Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992711

RESUMO

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Esclerose Múltipla , Masculino , Feminino , Camundongos , Animais , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Progressão da Doença , Receptores Dopaminérgicos
2.
Nature ; 608(7923): 593-602, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714668

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Epitopos de Linfócito B , Tolerância Imunológica , Mutação , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Imunidade Humoral , Imunização Secundária , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(44): e2310174120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883437

RESUMO

α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Vesículas Sinápticas/metabolismo , Lisofosfatidilcolinas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosfolipídeos/metabolismo
4.
Nature ; 569(7757): 581-585, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043749

RESUMO

Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Algas/metabolismo , Ácido Ascórbico/metabolismo , Biocatálise , Chlamydomonas reinhardtii/enzimologia , DNA/química , DNA/metabolismo , 5-Metilcitosina/química , Dióxido de Carbono/metabolismo , Metilação de DNA , Glioxilatos/metabolismo , Nucleosídeos/química , Nucleosídeos/metabolismo , Fotossíntese
5.
Mol Cell ; 68(1): 198-209.e6, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985504

RESUMO

In addition to responding to environmental entrainment with diurnal variation, metabolism is also tightly controlled by cell-autonomous circadian clock. Extensive studies have revealed key roles of transcription in circadian control. Post-transcriptional regulation for the rhythmic gating of metabolic enzymes remains elusive. Here, we show that arginine biosynthesis and subsequent ureagenesis are collectively regulated by CLOCK (circadian locomotor output cycles kaput) in circadian rhythms. Facilitated by BMAL1 (brain and muscle Arnt-like protein), CLOCK directly acetylates K165 and K176 of argininosuccinate synthase (ASS1) to inactivate ASS1, which catalyzes the rate-limiting step of arginine biosynthesis. ASS1 acetylation by CLOCK exhibits circadian oscillation in human cells and mouse liver, possibly caused by rhythmic interaction between CLOCK and ASS1, leading to the circadian regulation of ASS1 and ureagenesis. Furthermore, we also identified NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 (NDUFA9) and inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) as acetylation substrates of CLOCK. Taken together, CLOCK modulates metabolic rhythmicity by acting as a rhythmic acetyl-transferase for metabolic enzymes.


Assuntos
Fatores de Transcrição ARNTL/genética , Argininossuccinato Sintase/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Processamento de Proteína Pós-Traducional , Ureia/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Acetilação , Animais , Arginina/biossíntese , Argininossuccinato Sintase/metabolismo , Proteínas CLOCK/metabolismo , Linhagem Celular Tumoral , Relógios Circadianos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Transdução de Sinais
6.
Nucleic Acids Res ; 51(2): e12, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36477375

RESUMO

The hub metabolite, nicotinamide adenine dinucleotide (NAD), can be used as an initiating nucleotide in RNA synthesis to result in NAD-capped RNAs (NAD-RNA). Since NAD has been heightened as one of the most essential modulators in aging and various age-related diseases, its attachment to RNA might indicate a yet-to-be discovered mechanism that impacts adult life-course. However, the unknown identity of NAD-linked RNAs in adult and aging tissues has hindered functional studies. Here, we introduce ONE-seq method to identify the RNA transcripts that contain NAD cap. ONE-seq has been optimized to use only one-step chemo-enzymatic biotinylation, followed by streptavidin capture and the nudix phosphohydrolase NudC-catalyzed elution, to specifically recover NAD-capped RNAs for epitranscriptome and gene-specific analyses. Using ONE-seq, we discover more than a thousand of previously unknown NAD-RNAs in the mouse liver and reveal epitranscriptome-wide dynamics of NAD-RNAs with age. ONE-seq empowers the identification of NAD-capped RNAs that are responsive to distinct physiological states, facilitating functional investigation into this modification.


Assuntos
NAD , Capuzes de RNA , Animais , Camundongos , NAD/genética , NAD/metabolismo , Nucleotídeos , Monoéster Fosfórico Hidrolases , Capuzes de RNA/genética , Transcriptoma , Epigênese Genética
7.
Anal Chem ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149969

RESUMO

The distribution of small biomolecules, particularly amino acids (AAs), differs between normal cells and cancer cells. Imaging this distribution is crucial for gaining a deeper understanding of their physiological and pathological significance. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) provides accurate in situ visualization information. However, the analysis of AAs remains challenging due to the background interference by conventional MALDI matrices. On tissue chemical derivatization (OTCD) MSI serves as an important approach to resolve this issue. We designed, synthesized, and tested a series of pyridinium salt probes and screened out the 1-(4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)phenyl)-2,4,6-triphenylpyridin-1-ium (DCT) probe with the highest reaction efficiency and the most effective detection. Moreover, a quantum chemistry calculation was executed to address mechanistic insight into the chemical nature of the novel probes. DCT was found to map 20 common AAs in normal mouse tissues for the first time, which allowed differentiation of AA distribution in normal, normal interstitium, tumor, and tumor interstitium regions and provided potential mechanistic insights for cancer research and other biomedical studies.

8.
J Virol ; 97(10): e0091623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772826

RESUMO

IMPORTANCE: Gaining insight into the cell-entry mechanisms of swine acute diarrhea syndrome coronavirus (SADS-CoV) is critical for investigating potential cross-species infections. Here, we demonstrated that pretreatment of host cells with tunicamycin decreased SADS-CoV attachment efficiency, indicating that N-linked glycosylation of host cells was involved in SADS-CoV entry. Common N-linked sugars Neu5Gc and Neu5Ac did not interact with the SADS-CoV S1 protein, suggesting that these molecules were not involved in SADS-CoV entry. Additionally, various host proteases participated in SADS-CoV entry into diverse cells with different efficiencies. Our findings suggested that SADS-CoV may exploit multiple pathways to enter cells, providing insights into intervention strategies targeting the cell entry of this virus.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Endopeptidases , Glicoproteínas , Doenças dos Suínos , Suínos , Internalização do Vírus , Animais , Alphacoronavirus/fisiologia , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Endopeptidases/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Suínos/virologia , Doenças dos Suínos/enzimologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Internalização do Vírus/efeitos dos fármacos , Tunicamicina/farmacologia , Glicosilação
9.
Drug Metab Dispos ; 52(3): 188-197, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123940

RESUMO

Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 µM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.


Assuntos
Neoplasias da Mama , Citocromo P-450 CYP1A2 , Furanos , Fenantrenos , Quinonas , Humanos , Feminino , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulação de Acoplamento Molecular , Cinética , Citocromo P-450 CYP1B1/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo
10.
Drug Metab Dispos ; 52(8): 911-918, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38849209

RESUMO

Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.


Assuntos
Arsenitos , Sistema Enzimático do Citocromo P-450 , Interações Medicamentosas , Ratos Sprague-Dawley , Animais , Arsenitos/toxicidade , Arsenitos/farmacocinética , Masculino , Ratos , Sistema Enzimático do Citocromo P-450/metabolismo , Absorção Intestinal/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Omeprazol/farmacologia , Omeprazol/farmacocinética , Midazolam/farmacocinética , Cafeína/farmacocinética , Clorzoxazona/farmacocinética , Metoprolol/farmacocinética , Metoprolol/farmacologia , Tolbutamida/farmacocinética , Compostos de Sódio/toxicidade , Compostos de Sódio/farmacocinética
11.
Opt Express ; 32(1): 313-324, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175058

RESUMO

Magnetic-free nonreciprocal optical devices have attracted great attention in recent years. Here, we investigated the magnetic-free polarization rotation of light in an atom vapor cell. Two mechanisms of magnetic-free nonreciprocity have been realized in ensembles of hot atoms, including electromagnetically induced transparency and optically-induced magnetization. For a linearly polarized input probe light, a rotation angle up to 86.4° has been realized with external control and pump laser powers of 10 mW and is mainly attributed to the optically-induced magnetization effect. Our demonstration offers a new approach to realize nonreciprocal devices, which can be applied to solid-state atom ensembles and may be useful in photonic integrated circuits.

12.
Chem Res Toxicol ; 37(7): 1104-1112, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885202

RESUMO

Chlortoluron (CTU) is an herbicide extensively used in agricultural settings for crop cultivation. Its presence in water has been identified as a pollutant detrimental to aquatic species. The objective of the present study was to explore the metabolic activation and hepatotoxicity of CTU. Through human and rat liver microsomal incubations supplemented with CTU, nicotinamide adenine dinucleotide phosphate (NADPH), and either glutathione or N-acetyl cysteine, a benzylic alcohol metabolite (M1) was discerned, alongside a phenol metabolite (M2), a glutathione conjugate (M3), and an N-acetyl cysteine conjugate (M4). In rats exposed to CTU, biliary M3 and urinary M4 were detected in their bile and urine, respectively. The generation of M1 was detected in the presence of NADPH. The observation of M3 and M4 suggests the formation of an iminoquinone methide intermediate arising from the oxidation of M1. CYP3A4 was found to be the principal enzyme catalyzing the metabolic activation of CTU. Furthermore, CTU exhibited cytotoxic properties in cultured rat primary hepatocytes in a concentration-dependent pattern. Concomitant treatment of hepatocytes with ketoconazole mitigated their susceptibility to the cytotoxic effects of CTU.


Assuntos
Citocromo P-450 CYP3A , Hepatócitos , Microssomos Hepáticos , Animais , Ratos , Citocromo P-450 CYP3A/metabolismo , Humanos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley , Ativação Metabólica , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Estrutura Molecular , Herbicidas/toxicidade , Herbicidas/metabolismo , Relação Dose-Resposta a Droga
13.
Chem Res Toxicol ; 37(6): 935-943, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761382

RESUMO

Amitriptyline (ATL), a tricyclic antidepressant, has been reported to cause various adverse effects, particularly hepatotoxicity. The mechanisms of ATL-induced hepatotoxicity remain unknown. The study was performed to identify the olefin epoxidation metabolite of ATL and determine the possible toxicity mechanism. Two glutathione (GSH) conjugates (M1 and M2) and two N-acetylcysteine (NAC) conjugates (M3 and M4) were detected in rat liver microsomal incubations supplemented with GSH and NAC, respectively. Moreover, M1/M2 and M3/M4 were respectively found in ATL-treated rat primary hepatocytes and in bile and urine of rats given ATL. Recombinant P450 enzyme incubations demonstrated that CYP3A4 was the primary enzyme involved in the olefin epoxidation of ATL. Treatment of hepatocytes with ATL resulted in significant cell death. Inhibition of CYP3A attenuated the susceptibility to the observed cytotoxicity of ATL. The metabolic activation of ATL most likely participates in the cytotoxicity of ATL.


Assuntos
Amitriptilina , Citocromo P-450 CYP3A , Compostos de Epóxi , Hepatócitos , Microssomos Hepáticos , Ratos Sprague-Dawley , Animais , Amitriptilina/metabolismo , Ratos , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Compostos de Epóxi/metabolismo , Compostos de Epóxi/toxicidade , Compostos de Epóxi/química , Glutationa/metabolismo , Células Cultivadas
14.
Arch Toxicol ; 98(4): 1095-1110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369618

RESUMO

Chlorzoxazone (CZX), a benzoxazolone derivative, has been approved for the treatment of musculoskeletal disorders to relieve localized muscle spasm. However, its idiosyncratic toxicity reported in patients brought attention, particularly for hepatotoxicity. The present study for the first time aimed at the relationship between CZX-induced hepatotoxicity and identification of oxirane intermediate resulting from metabolic activation of CZX. Two N-acetylcysteine (NAC) conjugates (namely M1 and M2) and two glutathione (GSH) conjugates (namely M3 and M4) were detected in rat & human microsomal incubations with CZX (200 µM) fortified with NAC or GSH, respectively. The formation of M1-M4 was NADPH-dependent and these metabolites were also observed in urine or bile of SD rats given CZX intragastrically at 10 mg/kg or 25 mg/kg. NAC was found to attach at C-6' of the benzo group of M1 by sufficient NMR data. CYPs3A4 and 3A5 dominated the metabolic activation of CZX. The two GSH conjugates were also observed in cultured rat primary hepatocytes after exposure to CZX. Inhibition of CYP3A attenuated the susceptibility of hepatocytes to the cytotoxicity of CZX (10-400 µM). The in vitro and in vivo studies provided solid evidence for the formation of oxirane intermediate of CZX. This would facilitate the understanding of the underlying mechanisms of toxic action of CZX.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clorzoxazona , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Ativação Metabólica , Ratos Sprague-Dawley , Microssomos Hepáticos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Compostos de Epóxi/metabolismo , Glutationa/metabolismo
15.
Med Sci Monit ; 30: e943196, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347712

RESUMO

BACKGROUND Ankylosing spondylitis (AS), a chronic inflammatory disease predominantly causing back pain, affects up to 0.5% of the global population, more commonly in males. Frequently undiagnosed in early stages, AS is often associated with comorbid depression and anxiety, imposing significant healthcare burdens. Despite available pharmaceutical treatments, exercise therapy (ET) has emerged as an effective, side-effect-free alternative, particularly for managing AS-induced back pain. This study aims to explore the research trends in ET for treating AS back pain from 2004-2023. MATERIAL AND METHODS A comprehensive analysis of 437 articles, sourced from the Science Citation Index-Expanded within the Web of Science Core Collection, was conducted using CiteSpace 6.2.R5. This study spanned from 2004 to October 15, 2023, examining publications, authors, institutions, and keywords to assess keyword co-occurrences, temporal progressions, and citation bursts. RESULTS Research interest in ET for AS began escalating around 2008 and has since shown steady growth. The USA emerged as a significant contributor, with Van der Heijde, Desiree, and RUDWALEIT M being notable authors. Key institutions include Assistance Publique Hopitaux Paris and UDICE-French Research Universities, with ANN RHEUM DIS being the most influential journal. The field's evolution is marked by interdisciplinary integration and branching into various sub-disciplines. CONCLUSIONS Exercise therapy for AS-induced back pain is a growing research area, necessitating further exploration in clinical management and rehabilitation strategies. The relationship between ET and osteoimmunological mechanisms remains a focal point for future research, with a trend towards personalized and interdisciplinary treatment approaches.


Assuntos
Espondilite Anquilosante , Masculino , Humanos , Espondilite Anquilosante/terapia , Terapia por Exercício , Exercício Físico , Dor nas Costas/terapia , Bibliometria
16.
J Emerg Med ; 67(1): e1-e9, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824036

RESUMO

BACKGROUND: Severe acute pancreatitis (SAP) has high mortality. Early identification of high-risk factors that may progress to SAP and active intervention measures may improve the prognosis of SAP patients. OBJECTIVE: Clinical data within 24 h after admission were retrospectively analyzed to provide an evidence for early screening of high-risk factors in patients with SAP. METHODS: A review of clinical data of acute pancreatitis patients from January 1, 2018, to December 31, 2022, was conducted. We compared the clinical data of SAP and non-SAP patients, and a multivariable logistic regression model was used to identify the independent predictors of SAP. The receiver operating characteristic (ROC) curve of SAP was drawn for continuous numerical variables to calculate the optimal clinical cutoff value of each variable, and the predictive value of each variable was compared by the area under the ROC curve. RESULTS: Based on the multivariate logistic regression analysis of Age (odds ratio (OR), 1.032;95% confident interval (CI),1.018-1.046, p < 0.001), body mass index (BMI) (OR, 1.181; 95% CI,1.083-1.288, p < 0.001), Non-HTGAP (nonhypertriglyceridemic acute pancreatitis) (OR, 2.098; 95% CI,1.276-3.45, p = 0.003), white blood cell count (WBC) (OR,1.072; 95% CI,1.034-1.111, p < 0.001), procalcitonin (PCT) (OR, 1.060; 95% CI, 1.027-1.095, p < 0.001), serum calcium (Ca) (OR,0.121; 95% CI, 0.050-0.292, p < 0.001), computed tomography severity index (CTSI) ≥4 (OR,12.942;95% CI,7.267-23.049, p < 0.001) were identified as independent risk factors for SAP. The area under the ROC curve (AUC) and optimal CUT-OFF values of continuous numerical variables for predicting SAP were Age (0.6079,51.5), BMI (0.6,23.25), WBC (0.6701,14.565), PCT (0.7086, 0.5175), Ca (0.7787,1.965), respectively. CONCLUSION: Age, BMI, non-HTGAP, WBC, PCT, serum Ca and CTSI≥4 have good predictive value for SAP.


Assuntos
Pancreatite , Curva ROC , Humanos , Masculino , Feminino , Fatores de Risco , Pessoa de Meia-Idade , Estudos Retrospectivos , Pancreatite/sangue , Pancreatite/complicações , Modelos Logísticos , Adulto , Idoso , Hospitalização/estatística & dados numéricos
17.
Anal Chem ; 95(16): 6533-6541, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042095

RESUMO

Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics provides comprehensive and quantitative profiling of metabolites in clinical investigations. The use of whole metabolome profiles is a promising strategy for disease diagnosis but technically challenging. Here, we developed an approach, namely MetImage, to encode LC-MS-based untargeted metabolomics data into multi-channel digital images. Then, the images that represent the comprehensive metabolome profiles can be employed for developing deep learning-based AI models toward clinical diagnosis. In this work, we demonstrated the application of MetImage for clinical screening of esophageal squamous cell carcinoma (ESCC) in a clinical cohort with 1104 participants. A convolutional neuronal network-based AI model was trained to distinguish ESCC screening positive and negative subjects using their serum metabolomics data. Superior performances such as sensitivity (85%), specificity (92%), and area under curve (0.95) were validated in an independent testing cohort (N = 442). Importantly, we demonstrated that our AI-based ESCC screening model is not a "black box". The encoded images reserved the characteristics of mass spectra from the raw LC-MS data; therefore, metabolite identifications in key image features were readily achieved. Altogether, MetImage is a unique approach that encodes raw LC-MS-based untargeted metabolomics data into images and facilitates the utilization of whole metabolome profiles for AI-based clinical applications with improved interpretability.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Metaboloma , Inteligência Artificial
18.
Anal Chem ; 95(37): 13913-13921, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37664900

RESUMO

The development of ion mobility-mass spectrometry (IM-MS) has revolutionized the analysis of small molecules, such as metabolomics, lipidomics, and exposome studies. The curation of comprehensive reference collision cross-section (CCS) databases plays a pivotal role in the successful application of IM-MS for small-molecule analysis. In this study, we presented AllCCS2, an enhanced version of AllCCS, designed for the universal prediction of the ion mobility CCS values of small molecules. AllCCS2 incorporated newly available experimental CCS data, including 10,384 records and 7713 unified values, as training data. By leveraging a neural network trained on diverse molecular representations encompassing mass spectrometry features, molecular descriptors, and graph features extracted using a graph convolutional network, AllCCS2 achieved exceptional prediction accuracy. AllCCS2 achieved median relative error (MedRE) values of 0.31, 0.72, and 1.64% in the training, validation, and testing sets, respectively, surpassing existing CCS prediction tools in terms of accuracy and coverage. Furthermore, AllCCS2 exhibited excellent compatibility with different instrument platforms (DTIMS, TWIMS, and TIMS). The prediction uncertainties in AllCCS2 from the training data and the prediction model were comprehensively investigated by using representative structure similarity and model prediction variation. Notably, small molecules with high structural similarities to the training set and lower model prediction variation exhibited improved accuracy and lower relative errors. In summary, AllCCS2 serves as a valuable resource to support applications of IM-MS technologies. The AllCCS2 database and tools are freely accessible at http://allccs.zhulab.cn/.


Assuntos
Ascomicetos , Expossoma , Bases de Dados Factuais , Espectrometria de Mobilidade Iônica , Lipidômica
19.
Drug Metab Rev ; 55(1-2): 1-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823774

RESUMO

Endogenous estradiol (E2) exerts diverse physiological and pharmacological activities, commonly used for hormone replacement therapy. However, prolonged and excessive exposure to E2 potentially increases estrogenic cancer risk. Reportedly, CYP1 enzyme-mediated biotransformation of E2 is largely concerned with its balance between detoxification and carcinogenic pathways. Among the three key CYP1 enzymes (CYP1A1, CYP1A2, and CYP1B1), CYP1A1 and CYP1A2 mainly catalyze the formation of nontoxic 2-hydroxyestradiol (2-OH-E2), while CYP1B1 specifically catalyzes the formation of genotoxic 4-hydroxyestradiol (4-OH-E2). 4-OH-E2 can be further metabolized to electrophilic quinone intermediates accompanied by the generation of reactive oxygen species (ROS), triggering DNA damage. Since abnormal alterations in CYP1 activities can greatly affect the bioactivation process of E2, regulatory effects of xenobiotics on CYP1s are essential for E2-associated cancer development. To date, thousands of natural and synthetic compounds have been found to show potential inhibition and/or induction actions on the three CYP1 members. Generally, these chemicals share similar planar polycyclic skeletons, the structural motifs and substituent groups of which are important for their inhibitory/inductive efficiency and selectivity toward CYP1 enzymes. This review comprehensively summarizes these known inhibitors and/or inductors of E2-metabolizing CYP1s based on chemical categories and discusses their structure-activity relationships, which would contribute to better understanding of the correlation between xenobiotic-regulated CYP1 activities and estrogenic cancer susceptibility.


Assuntos
Citocromo P-450 CYP1A2 , Neoplasias , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Família 1 do Citocromo P450/metabolismo , Xenobióticos/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Biotransformação
20.
Bioinformatics ; 38(2): 568-569, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34432001

RESUMO

SUMMARY: Accurate and efficient compound annotation is a long-standing challenge for LC-MS-based data (e.g. untargeted metabolomics and exposomics). Substantial efforts have been devoted to overcoming this obstacle, whereas current tools are limited by the sources of spectral information used (in-house and public databases) and are not automated and streamlined. Therefore, we developed metID, an R package that combines information from all major databases for comprehensive and streamlined compound annotation. metID is a flexible, simple and powerful tool that can be installed on all platforms, allowing the compound annotation process to be fully automatic and reproducible. A detailed tutorial and a case study are provided in Supplementary Materials. AVAILABILITY AND IMPLEMENTATION: https://jaspershen.github.io/metID. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metabolômica , Bases de Dados Factuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA