Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cell ; 163(1): 108-22, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26388440

RESUMO

Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in physiological buffers. Coacervation in vitro or in spindle and spindle matrix depends on hydrophobic residues in BuGZ. BuGZ coacervation and its binding to microtubules and tubulin are required to promote assembly of spindle and spindle matrix in Xenopus egg extract and in mammalian cells. Since several previously identified spindle-associated components also contain low-complexity regions, we propose that coacervating proteins may be a hallmark of proteins that comprise a spindle matrix that functions to promote assembly of spindles by concentrating its building blocks.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Células HeLa , Humanos , Mitose , Fenilalanina/metabolismo , Temperatura , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Xenopus
2.
Cell ; 159(4): 829-43, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417159

RESUMO

Aging of immune organs, termed as immunosenescence, is suspected to promote systemic inflammation and age-associated disease. The cause of immunosenescence and how it promotes disease, however, has remained unclear. We report that the Drosophila fat body, a major immune organ, undergoes immunosenescence and mounts strong systemic inflammation that leads to deregulation of immune deficiency (IMD) signaling in the midgut of old animals. Inflamed old fat bodies secrete circulating peptidoglycan recognition proteins that repress IMD activity in the midgut, thereby promoting gut hyperplasia. Further, fat body immunosenecence is caused by age-associated lamin-B reduction specifically in fat body cells, which then contributes to heterochromatin loss and derepression of genes involved in immune responses. As lamin-associated heterochromatin domains are enriched for genes involved in immune response in both Drosophila and mammalian cells, our findings may provide insights into the cause and consequence of immunosenescence during mammalian aging. PAPERFLICK:


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpo Adiposo/imunologia , Lamina Tipo B/metabolismo , Envelhecimento , Animais , Proliferação de Células , Drosophila melanogaster/química , Drosophila melanogaster/imunologia , Corpo Adiposo/crescimento & desenvolvimento , Corpo Adiposo/metabolismo , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Heterocromatina , Inflamação/imunologia , Mamíferos/imunologia , Modelos Animais , Transdução de Sinais
3.
Cell ; 152(4): 669-70, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415217

RESUMO

Centrosome- and chromatin-based microtubule nucleation pathways have been implicated in spindle assembly. Using total internal reflection fluorescent microscopy and Xenopus egg extracts, Petry et al. demonstrate that new microtubules can also nucleate and branch out from existing ones in animal cells.

4.
Cell ; 151(3): 576-89, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23101626

RESUMO

Embryonic stem cell (ESC) pluripotency requires bivalent epigenetic modifications of key developmental genes regulated by various transcription factors and chromatin-modifying enzymes. How these factors coordinate with one another to maintain the bivalent chromatin state so that ESCs can undergo rapid self-renewal while retaining pluripotency is poorly understood. We report that Utf1, a target of Oct4 and Sox2, is a bivalent chromatin component that buffers poised states of bivalent genes. By limiting PRC2 loading and histone 3 lysine-27 trimethylation, Utf1 sets proper activation thresholds for bivalent genes. It also promotes nuclear tagging of messenger RNAs (mRNAs) transcribed from insufficiently silenced bivalent genes for cytoplasmic degradation through mRNA decapping. These opposing functions of Utf1 promote coordinated differentiation. The mRNA degradation function also ensures rapid cell proliferation by blocking the Myc-Arf feedback control. Thus, Utf1 couples the core pluripotency factors with Myc and PRC2 networks to promote the pluripotency and proliferation of ESCs.


Assuntos
Células-Tronco Embrionárias/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Epigênese Genética , Humanos , Células-Tronco Pluripotentes/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
5.
Nature ; 582(7813): 534-538, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555454

RESUMO

Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis1. This endosymbiosis-which is critical for the maintenance of coral reef ecosystems-is increasingly threatened by environmental stressors that lead to coral bleaching (that is, the disruption of endosymbiosis), which in turn leads to coral death and the degradation of marine ecosystems2. The molecular pathways that orchestrate the recognition, uptake and maintenance of algae in coral cells remain poorly understood. Here we report the chromosome-level genome assembly of a Xenia species of fast-growing soft coral3, and use this species as a model to investigate coral-alga endosymbiosis. Single-cell RNA sequencing identified 16 cell clusters, including gastrodermal cells and cnidocytes, in Xenia sp. We identified the endosymbiotic cell type, which expresses a distinct set of genes that are implicated in the recognition, phagocytosis and/or endocytosis, and maintenance of algae, as well as in the immune modulation of host coral cells. By coupling Xenia sp. regeneration and single-cell RNA sequencing, we observed a dynamic lineage progression of the endosymbiotic cells. The conserved genes associated with endosymbiosis that are reported here may help to reveal common principles by which different corals take up or lose their endosymbionts.


Assuntos
Antozoários/citologia , Antozoários/genética , Linhagem da Célula/genética , Dinoflagellida/metabolismo , Simbiose/genética , Animais , Antozoários/imunologia , Antozoários/metabolismo , Carbono/metabolismo , Diferenciação Celular/genética , Recifes de Corais , Dinoflagellida/imunologia , Dinoflagellida/fisiologia , Ecossistema , Endocitose , Genoma/genética , Fagocitose , Fotossíntese , RNA-Seq , Análise de Célula Única , Simbiose/imunologia , Transcriptoma
6.
Mol Cell ; 71(5): 802-815.e7, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30201095

RESUMO

Lamins are structural components of the nuclear lamina (NL) that regulate genome organization and gene expression, but the mechanism remains unclear. Using Hi-C, we show that lamins maintain proper interactions among the topologically associated chromatin domains (TADs) but not their overall architecture. Combining Hi-C with fluorescence in situ hybridization (FISH) and analyses of lamina-associated domains (LADs), we reveal that lamin loss causes expansion or detachment of specific LADs in mouse ESCs. The detached LADs disrupt 3D interactions of both LADs and interior chromatin. 4C and epigenome analyses further demonstrate that lamins maintain the active and repressive chromatin domains among different TADs. By combining these studies with transcriptome analyses, we found a significant correlation between transcription changes and the interaction changes of active and inactive chromatin domains These findings provide a foundation to further study how the nuclear periphery impacts genome organization and transcription in development and NL-associated diseases.


Assuntos
Núcleo Celular/genética , Genoma/genética , Laminas/genética , Lâmina Nuclear/genética , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Epigenômica/métodos , Expressão Gênica/genética , Hibridização in Situ Fluorescente/métodos , Camundongos
7.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439057

RESUMO

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Assuntos
Fibroblastos , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Camundongos , Lâmina Nuclear/metabolismo , Matriz Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37166448

RESUMO

MOTIVATION: Computational inference of genome organization based on Hi-C sequencing has greatly aided the understanding of chromatin and nuclear organization in three dimensions (3D). However, existing computational methods fail to address the cell population heterogeneity. Here we describe a probabilistic-modeling-based method called CscoreTool-M that infers multiple 3D genome sub-compartments from Hi-C data. RESULTS: The compartment scores inferred using CscoreTool-M represents the probability of a genomic region locating in a specific sub-compartment. Compared to published methods, CscoreTool-M is more accurate in inferring sub-compartments corresponding to both active and repressed chromatin. The compartment scores calculated by CscoreTool-M also help to quantify the levels of heterogeneity in sub-compartment localization within cell populations. By comparing proliferating cells and terminally differentiated non-proliferating cells, we show that the proliferating cells have higher genome organization heterogeneity, which is likely caused by cells at different cell-cycle stages. By analyzing 10 sub-compartments, we found a sub-compartment containing chromatin potentially related to the early-G1 chromatin regions proximal to the nuclear lamina in HCT116 cells, suggesting the method can deconvolve cell cycle stage-specific genome organization among asynchronously dividing cells. Finally, we show that CscoreTool-M can identify sub-compartments that contain genes enriched in housekeeping or cell-type-specific functions. AVAILABILITY AND IMPLEMENTATION: https://github.com/scoutzxb/CscoreTool-M.


Assuntos
Cromatina , Cromossomos , Genoma , Genômica/métodos , Probabilidade
9.
Nucleic Acids Res ; 50(20): e117, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130229

RESUMO

The chromatin associated with the nuclear lamina (NL) is referred to as lamina-associated domains (LADs). Here, we present an adaptation of the tyramide-signal amplification sequencing (TSA-seq) protocol, which we call chromatin pull down-based TSA-seq (cTSA-seq), that can be used to map chromatin regions at or near the NL from as little as 50 000 cells. The cTSA-seq mapped regions are composed of previously defined LADs and smaller chromatin regions that fall within the Hi-C defined B-compartment containing nuclear peripheral heterochromatin. We used cTSA-seq to map chromatin at or near the assembling NL in cultured cells progressing through early G1. cTSA-seq revealed that the distal ends of chromosomes are near or at the reassembling NL during early G1, a feature similar to those found in senescent cells. We expand the use of cTSA-seq to the mapping of chromatin at or near the NL from fixed-frozen mouse cerebellar tissue sections. This mapping reveals a general conservation of NL-associated chromatin and identifies global and local changes during cerebellar development. The cTSA-seq method reported here is useful for analyzing chromatin at or near the NL from small numbers of cells derived from both in vitro and in vivo sources.


Assuntos
Cromatina , Mapeamento Cromossômico , Lâmina Nuclear , Análise de Sequência de DNA , Animais , Camundongos , Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/metabolismo , Lâmina Nuclear/metabolismo , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico/métodos
10.
Nat Rev Mol Cell Biol ; 11(7): 529-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20520622

RESUMO

Eukaryotic cell division uses morphologically different forms of mitosis, referred to as open, partially open and closed mitosis, for accurate chromosome segregation and proper partitioning of other cellular components such as endomembranes and cell fate determinants. Recent studies suggest that the spindle matrix provides a conserved strategy to coordinate the segregation of genetic material and the partitioning of the rest of the cellular contents in all three forms of mitosis.


Assuntos
Divisão Celular/fisiologia , Fuso Acromático/metabolismo , Animais , Divisão Celular/genética , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Fuso Acromático/genética
11.
Bioinformatics ; 34(9): 1568-1570, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29244056

RESUMO

Summary: The genome-wide chromosome conformation capture (Hi-C) has revealed that the eukaryotic genome can be partitioned into A and B compartments that have distinctive chromatin and transcription features. Current Principle Component Analyses (PCA)-based method for the A/B compartment prediction based on Hi-C data requires substantial CPU time and memory. We report the development of a method, CscoreTool, which enables fast and memory-efficient determination of A/B compartments at high resolution even in datasets with low sequencing depth. Availability and implementation: https://github.com/scoutzxb/CscoreTool. Contact: xzheng@carnegiescience.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina/ultraestrutura , Genômica/métodos , Software , Transcrição Gênica , Cromatina/genética
13.
J Biol Chem ; 291(45): 23804-23816, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27655916

RESUMO

Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block ß-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent ß-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid.


Assuntos
Dieta Hiperlipídica , Retículo Endoplasmático/metabolismo , Enterócitos/metabolismo , Metabolismo dos Lipídeos , Ativação Transcricional , Triglicerídeos/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Retículo Endoplasmático/genética , Enterócitos/citologia , Enterócitos/ultraestrutura , Gotículas Lipídicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Triglicerídeos/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Sci Rep ; 14(1): 5828, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461164

RESUMO

Global greenhouse gas emission, major factor driving climate change, has been increasing since nineteenth century. STIRPAT and CEVSA models were performed to estimate the carbon emission peaks and terrestrial ecosystem carbon sinks at the provincial level in China, respectively. Utilizing the growth characteristics and the peak time criteria for the period 1997-2019, the patterns of energy consumption and CO2 emissions from 30 Chinese provinces are categorized into four groups: (i) one-stage increase (5 provinces), (ii) two-stage increase (10 provinces), (iii) maximum around 2013 (13 provinces), and (iv) maximum around 2017 (2 provinces). According to the STIRPAT model, the anticipated time of peak CO2 emissions for Beijing from the third group is ~ 2025 in both business-as-usual and high-speed scenarios. For Xinjiang Uygur autonomous region from the first group and Zhejiang province from the second group, the expected peak time is 2025 to 2030. Shaanxi province from the fourth group is likely to reach carbon emission peak before 2030. The inventory-based estimate of China's terrestrial carbon sink is ~ 266.2 Tg C/a during the period 1982-2015, offsetting 18.3% of contemporary CO2 emissions. The province-level CO2 emissions, peak emissions and terrestrial carbon sinks estimates presented here are significant for those concerned with carbon neutrality.

15.
Biochem Biophys Res Commun ; 440(1): 8-13, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23998933

RESUMO

Extensive efforts have been devoted to study A-type lamins because mutations in their gene, LMNA in humans, are associated with a number of diseases. The mouse germline mutations in the A-type lamins (encoded by Lmna) exhibit postnatal lethality at either 4-8 postnatal (P) weeks or P16-18 days, depending on the deletion alleles. These mice exhibit defects in several tissues including hearts and skeletal muscles. Despite numerous studies, how the germline mutation of Lmna, which is expressed in many postnatal tissues, affects only selected tissues remains poorly understood. Addressing the tissue specific functions of Lmna requires the generation and careful characterization of conditional Lmna null alleles. Here we report the creation of a conditional Lmna knockout allele in mice by introducing loxP sites flanking the second exon of Lmna. The Lmna(flox/flox) mice are phenotypically normal and fertile. We show that Lmna homozygous mutants (Lmna(Δ/Δ)) generated by germline Cre expression display postnatal lethality at P16-18 days with defects similar to a recently reported germline Lmna knockout mouse that exhibits the earliest lethality compared to other germline knockout alleles. This conditional knockout mouse strain should serve as an important genetic tool to study the tissue specific roles of Lmna, which would contribute toward the understanding of various human diseases associated with A-type lamins.


Assuntos
Alelos , Deleção de Genes , Lamina Tipo A/genética , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
16.
PLoS Genet ; 6(12): e1001228, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21151956

RESUMO

Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.


Assuntos
Reparo do DNA , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Elementos de DNA Transponíveis , Genoma Fúngico , Saccharomyces/genética
17.
Nat Microbiol ; 8(7): 1240-1251, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217718

RESUMO

Corals form an endosymbiotic relationship with the dinoflagellate algae Symbiodiniaceae, but ocean warming can trigger algal loss, coral bleaching and death, and the degradation of ecosystems. Mitigation of coral death requires a mechanistic understanding of coral-algal endosymbiosis. Here we report an RNA interference (RNAi) method and its application to study genes involved in early steps of endosymbiosis in the soft coral Xenia sp. We show that a host endosymbiotic cell marker called LePin (lectin and kazal protease inhibitor domains) is a secreted Xenia lectin that binds to algae to initiate phagocytosis of the algae and coral immune response modulation. The evolutionary conservation of domains in LePin among marine anthozoans performing endosymbiosis suggests a general role in coral-algal recognition. Our work sheds light on the phagocytic machinery and posits a mechanism for symbiosome formation, helping in efforts to understand and preserve coral-algal relationships in the face of climate change.


Assuntos
Antozoários , Animais , Antozoários/metabolismo , Ecossistema , Interferência de RNA , Simbiose/genética , Análise da Expressão Gênica de Célula Única
18.
Heliyon ; 9(12): e23140, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076152

RESUMO

Developing low-cost and high-activity catalysts is one of the keys to promoting the catalytic pyrolysis of waste plastics to fuels for plastic recycling. This work studied the effect of clay as the catalyst on mixed plastic pyrolysis for fuel and energy recovery. Four kinds of clay, including nanoclay, montmorillonite, kaolin, and hydrotalcite, were used as catalysts for the pyrolysis of mixed plastic consisted of polyethylene terephthalate, polystyrene, polypropylene, low-density polyethylene, and high-density polyethylene. The product yield and distribution varied with different clay in pyrolysis. The highest yield of oil was 71.0 % when using montmorillonite as the catalyst. While the highest contents of gasoline range hydrocarbons and diesel range hydrocarbons in the oil were achieved when using kaolin and nanoclay, respectively as catalysts. For the gas products, the CO, C2H4, C2H6, C3H6, and C4H10 increased with decreased CO2 in the gaseous products when using clay as catalysts. In general, the mild acidity of clay catalyst was essential to improve the oil yields and the proportion of the gasoline or diesel range fuels in the catalytic pyrolysis of mixed plastic waste.

19.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37214866

RESUMO

α- and ß-tubulin form heterodimers, with GTPase activity, that assemble into microtubules. Like other GTPases, the nucleotide-bound state of tubulin heterodimers controls whether the molecules are in a biologically active or inactive state. While α-tubulin in the heterodimer is constitutively bound to GTP, ß-tubulin can be bound to either GDP (GDP-tubulin) or GTP (GTP-tubulin). GTP-tubulin hydrolyzes its GTP to GDP following assembly into a microtubule and, upon disassembly, must exchange its bound GDP for GTP to participate in subsequent microtubule polymerization. Tubulin dimers have been shown to exhibit rapid intrinsic nucleotide exchange in vitro, leading to a commonly accepted belief that a tubulin guanine nucleotide exchange factor (GEF) may be unnecessary in cells. Here, we use quantitative binding assays to show that BuGZ, a spindle assembly factor, binds tightly to GDP-tubulin, less tightly to GTP-tubulin, and weakly to microtubules. We further show that BuGZ promotes the incorporation of GTP into tubulin using a nucleotide exchange assay. The discovery of a tubulin GEF suggests a mechanism that may aid rapid microtubule assembly dynamics in cells.

20.
Genesis ; 50(10): 775-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22814996

RESUMO

To understand cell fate specification and maintenance during development, it is essential to visualize both lineage markers and cell behaviors in real time using endogenous markers to report cell fate. We have generated a reporter line in which eGFP is fused to the endogenous locus of Cdx2, a transcription factor essential for trophectoderm specification, allowing us to visualize cell fate decisions in the preimplantation mouse embryo. We used two-photon laser scanning microscopy to visualize expression of the endogenous Cdx2 fusion protein and show that Cdx2 undergoes phases of upregulation. Additionally, we show that as late as the 32-cell stage, outer trophectoderm cells may change their fates by migrating inward and losing Cdx2 expression. Furthermore, the tools and techniques we report allow for dual-colored imaging, which will greatly facilitate the study of not only preimplantation development, but later stages of development and tissues where Cdx2 plays an important role.


Assuntos
Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Blastocisto/citologia , Fator de Transcrição CDX2 , Linhagem da Célula , Embrião de Mamíferos/metabolismo , Efeito Fundador , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Proteínas Recombinantes , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA