Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(8): e2206167, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504426

RESUMO

Broadband infrared (IR) absorption is sought after for wide range of applications. Graphene can support IR plasmonic waves tightly bound to its surface, leading to an intensified near-field. However, the excitation of graphene plasmonic waves usually relies on resonances. Thus, it is still difficult to directly obtain both high near-field intensity and high absorption rate in ultra-broad IR band. Herein, a novel method is proposed to directly realize high near-field intensity in broadband IR band by graphene coated manganous oxide microwires featured hierarchical nanostructures (HNSs-MnO@Gr MWs) both experimentally and theoretically. Both near-field intensity and IR absorption of HNSs-MnO@Gr MWs are enhanced by at least one order of magnitude compared to microwires with smooth surfaces. The results demonstrate that the HNSs-MnO@Gr MWs support vibrational sensing of small organic molecules, covering the whole fingerprint region and function group region. Compared with the graphene-flake-based enhancers, the signal enhancement factors reach a record high of 103 . Furthermore, just a single HNSs-MnO@Gr MW can be constructed to realize sensitively photoresponse with high responsivity (over 3000 V W-1 ) from near-IR to mid-IR. The graphene coated dielectric hierarchical micro/nanoplatform with enhanced near-field intensity is scalable and can harness for potential applications including spectroscopy, optoelectronics, and sensing.

2.
J Phys Chem Lett ; 15(32): 8233-8239, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39102567

RESUMO

The microscopic structure of the material's solid-liquid interface significantly influences its physicochemical properties. Peak force infrared microscopy (PFIR) is a powerful technique for analyzing these interfaces at the nanoscale, revealing crucial structure-activity relationships. PFIR is recognized for its explicit photothermal signal generation mechanism but tends to overlook other photoinduced forces, which can disturb the obtained infrared spectra, thereby reducing spectral signal-to-noise ratio (SNR) and sensitivity. We have developed a multiphysics-coupled theoretical model to assess the magnitudes of various photoinduced forces in PFIR experiments and have found that the magnitude of the photoacoustic force is comparable to that of the photothermal expansion force in a liquid environment. Our calculations show that through simple modulation of the pulse waveform it is possible to effectively suppress the photoacoustic interference, thereby improving the SNR and sensitivity of PFIR. This work aims to alert researchers to the potential for strong photoacoustic interference in liquid-phase PFIR measurements and enhance the performance of PFIR by clarifying the photoinduced forces entangled in the signals.

3.
Nanoscale ; 15(19): 8863-8869, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37128810

RESUMO

Hot carriers injected into semiconductor enables below-bandgap photodetection, thus attracting increasing interest. The performance of hot carrier-based device is directly related to the absorptivity of metal. Several strategies such as surface plasmons, metamaterials, and optical cavities are utilized to enhance the weak intrinsic absorption of the metal. However, the detection range is limited by their narrow resonance bandwidth alternatively. Impedance-matched absorbers, whose sheet resistance is equal to half of the free-space impedance (188 Ω), can achieve a wavelength-independent absorptivity up to 50%. Herein, we theoretically design a purely planar hot-hole photodetector based on ultrathin gold film, a new type of metallic impedance-matched absorber. Benefiting both from the efficient absorption and ultrathin nature of the film, we predict that the photoresponsivity of our device can reach 35.7 mA W-1 under zero bias at the wavelength of 1.3 µm, with a full width at half maximum (FWHM) of detection range reaching 1050 nm, setting a new record for the bandwidth of the hot carrier photodetectors. We also demonstrated that the device is robust to the incident angle and can be tuned through the external bias voltage. This work provides a pathway for broadband hot carrier detectors and other hot carrier-based applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA