Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519954

RESUMO

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Assuntos
Diamino Aminoácidos , Halomonas , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Pressão Osmótica , Perfilação da Expressão Gênica , Peroxidases/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 353, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819481

RESUMO

Hydroxyectoine is an important compatible solute that holds potential for development into a high-value chemical with broad applications. However, the traditional high-salt fermentation for hydroxyectoine production presents challenges in treating the high-salt wastewater. Here, we report the rational engineering of Halomonas salifodinae to improve the bioproduction of hydroxyectoine under lower-salt conditions. The comparative transcriptomic analysis suggested that the increased expression of ectD gene encoding ectoine hydroxylase (EctD) and the decreased expressions of genes responsible for tricarboxylic acid (TCA) cycle contributed to the increased hydroxyectoine production in H. salifodinae IM328 grown under high-salt conditions. By blocking the degradation pathway of ectoine and hydroxyectoine, enhancing the expression of ectD, and increasing the supply of 2-oxoglutarate, the engineered H. salifodinae strain HS328-YNP15 (ΔdoeA::PUP119-ectD p-gdh) produced 8.3-fold higher hydroxyectoine production than the wild-type strain and finally achieved a hydroxyectoine titer of 4.9 g/L in fed-batch fermentation without any detailed process optimization. This study shows the potential to integrate hydroxyectoine production into open unsterile fermentation process that operates under low-salinity and high-alkalinity conditions, paving the way for next-generation industrial biotechnology. KEY POINTS: • Hydroxyectoine production in H. salifodinae correlates with the salinity of medium • Transcriptomic analysis reveals the limiting factors for hydroxyectoine production • The engineered strain produced 8.3-fold more hydroxyectoine than the wild type.


Assuntos
Diamino Aminoácidos , Fermentação , Halomonas , Engenharia Metabólica , Halomonas/genética , Halomonas/metabolismo , Engenharia Metabólica/métodos , Diamino Aminoácidos/biossíntese , Diamino Aminoácidos/metabolismo , Diamino Aminoácidos/genética , Ciclo do Ácido Cítrico/genética , Perfilação da Expressão Gênica , Cloreto de Sódio/metabolismo , Salinidade , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácidos Cetoglutáricos/metabolismo
3.
World J Microbiol Biotechnol ; 40(5): 136, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499730

RESUMO

Photosynthetic diazotrophs expressing iron-only (Fe-only) nitrogenase can be developed into a promising biofertilizer, as it is independent on the molybdenum availability in the soil. However, the expression of Fe-only nitrogenase in diazotrophs is repressed by the fixed nitrogen of the soil, limiting the efficiency of nitrogen fixation in farmland with low ammonium concentrations that are inadequate for sustainable crop growth. Here, we succeeded in constitutively expressing the Fe-only nitrogenase even in the presence of ammonium by controlling the transcription of Fe-only nitrogenase gene cluster (anfHDGK) with the transcriptional activator of Mo nitrogenase (NifA*) in several different ways, indicating that the engineered NifA* strains can be used as promising chassis cells for efficient expression of different types of nitrogenases. When applied as a biofertilizer, the engineered Rhodopseudomonas palustris effectively stimulated rice growth, contributing to the reduced use of chemical fertilizer and the development of sustainable agriculture.


Assuntos
Compostos de Amônio , Oryza , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Nitrogênio/metabolismo , Solo
4.
Adv Appl Microbiol ; 114: 1-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33934850

RESUMO

Isoprenoids, as the largest group of chemicals in the domains of life, constitute more than 50,000 members. These compounds consist of different numbers of isoprene units (C5H8), by which they are typically classified into hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15), diterpenoids (C20), triterpenoids (C30), and tetraterpenoids (C40). In recent years, isoprenoids have been employed as food additives, in the pharmaceutical industry, as advanced biofuels, and so on. To realize the sufficient and efficient production of valuable isoprenoids on an industrial scale, fermentation using engineered microorganisms is a promising strategy compared to traditional plant extraction and chemical synthesis. Due to the advantages of mature genetic manipulation, robustness and applicability to industrial bioprocesses, Saccharomyces cerevisiae has become an attractive microbial host for biochemical production, including that of various isoprenoids. In this review, we summarized the advances in the biosynthesis of isoprenoids in engineered S. cerevisiae over several decades, including synthetic pathway engineering, microbial host engineering, and central carbon pathway engineering. Furthermore, the challenges and corresponding strategies towards improving isoprenoid production in engineered S. cerevisiae were also summarized. Finally, suggestions and directions for isoprenoid production in engineered S. cerevisiae in the future are discussed.


Assuntos
Sesquiterpenos , Terpenos , Biocombustíveis , Engenharia Metabólica , Saccharomyces cerevisiae/genética
5.
Microb Cell Fact ; 20(1): 76, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771157

RESUMO

Ectoine and hydroxyectoine as typical representatives of compatible solutes are not only essential for extremophiles to survive in extreme environments, but also widely used in cosmetic and medical industries. Ectoine was traditionally produced by Halomonas elongata through a "bacterial milking" process, of which the marked feature is using a high-salt medium to stimulate ectoine biosynthesis and then excreting ectoine into a low-salt medium by osmotic shock. The optimal hydroxyectoine production was achieved by optimizing the fermentation process of Halomonas salina. However, high-salinity broth exacerbates the corrosion to fermenters, and more importantly, brings a big challenge to the subsequent wastewater treatment. Therefore, increasing attention has been paid to reducing the salinity of the fermentation broth but without a sacrifice of ectoine/hydroxyectoine production. With the fast development of functional genomics and synthetic biology, quite a lot of progress on the bioproduction of ectoine/hydroxyectoine has been achieved in recent years. The importation and expression of an ectoine producing pathway in a non-halophilic chassis has so far achieved the highest titer of ectoine (~ 65 g/L), while rational flux-tuning of halophilic chassis represents a promising strategy for the next-generation of ectoine industrial production. However, efficient conversion of ectoine to hydroxyectoine, which could benefit from a clearer understanding of the ectoine hydroxylase, is still a challenge to date.


Assuntos
Diamino Aminoácidos/biossíntese , Vias Biossintéticas , Fermentação , Halomonas/metabolismo , Diamino Aminoácidos/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos/microbiologia , Halomonas/genética , Pressão Osmótica , Salinidade
6.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824440

RESUMO

The anoxygenic phototrophic bacterium Rhodopseudomonas palustris produces methane (CH4) from carbon dioxide (CO2) and hydrogen (H2) from protons (H+) when it expresses a variant form of molybdenum (Mo) nitrogenase that has two amino acid substitutions near its active site. We examined the influence of light energy and electron availability on in vivo production of these biofuels. Nitrogenase activity requires large amounts of ATP, and cells exposed to increasing light intensities produced increasing amounts of CH4 and H2 As expected for a phototroph, intracellular ATP increased with increasing light intensity, but there was only a loose correlation between ATP content and CH4 and H2 production. There was a much stronger correlation between decreased intracellular ADP and increased gas production with increased light intensity, suggesting that the rate-limiting step for CH4 and H2 production by R. palustris is inhibition of nitrogenase by ADP. Increasing the amounts of electrons available to nitrogenase by providing cells with organic alcohols, using nongrowing cells, blocking electrons from entering the Calvin cycle, or blocking H2 uptake resulted in higher yields of H2 and, in some cases, CH4 Our results provide a more complete understanding of the constraints on nitrogenase-based production of biofuels.IMPORTANCE A variant form of Mo nitrogenase catalyzes the conversion of CO2 and protons to the biofuels CH4 and H2 A constant supply of electrons and ATP is needed to drive these reduction reactions. The bacterium R. palustris generates ATP from light and has a versatile metabolism that makes it ideal for manipulating electron availability intracellularly. We therefore explored its potential as a biocatalyst for CH4 and H2 production. We found that intracellular ADP had a major effect on biofuel production, more pronounced than the effect caused by ATP. This is probably due to inhibition of nitrogenase activity by ADP. In general, the amount of CH4 produced by the variant nitrogenase in vivo was affected by electron availability much less than was the amount of H2 produced. This study shows the nature of constraints on in vivo biofuel production by variant Mo nitrogenase.


Assuntos
Proteínas de Bactérias/genética , Elétrons , Metabolismo Energético , Hidrogênio/metabolismo , Metano/metabolismo , Nitrogenase/genética , Rodopseudomonas/metabolismo , Proteínas de Bactérias/metabolismo , Molibdênio/metabolismo , Nitrogenase/metabolismo , Rodopseudomonas/enzimologia , Rodopseudomonas/genética
7.
Proc Natl Acad Sci U S A ; 113(36): 10163-7, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551090

RESUMO

Nitrogenase is an ATP-requiring enzyme capable of carrying out multielectron reductions of inert molecules. A purified remodeled nitrogenase containing two amino acid substitutions near the site of its FeMo cofactor was recently described as having the capacity to reduce carbon dioxide (CO2) to methane (CH4). Here, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of light-driven CO2 reduction to CH4 in vivo using this remodeled nitrogenase. Conversion of CO2 to CH4 by R. palustris required constitutive expression of nitrogenase, which was achieved by using a variant of the transcription factor NifA that is able to activate expression of nitrogenase under all growth conditions. Also, light was required for generation of ATP by cyclic photophosphorylation. CH4 production by R. palustris could be controlled by manipulating the distribution of electrons and energy available to nitrogenase. This work shows the feasibility of using microbes to generate hydrocarbons from CO2 in one enzymatic step using light energy.


Assuntos
Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Metano/biossíntese , Nitrogenase/genética , Fotossíntese/genética , Rodopseudomonas/genética , Trifosfato de Adenosina/biossíntese , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Expressão Gênica , Engenharia Genética/métodos , Cinética , Luz , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Oxirredução , Fotofosforilação , Rodopseudomonas/enzimologia , Rodopseudomonas/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Sensors (Basel) ; 19(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500148

RESUMO

The Global Navigation Satellite System (GNSS) is a widely used positioning technique. Computational efficiency is crucial to applications such as real-time GNSS positioning and GNSS network data processing. Many researchers have made great efforts to address this problem by means such as parameter elimination or satellite selection. However, parameter estimation is rarely discussed when analyzing GNSS algorithm efficiency. In addition, most studies on Kalman filter (KF) efficiency commonly have defects, such as neglecting application-specified optimization and limiting specific hardware platforms in the conclusion. The former reduces the practicality of the solution, because applications that need such analyses on filters are often optimized, and the latter reduces its generality because of differences between platforms. In this paper, the computational cost enhancement of replacing the conventional KF with the information filter (IF) is tested considering GNSS application-oriented optimization conditions and hardware platform differences. First, optimization conditions are abstracted from GNSS data-processing scenarios. Then, a thorough analysis is carried out on the computational cost of the filters, considering hardware-platform differences. Finally, a case of GNSS dynamic differencing positioning is studied. The simulation shows that the IF is slightly faster for precise point positioning and much faster for the code-based single-difference GNSS (SDGNSS) with the constant velocity (CV) model than the conventional KF, but is not a good substitute for the conventional KF in the other algorithms mentioned. The real test shows that the IF is about 50% faster than the conventional KF handling code-based SDGNSS with the CV model. Also, the information filter is theoretically equivalent to and can produce results that are consistent with the Kalman filter. Our conclusions can be used as a reference for GNSS applications that need high process speed or real-time capability.

9.
J Bacteriol ; 200(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29483165

RESUMO

Nitrogenase catalyzes the reduction of dinitrogen (N2) using low-potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP-dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2)-sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds, including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd-/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified, and their distributions largely corresponded to differences in the host cells' ability to integrate O2 or light into energy metabolism. The predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the levels of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation.IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds, including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O2 or light into their energy metabolism. The acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex.


Assuntos
Bactérias/genética , Ferredoxinas/química , Flavodoxina/química , Fungos/genética , Nitrogenase/metabolismo , Aerobiose , Anaerobiose , Bactérias/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Genoma Bacteriano , Genoma Fúngico , Nitrogenase/genética , Filogenia , Transdução de Sinais
10.
BMC Biotechnol ; 16(1): 61, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27557638

RESUMO

BACKGROUND: Diols are important monomers for the production of plastics and polyurethanes, which are widely used in our daily life. The medium-chain diols with one hydroxyl group at its subterminal end are able to confer more flexibility upon the synthesized materials. But unfortunately, this type of diols has not been synthesized so far. The strong need for advanced materials impelled us to develop a new strategy for the production of these novel diols. In this study, we use the remodeled P450BM3 for high-specificity production of 1,7-decanediol. RESULTS: The native P450BM3 was capable of converting medium-chain alcohols into corresponding α, ω1-, α, ω2- and α, ω3-diols, with each of them accounting for about one third of the total diols, but it exhibited a little or no activity on the short-chain alcohols. Greatly improved regiospecificity of alcohol hydroxylation was obtained by laboratory evolution of P450BM3. After substitution of 12 amino acid residues (J2-F87A), the ratio of 1,7-decanediol (ω-3 hydroxylation) to total decanediols increased to 86.8 % from 34.0 %. Structure modeling and site-directed mutagenesis demonstrated that the heme end residues such as Ala(78), Phe(87) and Arg(255) play a key role in controlling the regioselectivity of the alcohol hydroxylation, while the residues at the mouth of substrate binding site is not responsible for the regioselectivity. CONCLUSIONS: Herein we employ an engineered P450BM3 for the first time to enable the high-specificity biosynthesis of 1,7-decanediol, which is a promising monomer for the development of advanced materials. Several key amino acid residues that control the regioselectivity of alcohol hydroxylation were identified, providing some new insights into how to improve the regiospecificity of alcohol hydroxylation. This report not only provides a good strategy for the biosynthesis of 1,7-decanediol, but also gives a promising approach for the production of other useful diols.


Assuntos
Álcoois/química , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Glicóis/síntese química , Oxigenases de Função Mista/química , NADPH-Ferri-Hemoproteína Redutase/química , Simulação por Computador , Ativação Enzimática , Radical Hidroxila , Modelos Químicos , Modelos Moleculares , Engenharia de Proteínas/métodos , Especificidade por Substrato
11.
J Bacteriol ; 197(18): 2965-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26148714

RESUMO

UNLABELLED: Most acetogens can reduce CO2 with H2 to acetic acid via the Wood-Ljungdahl pathway, in which the ATP required for formate activation is regenerated in the acetate kinase reaction. However, a few acetogens, such as Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei, also form large amounts of ethanol from CO2 and H2. How these anaerobes with a growth pH optimum near 5 conserve energy has remained elusive. We investigated this question by determining the specific activities and cofactor specificities of all relevant oxidoreductases in cell extracts of H2/CO2-grown C. autoethanogenum. The activity studies were backed up by transcriptional and mutational analyses. Most notably, despite the presence of six hydrogenase systems of various types encoded in the genome, the cells appear to contain only one active hydrogenase. The active [FeFe]-hydrogenase is electron bifurcating, with ferredoxin and NADP as the two electron acceptors. Consistently, most of the other active oxidoreductases rely on either reduced ferredoxin and/or NADPH as the electron donor. An exception is ethanol dehydrogenase, which was found to be NAD specific. Methylenetetrahydrofolate reductase activity could only be demonstrated with artificial electron donors. Key to the understanding of this energy metabolism is the presence of membrane-associated reduced ferredoxin:NAD(+) oxidoreductase (Rnf), of electron-bifurcating and ferredoxin-dependent transhydrogenase (Nfn), and of acetaldehyde:ferredoxin oxidoreductase, which is present with very high specific activities in H2/CO2-grown cells. Based on these findings and on thermodynamic considerations, we propose metabolic schemes that allow, depending on the H2 partial pressure, the chemiosmotic synthesis of 0.14 to 1.5 mol ATP per mol ethanol synthesized from CO2 and H2. IMPORTANCE: Ethanol formation from syngas (H2, CO, and CO2) and from H2 and CO2 that is catalyzed by bacteria is presently a much-discussed process for sustainable production of biofuels. Although the process is already in use, its biochemistry is only incompletely understood. The most pertinent question is how the bacteria conserve energy for growth during ethanol formation from H2 and CO2, considering that acetyl coenzyme A (acetyl-CoA), is an intermediate. Can reduction of the activated acetic acid to ethanol with H2 be coupled with the phosphorylation of ADP? Evidence is presented that this is indeed possible, via both substrate-level phosphorylation and electron transport phosphorylation. In the case of substrate-level phosphorylation, acetyl-CoA reduction to ethanol proceeds via free acetic acid involving acetaldehyde:ferredoxin oxidoreductase (carboxylate reductase).


Assuntos
Dióxido de Carbono/metabolismo , Clostridium/metabolismo , Metabolismo Energético/fisiologia , Etanol/metabolismo , Hidrogênio/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Acetilcoenzima A/metabolismo , Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium/classificação , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Membrana , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfoproteínas
12.
J Bacteriol ; 196(22): 3840-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25157086

RESUMO

Ruminococcus albus 7 has played a key role in the development of the concept of interspecies hydrogen transfer. The rumen bacterium ferments glucose to 1.3 acetate, 0.7 ethanol, 2 CO2, and 2.6 H2 when growing in batch culture and to 2 acetate, 2 CO2, and 4 H2 when growing in continuous culture in syntrophic association with H2-consuming microorganisms that keep the H2 partial pressure low. The organism uses NAD(+) and ferredoxin for glucose oxidation to acetyl coenzyme A (acetyl-CoA) and CO2, NADH for the reduction of acetyl-CoA to ethanol, and NADH and reduced ferredoxin for the reduction of protons to H2. Of all the enzymes involved, only the enzyme catalyzing the formation of H2 from NADH remained unknown. Here, we report that R. albus 7 grown in batch culture on glucose contained, besides a ferredoxin-dependent [FeFe]-hydrogenase (HydA2), a ferredoxin- and NAD-dependent electron-bifurcating [FeFe]-hydrogenase (HydABC) that couples the endergonic formation of H2 from NADH to the exergonic formation of H2 from reduced ferredoxin. Interestingly, hydA2 is adjacent to the hydS gene, which is predicted to encode an [FeFe]-hydrogenase with a C-terminal PAS domain. We showed that hydS and hydA2 are part of a larger transcriptional unit also harboring putative genes for a bifunctional acetaldehyde/ethanol dehydrogenase (Aad), serine/threonine protein kinase, serine/threonine protein phosphatase, and a redox-sensing transcriptional repressor. Since HydA2 and Aad are required only when R. albus grows at high H2 partial pressures, HydS could be a H2-sensing [FeFe]-hydrogenase involved in the regulation of their biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Formiato Desidrogenases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Ruminococcus/metabolismo , Acetilcoenzima A/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Transporte de Elétrons , Fermentação , Formiato Desidrogenases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose/metabolismo , Ferro/metabolismo , NAD , NADP/metabolismo , Piruvato Sintase/genética , Piruvato Sintase/metabolismo
13.
Microb Cell Fact ; 13: 20, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24512040

RESUMO

BACKGROUND: Sabinene, one kind of monoterpene, accumulated limitedly in natural organisms, is being explored as a potential component for the next generation of aircraft fuels. And demand for advanced fuels impels us to develop biosynthetic routes for the production of sabinene from renewable sugar. RESULTS: In this study, sabinene was significantly produced by assembling a biosynthetic pathway using the methylerythritol 4-phosphate (MEP) or heterologous mevalonate (MVA) pathway combining the GPP and sabinene synthase genes in an engineered Escherichia coli strain. Subsequently, the culture medium and process conditions were optimized to enhance sabinene production with a maximum titer of 82.18 mg/L. Finally, the fed-batch fermentation of sabinene was evaluated using the optimized culture medium and process conditions, which reached a maximum concentration of 2.65 g/L with an average productivity of 0.018 g h⁻¹ g⁻¹ dry cells, and the conversion efficiency of glycerol to sabinene (gram to gram) reached 3.49%. CONCLUSIONS: This is the first report of microbial synthesis of sabinene using an engineered E. coli strain with the renewable carbon source as feedstock. Therefore, a green and sustainable production strategy has been established for sabinene.


Assuntos
Biocombustíveis , Monoterpenos/metabolismo , Terpenos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Monoterpenos Bicíclicos , Vias Biossintéticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Engenharia Genética , Monoterpenos/química , Família Multigênica , Plasmídeos/genética , Plasmídeos/metabolismo , Terpenos/química
14.
Microbiol Resour Announc ; : e0008424, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860781

RESUMO

The genome of a halophilic bacterium Halomonas salifodinae IM328 was completely sequenced in order to offer convenience for the research such as the synthesis of compatible solutes. The genome contains a circular chromosome which was sequenced by PacBio system.

15.
Redox Biol ; 70: 103075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364686

RESUMO

Subarachnoid hemorrhage (SAH), a devastating disease with a high mortality rate and poor outcomes, tightly associated with the dysregulation of iron metabolism and ferroptosis. (-)-Epigallocatechin-3-gallate (EGCG) is one of major bioactive compounds of tea catechin because of its well-known iron-chelating and antioxidative activities. However, the findings of iron-induced cell injuries after SAH remain controversial and the underlying therapeutic mechanisms of EGCG in ferroptosis is limited. Here, the ability of EGCG to inhibit iron-induced cell death following the alleviation of neurological function deficits was investigated by using in vivo SAH models. As expected, EGCG inhibited oxyhemoglobin (OxyHb)-induced the over-expression of HO-1, which mainly distributed in astrocytes and microglial cells. Subsequently, EGCG blocked ferrous iron accumulation through HO-1-mediated iron metabolic reprogramming. Therefore, oxidative stress and mitochondrial dysfunction was rescued by EGCG, which resulted in the downregulation of ferroptosis and ferritinophagy rather than apoptosis after SAH. As a result, EGCG exerted the superior therapeutic effects in the maintenance of iron homeostasis in glial cells, such as astrocytes and microglial cells, as well as in the improvement of functional outcomes after SAH. These findings highlighted that glial cells were not only the iron-rich cells in the brain but also susceptible to ferroptosis and ferritinophagy after SAH. The detrimental role of HO-1-mediated ferroptosis in glial cells can be regarded as an effective therapeutic target of EGCG in the prevention and treatment of SAH.


Assuntos
Catequina , Catequina/análogos & derivados , Ferroptose , Hemorragia Subaracnóidea , Humanos , Catequina/farmacologia , Catequina/uso terapêutico , Hemorragia Subaracnóidea/tratamento farmacológico , Ferro
16.
Nat Commun ; 15(1): 3097, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600111

RESUMO

The chemical transformations of methane (CH4) and carbon dioxide (CO2) greenhouse gases typically have high energy barriers. Here we present an approach of strategic coupling of CH4 oxidation and CO2 reduction in a switched microbial process governed by redox cycling of iron minerals under temperate conditions. The presence of iron minerals leads to an obvious enhancement of carbon fixation, with the minerals acting as the electron acceptor for CH4 oxidation and the electron donor for CO2 reduction, facilitated by changes in the mineral structure. The electron flow between the two functionally active microbial consortia is tracked through electrochemistry, and the energy metabolism in these consortia is predicted at the genetic level. This study offers a promising strategy for the removal of CH4 and CO2 in the natural environment and proposes an engineering technique for the utilization of major greenhouse gases.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Oxirredução , Ferro , Metano/metabolismo , Minerais
17.
Microbiol Spectr ; : e0495322, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971559

RESUMO

Glutamine synthetase (GS) is responsible for the ammonium assimilation into glutamine, which serves as an important nitrogen donor for the synthesis of biomolecules and also plays a key role in regulating the nitrogen fixation catalyzed by nitrogenase. Rhodopseudomonas palustris, whose genome encodes 4 putative GSs and 3 nitrogenases, is an attractive photosynthetic diazotroph for studies of nitrogenase regulation, as it can produce the powerful greenhouse gas (methane) by iron-only (Fe-only) nitrogenase using light energy. However, the primary GS enzyme for ammonium assimilation and its role in nitrogenase regulation remain elusive in R. palustris. Here, we show that GlnA1, whose activity is finely regulated by reversible adenylylation/deadenylylation of Tyr398 residue, is primarily responsible for ammonium assimilation as the preferred GS in R. palustris. The inactivation of GlnA1 makes R. palustris shift to use the alternative GlnA2 for ammonium assimilation, resulting in the expression of Fe-only nitrogenase even in the presence of ammonium. We present a model, showing how R. palustris responds to ammonium availability and further regulates the expression of Fe-only nitrogenase. These data may contribute to the design of promising strategies for a better control of greenhouse gas emissions. IMPORTANCE The photosynthetic diazotrophs, such as Rhodopseudomonas palustris, can utilize light energy to drive the conversion of carbon dioxide (CO2) to a much more powerful greenhouse gas methane (CH4) by Fe-only nitrogenase, which is strictly regulated in response to the ammonium, a substrate of glutamine synthetase for the biosynthesis of glutamine. However, the primary glutamine synthetase for ammonium assimilation and its role in nitrogenase regulation remain unclear in R. palustris. This study shows that GlnA1 is the primary glutamine synthetase for ammonium assimilation, and also plays a key role in Fe-only nitrogenase regulation in R. palustris. For the first time, a R. palustris mutant capable of expressing Fe-only nitrogenase even in the presence of ammonium is obtained by inactivation of GlnA1. A better understanding of the Fe-only nitrogenase regulation achieved in this study provide us with new insights into the efficient control of CH4 emissions.

18.
Microb Cell Fact ; 11: 65, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22607313

RESUMO

BACKGROUND: With the increasing stress from oil price and environmental pollution, aroused attention has been paid to the microbial production of chemicals from renewable sources. The C12/14 and C16/18 alcohols are important feedstocks for the production of surfactants and detergents, which are widely used in the most respected consumer detergents, cleaning products and personal care products worldwide. Though bioproduction of fatty alcohols has been carried out in engineered E. coli, several key problems have not been solved in earlier studies, such as the quite low production of C16/18 alcohol, the lack of optimization of the fatty alcohol biosynthesis pathway, and the uncharacterized performance of the engineered strains in scaled-up system. RESULTS: We improved the fatty alcohol production by systematically optimizing the fatty alcohol biosynthesis pathway, mainly targeting three key steps from fatty acyl-acyl carrier proteins (ACPs) to fatty alcohols, which are sequentially catalyzed by thioesterase, acyl-coenzyme A (CoA) synthase and fatty acyl-CoA reductase. By coexpression of thioesterase gene BTE, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene acr1, 210.1 mg/L C12/14 alcohol was obtained. A further optimization of expression level of BTE, fadD and acr1 increased the C12/14 alcohol production to 449.2 mg/L, accounting for 75.0% of the total fatty alcohol production (598.6 mg/L). In addition, by coexpression of thioesterase gene 'tesA, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene FAR, 101.5 mg/L C16/18 alcohol was obtained, with C16/18 alcohol accounting for 89.2% of the total fatty alcohol production. CONCLUSIONS: To our knowledge, this is the first report on selective production of C12/14 and C16/18 alcohols by microbial fermentation. This work achieved high-specificity production of both C12/14 and C16/18 alcohols. The encouraging 598.6 mg/L of fatty alcohols represents the highest titer reported so far. In addition, the 101.5 mg/L 89.2% C16/18 alcohol suggests an important breakthrough in C16/18 alcohol production. A more detailed optimization of the expression level of fatty alcohol biosynthesis pathway may contribute to a further improvement of fatty alcohol production.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Álcoois Graxos/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Vias Biossintéticas , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Álcoois Graxos/química , Fermentação , Engenharia Genética , Microbiologia Industrial , Estrutura Molecular , Regulação para Cima
19.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 226-237, 2022 Jan 25.
Artigo em Zh | MEDLINE | ID: mdl-35142133

RESUMO

Cytochrome c is a type of heme proteins that are widely distributed in living organisms. It consists of heme and apocytochrome c, and has potential applications in bioelectronics, biomedicine and pollutant degradation. However, heterologous overexpression of cytochrome c is still challenging. To date, expression of the cytochrome c from uncultured anaerobic methanotrophic archaea has not been reported, and nothing is known about the function of this cytochrome c. A his tagged cytochrome c was successfully expressed in E. coli by introducing a thrombin at the N-terminus of CytC4 and co-expressing CcmABCDEFGH, which is responsible for the maturation of cytochrome c. Shewanella oneidensis, which naturally has enzymes for cytochrome c maturation, was then used as a host to further increase the expression of CytC4. Indeed, a significantly higher expression of CytC4 was achieved in S. oneidensis when compared with in E. coli. The successful heterologous overexpression of CytC4 will facilitate the exploitation of its physiological functions and biotechnological applications.


Assuntos
Citocromos c , Escherichia coli , Anaerobiose , Archaea/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Heme/metabolismo
20.
Microorganisms ; 10(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208656

RESUMO

The photosynthetic bacterium Rhodopseudomonas palustris converts nitrogen gas (N2) to fertilizer ammonia (NH3) and also produces clean energy hydrogen gas (H2) from protons (H+) when it is grown anaerobically in nitrogen fixing medium with illumination, a condition that promotes the expression of active nitrogenase. Compared with quantitative real-time PCR (qRT-PCR) and the lacZ reporter system, two methods commonly used for in vivo study of nitrogenase regulation in photosynthetic bacteria, the fluorescent protein reporter system has advantages in terms of its simplicity and sensitivity. However, little is known concerning if the fluorescent protein reporter system can be used in bacterial cells that need to grow anaerobically. Here, we developed an RFP-based method to measure the nitrogenase gene expression in photosynthetic bacteria grown anaerobically. This method was able to determine the levels of both the genome-based and the plasmid-based nitrogenase expression under anaerobic conditions, providing a better method for in vivo study of gene expression affected by oxygen. The RFP reporter system developed here will promote a better understanding of the molecular mechanism of nitrogenase regulation and will be used on other genes of interest in a wider range of anaerobic bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA