Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375399

RESUMO

Imidazole-based compounds are a series of heterocyclic compounds that exhibit a wide range of biological and pharmaceutical activities. However, those extant syntheses using conventional protocols can be time-costly, require harsh conditions, and result in low yields. As a novel and green technique, sonochemistry has emerged as a promising method for organic synthesis with several advantages over conventional methods, including enhancing reaction rates, improving yields, and reducing the use of hazardous solvents. Contemporarily, a growing body of ultrasound-assisted reactions have been applied in the preparation of imidazole derivatives, which demonstrated greater benefits and provided a new strategy. Herein, we introduce the brief history of sonochemistry and focus on the discussion of the multifarious approaches for the synthesis of imidazole-based compounds under ultrasonic irradiation and its advantages in comparison with conventional protocols, including typical name-reactions and various sorts of catalysts in those reactions.

2.
Molecules ; 25(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244317

RESUMO

Oxazole compounds, including one nitrogen atom and one oxygen atom in a five-membered heterocyclic ring, are present in various biological activities. Due to binding with a widespread spectrum of receptors and enzymes easily in biological systems through various non-covalent interactions, oxazole-based molecules are becoming a kind of significant heterocyclic nucleus, which have received attention from researchers globally, leading them to synthesize diverse oxazole derivatives. The van Leusen reaction, based on tosylmethylisocyanides (TosMICs), is one of the most appropriate strategies to prepare oxazole-based medicinal compounds. In this review, we summarize the recent advances of the synthesis of oxazole-containing molecules utilizing the van Leusen oxazole synthesis from 1972, aiming to look for potential oxazole-based medicinal compounds, which are valuable information for drug discovery and synthesis.


Assuntos
Técnicas de Química Sintética , Desenvolvimento de Medicamentos , Oxazóis/química , Oxazóis/síntese química , Relação Estrutura-Atividade
3.
Mol Neurobiol ; 60(10): 6121-6132, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421564

RESUMO

Neuropathic pain affects globally about 7-10% of the general population. Electroacupuncture (EA) effectively relieves neuropathic pain symptoms without causing any side effects; however, the underlying molecular mechanisms remain unclear. We established a chronic constriction injury (CCI)-induced rat model of neuropathic pain. RNA sequencing was used to screen for differentially expressed genes in the dorsal root ganglion after CCI and EA treatment. We identified gene markers of ferroptosis spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15) to be dysregulated in the CCI-induced neuropathic pain model. Furthermore, EA relieved CCI-induced pain as well as ferroptosis-related symptoms in the dorsal root ganglion, including lipid peroxidation and iron overload. Finally, SAT1 knockdown also alleviated mechanical and thermal pain hypersensitivity and reversed ferroptosis damage. In conclusion, we showed that EA inhibited ferroptosis by regulating the SAT1/ALOX15 pathway to treat neuropathic pain. Our findings provide insight into the mechanisms of EA and suggest a novel therapeutic target for neuropathic pain.


Assuntos
Eletroacupuntura , Ferroptose , Neuralgia , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo
4.
Pharmaceuticals (Basel) ; 13(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138202

RESUMO

Imidazole and its derivatives are one of the most vital and universal heterocycles in medicinal chemistry. Owing to their special structural features, these compounds exhibit a widespread spectrum of significant pharmacological or biological activities, and are widely researched and applied by pharmaceutical companies for drug discovery. The van Leusen reaction based on tosylmethylisocyanides (TosMICs) is one of the most appropriate strategies to synthetize imidazole-based medicinal molecules, which has been increasingly developed on account of its advantages. In this review, we summarize the recent developments of the chemical synthesis and bioactivity of imidazole-containing medicinal small molecules, utilizing the van Leusen imidazole synthesis from 1977.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA