuous CS and a dramatic reduction in compensatory (less localized) lignification and suberization at the endodermis. By contrast, ectopic overexpression of OsCIF1 or OsCIF2 induced CS formation as well as overlignification and oversuberization at single or double cortical cell layers adjacent to the endodermis. Ectopic co-overexpression of OsCIF1 and SHORTROOT1 (OsSHR1) induced the formation of more CS-like structures at multiple cortical cell layers. Transcriptome analysis identified 112 downstream genes modulated by the OsCIF1/2-OsSGN3 signaling pathway, which is involved in CS formation and activation of the compensatory machinery in native endodermis and nonnative endodermis-like cell layers. Our results provide important insights into the molecular mechanism of CIF-mediated CS formation at the root endodermal and nonendodermal cell layers.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Oryza/genética , Raízes de Plantas/metabolismo , Parede Celular/metabolismo , Peptídeos/metabolismo , Transdução de Sinais/genética
3.
PLoS Pathog ; 19(3): e1011255, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928713

RESUMO

The mitotic exit is a key step in cell cycle, but the mechanism of mitotic exit network in the wheat head blight fungus Fusarium graminearum remains unclear. F. graminearum infects wheat spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. In this study, we found that a small GTPase FgTem1 plays an important role in F. graminearum pathogenicity and functions in regulating the formation of infection structures and invasive hyphal growth on wheat spikelets and wheat coleoptiles, but plays only little roles in vegetative growth and conidiation of the phytopathogen. FgTem1 localizes to both the inner nuclear periphery and the spindle pole bodies, and negatively regulates mitotic exit in F. graminearum. Furthermore, the regulatory mechanisms of FgTem1 have been further investigated by high-throughput co-immunoprecipitation and genetic strategies. The septins FgCdc10 and FgCdc11 were demonstrated to interact with the dominant negative form of FgTem1, and FgCdc11 was found to regulate the localization of FgTem1. The cell cycle arrest protein FgBub2-FgBfa1 complex was shown to act as the GTPase-activating protein (GAP) for FgTem1. We further demonstrated that a direct interaction exists between FgBub2 and FgBfa1 which crucially promotes conidiation, pathogenicity and DON production, and negatively regulates septum formation and nuclear division in F. graminearum. Deletion of FgBUB2 and FgBFA1 genes caused fewer perithecia and immature asci formations, and dramatically down-regulated trichothecene biosynthesis (TRI) gene expressions. Double deletion of FgBUB2/FgBFA1 genes showed that FgBUB2 and FgBFA1 have little functional redundancy in F. graminearum. In summary, we systemically demonstrated that FgTem1 and its GAP FgBub2-FgBfa1 complex are required for fungal development and pathogenicity in F. graminearum.


Assuntos
Fusarium , Proteínas Monoméricas de Ligação ao GTP , Virulência , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Divisão do Núcleo Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos
4.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628749

RESUMO

Histone acetylation modification significantly affects secondary metabolism in filamentous fungi. However, how histone acetylation regulates secondary metabolite synthesis in the lovastatin (a lipid-lowering drug) producing Aspergillus terreus remains unknown because protein is involved and has been identified in this species. Here, the fungal-specific histone deacetylase gene, hstD, was characterized through functional genomics in two marine-derived A. terreus strains, Mj106 and RA2905. The results showed that the ablation of HstD resulted in reduced mycelium growth, less conidiation, and decreased lovastatin biosynthesis but significantly increased terrein biosynthesis. However, unlike its homologs in yeast, HstD was not required for fungal responses to DNA damage agents, indicating that HstD likely plays a novel role in the DNA damage repair process in A. terreus. Furthermore, the loss of HstD resulted in a significant upregulation of H3K56 and H3K27 acetylation when compared to the wild type, suggesting that epigenetic functions of HstD, as a deacetylase, target H3K27 and H3K56. Additionally, a set of no-histone targets with potential roles in fungal growth, conidiation, and secondary metabolism were identified for the first time using acetylated proteomic analysis. In conclusion, we provide a comprehensive analysis of HstD for its targets in histone or non-histone and its roles in fungal growth and development, DNA damage response, and secondary metabolism in A. terreus.


Assuntos
Histona Desacetilases , Proteômica , Metabolismo Secundário , Histona Desacetilases/genética , Histonas , Lovastatina
5.
Environ Microbiol ; 24(10): 4623-4640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35837846

RESUMO

Calcium and manganese transporters play important roles in regulating Ca2+ and Mn2+ homeostasis in cells, which is necessary for the normal physiological activities of eukaryotes. Gdt1 and Pmr1 function as calcium/manganese transporters in the Golgi apparatus. However, the functions of Gdt1 and Pmr1 have not been previously characterized in the plant pathogenic fungus Fusarium graminearum. Here, we identified and characterized the biological functions of FgGdt1 and FgPmr1 in F. graminearum. Our study shows that FgGdt1 and FgPmr1 are both localized to the cis- and medial-Golgi. Disruption of FgGdt1 or FgPmr1 in F. graminearum caused serious defects in vegetative growth, conidiation, sexual development and significantly decreased virulence in wheat but increased deoxynivalenol (DON) production. Importantly, FgGdt1 is involved in Ca2+ and Mn2+ homeostasis and the severe phenotypic defects of the ΔFggdt1 mutant were largely due to loss of FgGdt1 function in Mn2+ transportation. FgGdt1-mCherry colocalizes with FgPmr1-GFP at the Golgi, and FgGDT1 exerts its biological function upstream of FgPMR1. Taken together, our results collectively demonstrate that the cis- and medial-Golgi-localized proteins FgGdt1 and FgPmr1 regulate Ca2+ and Mn2+ homeostasis of the Golgi apparatus, and this function is important in modulating the growth, development, DON biosynthesis and pathogenicity of F. graminearum.


Assuntos
Cálcio , Fusarium , Cálcio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Complexo de Golgi/metabolismo , Homeostase , Manganês/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo , Virulência
6.
Curr Genet ; 68(2): 153-164, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043238

RESUMO

Marine-derived Aspergillus terreus produces a variety of structurally novel secondary metabolites, most of which show unique biological activities. However, the lack of efficient genetic tools limits the discovery of new compounds, the elucidation of involved biosynthesis mechanism, as well as the strain engineering efforts. Therefore, in this study, we first established both an effective PEG-mediated chemical transformation system of protoplasts and an electroporation system of conidia in a marine-derived fungus A. terreus RA2905. To overcome the insensitivity of RA2905 to fungicides, the uracil auxotrophy strain (pyrG gene deletion mutant, ΔpyrG) was constructed using PEG-mediated transformation system, and using ΔpyrG as the genetic background, the methyltransferase gene laeA-overexpression transformants were further constructed through both PEG- and electroporation-mediated transformations, which showed enhanced terrein production. Besides, in this study, an efficient CRISPR/Cas9 genome-editing system was established for the first time in A. terreus, and a higher gene deletion efficiency of 71% for APSES transcription factor gene stuA could be achieved when using short homologous arms compared with conventional long homologous ones. In addition, using a non-integrative Cas9 plasmid, another efficient and marker-free genome-editing system was established, which allowing repeatable and unlimited genetic manipulation in A. terreus. Using the marker-free genome-editing system, we successfully developed the ΔpyrGΔku70 double-deletion mutant in RA2905, which could further improve gene deletion efficiency. In conclusion, efficient genetic manipulation systems along with a variety of functional mutants were developed in this study, which would significantly expedite both theoretical and applied researches in not only A. terreus but also other marine-derived filamentous fungi.


Assuntos
Aspergillus , Edição de Genes , Aspergillus/genética , Fungos , Protoplastos
7.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055095

RESUMO

Rab GTPases are key regulators of membrane and intracellular vesicle transports. However, the biological functions of FgRab1 are still unclear in the devastating wheat pathogen Fusarium graminearum. In this study, we generated constitutively active (CA) and dominant-negative (DN) forms of FgRAB1 from the wild-type PH-1 background for functional analyses. Phenotypic analyses of these mutants showed that FgRab1 is important for vegetative growth, cell wall integrity and hyphal branching. Compared to the PH-1 strain, the number of spores produced by the Fgrab1DN strain was significantly reduced, with obviously abnormal conidial morphology. The number of septa in the conidia of the Fgrab1DN mutant was fewer than that observed in the PH-1 conidia. Fgrab1DN was dramatically reduced in its ability to cause Fusarium head blight symptoms on wheat heads. GFP-FgRab1 was observed to partly localize to the Golgi apparatus, endoplasmic reticulum and Spitzenkörper. Furthermore, we found that FgRab1 inactivation blocks not only the transport of the v-SNARE protein FgSnc1 from the Golgi to the plasma membrane but also the fusion of endocytic vesicles with their target membranes and general autophagy. In summary, our results indicate that FgRab1 plays vital roles in vegetative growth, conidiogenesis, pathogenicity, autophagy, vesicle fusion and trafficking in F. graminearum.


Assuntos
Autofagia/genética , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Proteínas rab1 de Ligação ao GTP/genética , Biologia Computacional/métodos , Suscetibilidade a Doenças , Retículo Endoplasmático/metabolismo , Fusarium/classificação , Genômica/métodos , Complexo de Golgi/metabolismo , Interações Hospedeiro-Patógeno , Fenótipo , Filogenia , Transporte Proteico , Virulência , Proteínas rab1 de Ligação ao GTP/metabolismo
8.
New Phytol ; 229(3): 1665-1683, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32978966

RESUMO

In filamentous fungi, hyphal growth depends on the continuous delivery of vesicles to the growing tips. It is unclear how fast-growing hyphae coordinate simultaneous cell extension and expansion in the tip cells. We have functionally characterized 12 TBC (Tre-2/Bub2/Cdc16) domain-containing proteins in Fusarium graminearum. Among them, FgMsb3 is found to regulate hyphal tip expansion and to be required for pathogenicity. The regulatory mechanism of FgMsb3 has been further investigated by genetic, high-resolution microscopy and high-throughput co-immunoprecipitation strategies. The FgMsb3 protein localizes at the polarisome and the hyphal apical dome (HAD) where it acts as a GTPase-activating protein for FgRab8 which is required for apical secretion-mediated growth and pathogenicity. Deletion of FgMSB3 causes excessive polarized trafficking but blocks the fusion of FgSnc1-associated vesicles to the plasma membrane. Moreover, we establish that FgSpa2 interacts with FgMsb3, enabling FgMsb3 tethering to the polarisome. Loss of FgSpa2 or other polarisome components (FgBud6 and FgPea2) causes complete shifting of FgMsb3 to the HAD and this affects the polarized growth and pathogenicity of the fungus. In summary, we conclude that FgSpa2 regulates FgMsb3-FgRab8 cascade and this is crucial for creating a steady-state equilibrium that maintains continuous polarized growth and contributes to the pathogenicity of F. graminearum.


Assuntos
Fusarium , Proteínas Fúngicas , Hifas , Esporos Fúngicos , Virulência
9.
PLoS Genet ; 14(7): e1007546, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30044782

RESUMO

Fusarium graminearum is a fungal pathogen that causes Fusarium head blight (FHB) in wheat and barley. Autophagy is a highly conserved vacuolar degradation pathway essential for cellular homeostasis in which Atg9 serves as a multispanning membrane protein important for generating membranes for the formation of phagophore assembly site. However, the mechanism of autophagy or autophagosome formation in phytopathogens awaits further clarifications. In this study, we identified and characterized the Atg9 homolog (FgAtg9) in F. graminearum by live cell imaging, biochemical and genetic analyses. We find that GFP-FgAtg9 localizes to late endosomes and trans-Golgi network under both nutrient-rich and nitrogen starvation conditions and also show its dynamic actin-dependent trafficking in the cell. Further targeted gene deletion of FgATG9 demonstrates that it is important for growth, aerial hyphae development, and pathogenicity in F. graminearum. Furthermore, the deletion mutant (ΔFgatg9) shows severe defects in autophagy and lipid metabolism in response to carbon starvation. Interestingly, small GTPase FgRab7 is found to be required for the dynamic trafficking of FgAtg9, and co-immunoprecipitation (Co-IP) assays show that FgAtg9 associates with FgRab7 in vivo. Finally, heterologous complementation assay shows that Atg9 is functionally conserved in F. graminearum and Magnaporthe oryzae. Taken together, we conclude that FgAtg9 is essential for autophagy-dependent development and pathogenicity of F. graminearum, which may be regulated by the small GTPase FgRab7.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Proteínas Relacionadas à Autofagia/genética , Fusarium/fisiologia , Técnicas de Inativação de Genes , Hordeum/microbiologia , Microscopia Intravital , Magnaporthe/genética , Mutação , Transporte Proteico/fisiologia , Triticum/microbiologia , Virulência , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
10.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32086302

RESUMO

The homeobox gene family of transcription factors (HTF) controls many developmental pathways and physiological processes in eukaryotes. We previously showed that a conserved HTF in the plant-pathogenic fungus Fusarium graminearum, Htf1 (FgHtf1), regulates conidium morphology in that organism. This study investigated the mechanism of FgHtf1-mediated regulation and identified putative FgHtf1 target genes by a chromatin immunoprecipitation assay combined with parallel DNA sequencing (ChIP-seq) and RNA sequencing. A total of 186 potential binding peaks, including 142 genes directly regulated by FgHtf1, were identified. Subsequent motif prediction analysis identified two DNA-binding motifs, TAAT and CTTGT. Among the FgHtf1 target genes were FgHTF1 itself and several important conidiation-related genes (e.g., FgCON7), the chitin synthase pathway genes, and the aurofusarin biosynthetic pathway genes. In addition, FgHtf1 may regulate the cAMP-protein kinase A (PKA)-Msn2/4 and Ca2+-calcineurin-Crz1 pathways. Taken together, these results suggest that, in addition to autoregulation, FgHtf1 also controls global gene expression and promotes a shift to aerial growth and conidiation in F. graminearum by activation of FgCON7 or other conidiation-related genes.IMPORTANCE The homeobox gene family of transcription factors is known to be involved in the development and conidiation of filamentous fungi. However, the regulatory mechanisms and downstream targets of homeobox genes remain unclear. FgHtf1 is a homeobox transcription factor that is required for phialide development and conidiogenesis in the plant pathogen F. graminearum In this study, we identified FgHtf1-controlled target genes and binding motifs. We found that, besides autoregulation, FgHtf1 also controls global gene expression and promotes conidiation in F. graminearum by activation of genes necessary for aerial growth, FgCON7, and other conidiation-related genes.


Assuntos
Proteínas Fúngicas/genética , Fusarium/fisiologia , Regulação Fúngica da Expressão Gênica , Micélio/genética , Esporos Fúngicos/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Perfilação da Expressão Gênica
11.
Environ Microbiol ; 20(9): 3378-3392, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30105886

RESUMO

Sec4/Rab8 is one of the well-studied members of the Rab GTPase family, previous studies have shown that Sec4/Rab8 crucially promotes the pathogenesis of phytopathogens, but the upstream regulators of Rab8 are still unknown. Here, we have identified two Sec2 homologues FgSec2A and FgSec2B in devastating fungal pathogen Fusarium graminearum and investigated their functions and interactions with FgRab8 by live-cell imaging, genetic and functional analyses. Yeast two-hybrid assay shows that FgSec2A specifically interacts with FgRab8DN(N123I) and itself. Importantly, FgSec2A is required for growth, conidiation, DON production and virulence of F. graminearum. Live-cell imaging shows that FgSec2A and FgSec2B are both localized to the tip region of hyphae and conidia. Both N-terminal region and Sec2 domain of FgSec2A are essential for its function, but not for localization, whereas the C-terminal region is important for its polarized localization. Furthermore, constitutively active FgRab8CA(Q69L) partially rescues the defects of ΔFgsec2A. Consistently, FgSec2A is required for the polarized localization of FgRab8. Finally, FgSec2A and FgSec2B show partial functions, but FgSec2A does not interact and co-localize with FgSec2B. Taken together, these results indicate that FgSec2A acts as a FgRab8 guanine nucleotide exchange factor and is necessary for polarized growth, DON production and pathogenicity in F. graminearum.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Tricotecenos/biossíntese , Triticum/microbiologia , Polaridade Celular , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/genética , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Hifas/patogenicidade , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade , Virulência
12.
New Phytol ; 219(2): 654-671, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676464

RESUMO

Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum.


Assuntos
Polaridade Celular , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Multimerização Proteica , Nexinas de Classificação/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Fúngicas/química , Fusarium/genética , Fusarium/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Deleção de Genes , Genes Fúngicos , Microtúbulos/metabolismo , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Esporos Fúngicos/metabolismo , Relação Estrutura-Atividade , Vesículas Transportadoras/metabolismo , Virulência
13.
PLoS Genet ; 11(12): e1005704, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26658729

RESUMO

The retromer mediates protein trafficking through recycling cargo from endosomes to the trans-Golgi network in eukaryotes. However, the role of such trafficking events during pathogen-host interaction remains unclear. Here, we report that the cargo-recognition complex (MoVps35, MoVps26 and MoVps29) of the retromer is essential for appressorium-mediated host penetration by Magnaporthe oryzae, the causal pathogen of the blast disease in rice. Loss of retromer function blocked glycogen distribution and turnover of lipid bodies, delayed nuclear degeneration and reduced turgor during appressorial development. Cytological observation revealed dynamic MoVps35-GFP foci co-localized with autophagy-related protein RFP-MoAtg8 at the periphery of autolysosomes. Furthermore, RFP-MoAtg8 interacted with MoVps35-GFP in vivo, RFP-MoAtg8 was mislocalized to the vacuole and failed to recycle from the autolysosome in the absence of the retromer function, leading to impaired biogenesis of autophagosomes. We therefore conclude that retromer is essential for autophagy-dependent plant infection by the rice blast fungus.


Assuntos
Magnaporthe/genética , Oryza/genética , Doenças das Plantas/genética , Transporte Proteico/genética , Sequência de Aminoácidos , Autofagia/genética , Glicogênio/metabolismo , Interações Hospedeiro-Patógeno/genética , Gotículas Lipídicas/metabolismo , Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Vacúolos/genética , Vacúolos/microbiologia , Rede trans-Golgi/genética
14.
Environ Microbiol ; 19(10): 4301-4317, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28836715

RESUMO

Vps17 is a sorting nexin (SNX) and a component of the retromer, a protein complex mediating retrograde vesicle transport between endosomes and the trans-Golgi network. However, its role in the development and pathogenicity of filamentous fungi such as the rice blast fungus (Magnaporthe oryzae) remains unclear. We investigate the functional relationship between the SNX and the cargo-selective complex (CSC) of the fungal retromer by genetic analysis, live cell imaging and immunological assay. Our data show that the MoVps17 null mutation causes defects in growth, development and pathogenicity in M. oryzae. MoVps17 is localized to endosomes depending on the activity of phosphatidylinositol 3-kinase (PI3K), a key enzyme for fungal development and infection. Both PX and BAR domains of MoVps17 are essential for its endosomal localization and function. Furthermore, our yeast two-hybrid assays show that MoVps17 and MoVps5 can interact. Lastly, live cell imaging suggests that MoVps17 can regulate early endosome fusion and budding as well as endocytosis. Taken together, our results suggest that MoVps17 specifically functions as a retromer component with CSC and also plays a distinct role in the regulation of endosome dynamics during fungal development and plant infection.


Assuntos
Transporte Biológico/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/genética , Magnaporthe/patogenicidade , Oryza/microbiologia , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/genética , Transporte Biológico/fisiologia , Endocitose/genética , Endossomos/metabolismo , Proteínas Fúngicas/genética , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases , Doenças das Plantas/microbiologia , Nexinas de Classificação/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
15.
Environ Microbiol ; 18(11): 3742-3757, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26971885

RESUMO

Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The vacuolar protein sorting (Vps) protein Vps27 is a component of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway during endocytosis. In this study, we investigated the function of FgVps27 using a gene replacement strategy. The FgVPS27 deletion mutant (ΔFgvps27) exhibited a reduction in growth rate, aerial hyphae formation and hydrophobicity. It also showed increased sensitivity to cell wall-damaging agents and to osmotic stresses. In addition, FgHog1, the critical component of high osmolarity glycerol response pathway, was mis-localized in the ΔFgvps27 mutant upon NaCl treatment. Furthermore, the ΔFgvps27 mutant was defective in conidial production and was unable to generate perithecium in sexual reproduction. The depletion of FgVPS27 also caused a significant reduction in virulence. Further analysis by domain-specific deletion revealed that the FYVE domain was essential for the FgVps27 function and was necessary for the proper localization of FgVps27-GFP and endocytosis. Another component of ESCRT-0, the FgVps27-interacting partner FgHse1, also played an important role in F. graminearum development and pathogenesis. Overall, our results indicate that ESCRT-0 components play critical roles in a variety of cellular and biological processes.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Hifas/crescimento & desenvolvimento , Parede Celular/genética , Parede Celular/metabolismo , Grão Comestível/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Pressão Osmótica , Transporte Proteico , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Virulência
16.
New Phytol ; 210(4): 1327-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26875543

RESUMO

In eukaryotes, the retromer is an endosome-localized complex involved in protein retrograde transport. However, the role of such intracellular trafficking events in pathogenic fungal development and pathogenicity remains unclear. The role of the retromer complex in Fusarium graminearum was investigated using cell biological and genetic methods. We observed the retromer core component FgVps35 (Vacuolar Protein Sorting 35) in the cytoplasm as fast-moving puncta. FgVps35-GFP co-localized with both early and late endosomes, and associated with the trans-Golgi network (TGN), suggesting that FgVps35 functions at the donor endosome membrane to mediate TGN trafficking. Disruption of microtubules with nocodazole significantly restricted the transportation of FgVps35-GFP and resulted in severe germination and growth defects. Mutation of FgVPS35 not only mimicked growth defects induced by pharmacological treatment, but also affected conidiation, ascospore formation and pathogenicity. Using yeast two-hybrid assays, we determined the interactions among FgVps35, FgVps26, FgVps29, FgVps17 and FgVps5 which are analogous to the yeast retromer complex components. Deletion of any one of these genes resulted in similar phenotypic defects to those of the ΔFgvps35 mutant and disrupted the stability of the complex. Overall, our results provide the first clear evidence of linkage between the retrograde transport mediated by the retromer complex and virulence in F. graminearum.


Assuntos
Fusarium/genética , Rede trans-Golgi/metabolismo , Endossomos/metabolismo , Fusarium/citologia , Fusarium/metabolismo , Fusarium/patogenicidade , Membranas Intracelulares/metabolismo , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Virulência
17.
Environ Microbiol ; 17(11): 4580-99, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26177389

RESUMO

Rab GTPases represent the largest subfamily of Ras-related small GTPases and regulate membrane trafficking. Vesicular transport is a general mechanism that governs intracellular membrane trafficking along the endocytic and exocytic pathways in all eukaryotic cells. Fusarium graminearum is a filamentous fungus and causes the devastating and economically important head blight of wheat and related species. The mechanism of vesicular transport is not well understood, and little is known about Rab GTPases in F. graminearum. In this study, we systematically characterized all eleven FgRabs by live cell imaging and genetic analysis. We find that FgRab51 and FgRab52 are important for the endocytosis, FgRab7 localizes to the vacuolar membrane and regulates the fusion of vacuoles and autophagosomes, and FgRab8 and FgRab11 are important for polarized growth and/or exocytosis. Furthermore, both endocytic and exocytic FgRabs are required for vegetative growth, conidiogenesis, sexual reproduction, as well as pathogenesis and deoxynivalenol metabolism in F. graminearum. Thus, we conclude that Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in F. graminearum.


Assuntos
Exocitose/genética , Fusarium/patogenicidade , Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Exocitose/fisiologia , Fusarium/genética , Deleção de Genes , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Alinhamento de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Tricotecenos/metabolismo , Triticum/microbiologia , Virulência , Proteínas rab de Ligação ao GTP/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-39283796

RESUMO

Large Language Models (LLMs) are powerful but also raise significant security concerns, particularly regarding the harm they can cause, such as generating fake news that manipulates public opinion on social media and providing responses to unethical activities. Traditional red teaming approaches for identifying AI vulnerabilities rely on manual prompt construction and expertise. This paper introduces AdversaFlow, a novel visual analytics system designed to enhance LLM security against adversarial attacks through human-AI collaboration. AdversaFlow involves adversarial training between a target model and a red model, featuring unique multi-level adversarial flow and fluctuation path visualizations. These features provide insights into adversarial dynamics and LLM robustness, enabling experts to identify and mitigate vulnerabilities effectively. We present quantitative evaluations and case studies validating our system's utility and offering insights for future AI security solutions. Our method can enhance LLM security, supporting downstream scenarios like social media regulation by enabling more effective detection, monitoring, and mitigation of harmful content and behaviors.

19.
Int J Surg Pathol ; 32(7): 1286-1291, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38321785

RESUMO

Background. Lung carcinoma with p40/TTF1 coexpression (LC-PTC) is a very rare tumor with poor prognosis, and few cases have been reported to date. Objectives. To better understand biological behavior and prognosis of LC-PTC. Methods. We collected 9 examples of LC-PTC and compared them with 36 lung adenosquamous carcinomas during the same period in clinicopathologic characteristics, biologic behaviour, and prognosis. Results. Lung carcinoma with p40/TTF1 coexpression mainly occurred in middle-aged and elderly men; 8 tumors belonged to the peripheral type, and 1 belonged to the central type. The rates of lymph node and distant metastasis were 88% (7/8) and 50% (4/8), respectively; 2 patients died during follow-up. Histologically, the LC-PTC showed nest-like growth pattern without glandular growth pattern; the surface of 2 tumors was covered with ciliated columnar epithelium and tumor cells grew under the columnar epithelium. In all patients, tumor cells diffusely coexpressed p40 and TTF1. Although there was no significant difference in the maximum diameter of tumor with lymph node metastasis or with distant metastasis between LC-PTC and lung adenosquamous carcinoma, LC-PTC had a higher rate of lymph node metastasis and distant metastasis. There was no significant difference in overall survival of patients between LC-PTC and lung adenosquamous carcinoma. Additional histologic evaluation of normal pulmonary structures revealed that p40/TTF1 coexpression cells existed in bronchial mucosa and the number of cells coexpressing p40/TTF1 increased gradually from proximal bronchus to distal bronchus. Conclusions. Lung carcinoma with p40/TTF1 coexpression is a rare tumor with high metastatic potential and may originate from p40/TTF1 coexpression cells in distal bronchial mucosa.


Assuntos
Biomarcadores Tumorais , Carcinoma Adenoescamoso , Proteínas de Ligação a DNA , Neoplasias Pulmonares , Fatores de Transcrição , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Carcinoma Adenoescamoso/patologia , Carcinoma Adenoescamoso/diagnóstico , Carcinoma Adenoescamoso/mortalidade , Carcinoma Adenoescamoso/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Prognóstico , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/análise , Adulto , Metástase Linfática/patologia , Metástase Linfática/diagnóstico , Idoso de 80 Anos ou mais
20.
J Agric Food Chem ; 72(17): 9637-9646, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642053

RESUMO

Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.


Assuntos
Proteínas Fúngicas , Fusarium , Núcleosídeo-Difosfato Quinase , Doenças das Plantas , Esporos Fúngicos , Tricotecenos , Fusarium/genética , Fusarium/enzimologia , Fusarium/metabolismo , Fusarium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Tricotecenos/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Regulação Fúngica da Expressão Gênica , Virulência , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA