Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 582(7811): E5, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32461695

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 576(7785): 91-95, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802014

RESUMO

Additive manufacturing, often known as three-dimensional (3D) printing, is a process in which a part is built layer-by-layer and is a promising approach for creating components close to their final (net) shape. This process is challenging the dominance of conventional manufacturing processes for products with high complexity and low material waste1. Titanium alloys made by additive manufacturing have been used in applications in various industries. However, the intrinsic high cooling rates and high thermal gradient of the fusion-based metal additive manufacturing process often leads to a very fine microstructure and a tendency towards almost exclusively columnar grains, particularly in titanium-based alloys1. (Columnar grains in additively manufactured titanium components can result in anisotropic mechanical properties and are therefore undesirable2.) Attempts to optimize the processing parameters of additive manufacturing have shown that it is difficult to alter the conditions to promote equiaxed growth of titanium grains3. In contrast with other common engineering alloys such as aluminium, there is no commercial grain refiner for titanium that is able to effectively refine the microstructure. To address this challenge, here we report on the development of titanium-copper alloys that have a high constitutional supercooling capacity as a result of partitioning of the alloying element during solidification, which can override the negative effect of a high thermal gradient in the laser-melted region during additive manufacturing. Without any special process control or additional treatment, our as-printed titanium-copper alloy specimens have a fully equiaxed fine-grained microstructure. They also display promising mechanical properties, such as high yield strength and uniform elongation, compared to conventional alloys under similar processing conditions, owing to the formation of an ultrafine eutectoid microstructure that appears as a result of exploiting the high cooling rates and multiple thermal cycles of the manufacturing process. We anticipate that this approach will be applicable to other eutectoid-forming alloy systems, and that it will have applications in the aerospace and biomedical industries.

3.
Small ; 20(38): e2400732, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38764258

RESUMO

Currently, methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis is a clinically life-threatening disease, however, long-term antibiotic treatment can lead to bacterial resistance, posing a huge challenge to treatment and public health. In this study, glucose-derived carbon spheres loaded with zinc oxide (ZnO@HTCS) are successfully constructed. This composite demonstrates the robust ability to generate reactive oxygen species (ROS) under ultrasound (US) irradiation, eradicating 99.788% ± 0.087% of MRSA within 15 min and effectively treating MRSA-induced osteomyelitis infection. Piezoelectric force microscopy tests and finite element method simulations reveal that the ZnO@HTCS composite exhibits superior piezoelectric catalytic performance compared to pure ZnO, making it a unique piezoelectric sonosensitizer. Density functional theory calculations reveal that the formation of a Mott-Schottky heterojunction and an internal piezoelectric field within the interface accelerates the electron transfer and the separation of electron-hole pairs. Concurrently, surface vacancies of the composite enable the adsorption of a greater amount of oxygen, enhancing the piezoelectric catalytic effect and generating a substantial quantity of ROS. This work not only presents a promising approach for augmenting piezoelectric catalysis through construction of a Schottky heterojunction interface but also provides a novel, efficient therapeutic strategy for treating osteomyelitis.


Assuntos
Carbono , Glucose , Staphylococcus aureus Resistente à Meticilina , Osteomielite , Óxido de Zinco , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Osteomielite/tratamento farmacológico , Óxido de Zinco/química , Carbono/química , Catálise , Glucose/química , Ondas Ultrassônicas , Animais , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/tratamento farmacológico
4.
Small ; 20(9): e2306553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37847896

RESUMO

Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , Farmacorresistência Bacteriana Múltipla
5.
Small ; 20(15): e2307406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009734

RESUMO

Osteomyelitis caused by deep tissue infections is difficult to cure through phototherapy due to the poor penetration depth of the light. Herein, Cu/C/Fe3O4-COOH nanorod composites (Cu/C/Fe3O4-COOH) with nanoscale tip convex structures are successfully fabricated as a microwave-responsive smart bacteria-capture-killing vector. Cu/C/Fe3O4-COOH exhibited excellent magnetic targeting and bacteria-capturing ability due to its magnetism and high selectivity affinity to the amino groups on the surface of Staphylococcus aureus (S. aureus). Under microwave irradiation, Cu/C/Fe3O4-COOH efficiently treated S. aureus-infected osteomyelitis through the synergistic effects of microwave thermal therapy, microwave dynamic therapy, and copper ion therapy. It is calculated the electric field intensity in various regions of Cu/C/Fe3O4-COOH under microwave irradiation, demonstrating that it obtained the highest electric field intensity on the surface of copper nanoparticles of Cu/C/Fe3O4-COOH due to its high-curvature tips and metallic properties. This led to copper nanoparticles attracted more charged particles compared with other areas in Cu/C/Fe3O4-COOH. These charges are easier to escape from the high curvature surface of Cu/C/Fe3O4-COOH, and captured by adsorbed oxygen, resulting in the generation of reactive oxygen species. The Cu/C/Fe3O4-COOH designed in this study is expected to provide insight into the treatment of deep tissue infections under the irradiation of microwave.


Assuntos
Nanopartículas , Osteomielite , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Cobre/química , Micro-Ondas/uso terapêutico , Nanopartículas/química , Infecções Estafilocócicas/terapia , Osteomielite/terapia
6.
Small ; 20(28): e2312280, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38312094

RESUMO

Antibiotics are frequently used to clinically treat osteomyelitis caused by bacterial infections. However, extended antibiotic use may result in drug resistance, which can be life threatening. Here, a heterojunction comprising Fe2O3/Fe3S4 magnetic composite is constructed to achieve short-term and efficient treat osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA). The Fe2O3/Fe3S4 composite exhibits powerful microwave (MW) absorption properties, thereby effectively converting incident electromagnetic energy into thermal energy. Density functional theory calculations demonstrate that Fe2O3/Fe3S4 possesses significant charge accumulation and oxygen-fixing capacity at the heterogeneous interface, which provides more active sites and oxygen sources for trapping electromagnetic hotspots. The finite element analysis indicates that Fe2O3/Fe3S4 displays a larger electromagnetism field enhancement parameter than Fe2O3 owing to a significant increase in electromagnetic hotspots. These hotspots contribute to charge differential accumulation and depletion motions at the interface, thereby augmenting the release of free electrons that subsequently combine with the oxygen adsorbed by Fe2O3/Fe3S4 to generate reactive oxygen species (ROS) and heat. This research, which achieves extraordinary bacterial eradication through the synergistic effect of microwave thermal therapy (MWTT) and microwave dynamic therapy (MDT), presents a novel strategy for treating deep-tissue bacterial infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Micro-Ondas , Osteomielite , Oxigênio , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Osteomielite/terapia , Osteomielite/tratamento farmacológico , Oxigênio/química , Elétrons , Animais , Camundongos
7.
Small ; : e2407113, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420683

RESUMO

Staphylococcus aureus (S. aureus)-infected osteomyelitis is a deep tissue infection that cannot be effectively treated with antibiotics. Microwave (MW) thermal therapy (MTT) and MW dynamic therapy (MDT) based on MW-responsive materials are promising for the therapy of bacteria-infected osteomyelitis occurring in deep tissues that cannot be effectively treated with antibiotics. In this work, the MW-responsive system of carbon nanotubes (CNTs)/Prussian blue (PB)/puerarin (Pue) with stable network-like structures is constructed. The PB is grown in situ on the CNTs, and its introduction not only reduces the aggregation of the network-like structures of the CNTs, but the large specific surface area and mesoporous structure can also provide many active sites for the adsorption of oxygen and polar molecules. Pue is a natural anti-inflammatory material that reduces inflammation at the infection site. The composite of the CNTs and PB avoids the skin effect and thus can improve dielectric and reflection losses. The MW thermal response of CNTs/PB/Pue is mainly due to the occurrence of reflection loss, dielectric loss, multiple reflections and scattering, interface polarization, and dipole polarization. In addition, under MW irradiation, the CNTs/PB/Pue can produce reactive oxygen species (ROS), such as singlet oxygen (1O2), hydroxyl radical (·OH).

8.
Liver Int ; 44(9): 2329-2340, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38828515

RESUMO

BACKGROUND AND AIMS: Porto-sinusoidal vascular disease (PSVD) is an under-recognized and under-diagnosed disease. The purpose of this study was to investigate the clinical features and prognosis of PSVD. METHODS: The patients who underwent liver biopsies were analyzed retrospectively. The clinical and pathological data were reviewed and screened according to the latest diagnostic criteria of PSVD. RESULTS: A total of 234 patients were diagnosed as PSVD, including 103 patients presented with portal hypertension (PH) and 131 patients without PH. At baseline, the alanine aminotransferase (ALT) and γ-glutamyl transpeptidase (GGT) levels were higher in the no-PH group. The liver stiffness increased in the PH group. In histological review, obliterative portal venopathy, sinusoidal dilatation and architectural disturbance were more common in the PH group, while portal tract abnormalities were more widely distributed in the no-PH group. After a median follow-up of 43.6 months, the survival rate of patients with baseline liver decompensation was 76.0%, and that of patients at a liver compensated stage in the PH group was 98.7%. First variceal bleeding occurred in 13.8% of patients with gastric-oesophageal varices. None of the patients in the no-PH group developed portal hypertension during follow-up. CONCLUSIONS: PSVD can manifest as PH or mild liver enzyme abnormalities. There are significant differences in pathological features among patients with different clinical manifestations. Recurrent ascites are the main cause of death in PSVD patients. However, patients without PH have a slow disease progression, with recurrent elevated GGT levels being their main clinical feature.


Assuntos
Varizes Esofágicas e Gástricas , Hipertensão Portal , Fígado , gama-Glutamiltransferase , Humanos , Hipertensão Portal/etiologia , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , China/epidemiologia , gama-Glutamiltransferase/sangue , Adulto , Varizes Esofágicas e Gástricas/etiologia , Fígado/patologia , Alanina Transaminase/sangue , Idoso , Veia Porta/patologia , Prognóstico , Hemorragia Gastrointestinal/etiologia , Biópsia
9.
Small ; 19(3): e2205292, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408892

RESUMO

Wound biofilm infection has an inherent resistance to antibiotics, requiring physical debridement combined with chemical reagents or antibiotics in clinical treatment, but it is invasive and may exist as incomplete debridement. So, a new type of noninvasive and efficient treatment is needed to address this problem. Here, the crystal phase engineering of TiO2 is presented to explore the sonocatalytic properties of TiO2 nanoparticles with different phases, and find that the anatase-brookite TiO2  (AB) has the best antibacterial efficiency of 99.94% against S. aureus under 15 min of ultrasound (US) irradiation. The type II homojunction of AB not only enhances the adsorption and decreases the activation energy of O2 , respectively, but also has a great interfacial charge transfer efficiency under US, which can produce more reactive oxygen species than other types of TiO2 . The microneedles (MN) penetrate the biofilm in wound tissue and quickly disperse the loaded AB into the biofilm because the ultrasonic cavitation accelerates the dissolution of microneedles, which non-invasively and efficiently eradicates the deep-layered biofilm under US. This work explores the relationship between the phase composition of TiO2 and sonocatalytic property for the first time, and provides a new treatment strategy for wound biofilm infection through US-assisted microneedles therapy.


Assuntos
Nanopartículas , Staphylococcus aureus , Staphylococcus aureus/fisiologia , Nanopartículas/química , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química
10.
Small ; 19(23): e2207687, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908091

RESUMO

Defect engineering is an important way to tune the catalytic properties of metal-organic framework (MOF), yet precise control of defects is difficult to achieve. Herein, a cerium-based MOF (CeTCPP) is decorated with Au nanoparticles. Under ultrasound irradiation, Au nanoparticles can precisely turn 1/3 of the pristine Ce3+ nodes into Ce4+ . With the stable existence of Ce4+ , the coordination of Ce nodes changed, causing the structural irregularity in CeTCPP-Au, so that the electron-hole recombination is obviously hindered, facilitating the generation of reactive oxygen species. Therefore, under 20 min of ultrasound irradiation, the CeTCPP-Au showed superior antibacterial efficacy of over 99% against Staphylococcus aureus and Escherichia coli with good biocompatibility, which is further used for effective therapy of osteomyelitis. Overall, this work provides a dynamic defect formation strategy of MOF through the electron trapping of Au nanoparticles, which also sheds light on sonodynamic therapy in curing deep-seated lesions.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Osteomielite , Humanos , Estruturas Metalorgânicas/química , Ouro/química , Elétrons , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Osteomielite/terapia
11.
Small ; 19(47): e2303484, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485572

RESUMO

The ability to effectively treat deep bacterial infections while promoting osteogenesis is the biggest treatment demand for diseases such as osteomyelitis. Microwave therapy is widely studied due to its remarkable ability to penetrate deep tissue. This paper focuses on the development of a microwave-responsive system, namely, a zinc ion (Zn2+ ) doped graphite carbon nitride (CN) system (BZCN), achieved through two high-temperature burning processes. By subjecting composite materials to microwave irradiation, an impressive 99.81% eradication of Staphylococcus aureus is observed within 15 min. Moreover, this treatment enhances the growth of bone marrow stromal cells. The Zn2+ doping effectively alters the electronic structure of CN, resulting in the generation of a substantial number of free electrons on the material's surface. Under microwave stimulation, sodium ions collide and ionize with the free electrons generated by BZCN, generating a large amount of energy, which reacts with water and oxygen, producing reactive oxygen species. In addition, Zn2+ doping improves the conductivity of CN and increases the number of unsaturated electrons. Under microwave irradiation, polar molecules undergo movement and generate frictional heat. Finally, the released Zn2+ promotes macrophages to polarize toward the M2 phenotype, which is beneficial for tibial repair.


Assuntos
Grafite , Osteomielite , Humanos , Grafite/química , Carbono , Micro-Ondas , Antibacterianos/farmacologia , Antibacterianos/química , Osteomielite/tratamento farmacológico
12.
Sensors (Basel) ; 23(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37420815

RESUMO

In the billions of faces that are shaped by thousands of different cultures and ethnicities, one thing remains universal: the way emotions are expressed. To take the next step in human-machine interactions, a machine (e.g., a humanoid robot) must be able to clarify facial emotions. Allowing systems to recognize micro-expressions affords the machine a deeper dive into a person's true feelings, which will take human emotion into account while making optimal decisions. For instance, these machines will be able to detect dangerous situations, alert caregivers to challenges, and provide appropriate responses. Micro-expressions are involuntary and transient facial expressions capable of revealing genuine emotions. We propose a new hybrid neural network (NN) model capable of micro-expression recognition in real-time applications. Several NN models are first compared in this study. Then, a hybrid NN model is created by combining a convolutional neural network (CNN), a recurrent neural network (RNN, e.g., long short-term memory (LSTM)), and a vision transformer. The CNN can extract spatial features (within a neighborhood of an image), whereas the LSTM can summarize temporal features. In addition, a transformer with an attention mechanism can capture sparse spatial relations residing in an image or between frames in a video clip. The inputs of the model are short facial videos, while the outputs are the micro-expressions recognized from the videos. The NN models are trained and tested with publicly available facial micro-expression datasets to recognize different micro-expressions (e.g., happiness, fear, anger, surprise, disgust, sadness). Score fusion and improvement metrics are also presented in our experiments. The results of our proposed models are compared with that of literature-reported methods tested on the same datasets. The proposed hybrid model performs the best, where score fusion can dramatically increase recognition performance.


Assuntos
Reconhecimento Facial , Humanos , Redes Neurais de Computação , Memória de Longo Prazo , Emoções , Medo , Expressão Facial
13.
Small ; 18(5): e2104448, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34841668

RESUMO

Pathogenic bacteria that adhere on the surface of textiles, especially healthcare workers' uniforms, have brought severe problems, including nosocomial infection and other infectious diseases. Here, antibacterial textiles are fabricated by in situ growing oxygen vacancies (OVs) BiOBr on the surface of Ti3 C2 nanosheets followed by in situ polymerization of polypyrrole (ppy). The formed Schottky heterojunction containing OVs of Ti3 C2 /BiOBr effectively enhance the transfer and separation of photogenerated carriers, inhibit the recombination, and decrease the band gap by introducing defect level, which significantly improve the photocatalytic activity, leading to higher reactive oxygen species (ROS) under light irradiation. Therefore, the antibacterial efficacy of textiles reaches up to 98.64% against Staphylococcus aureus and 99.89% against Escherichia coli with the assistance of hyperthermia under light irradiation for 15 min. This work provides insights for designing photo-excited antibacterial textiles by interfacial construction based on Schottky junctions and OVs in the incorporated nanomaterials.


Assuntos
Oxigênio , Polímeros , Antibacterianos/farmacologia , Bismuto , Catálise , Humanos , Pirróis/farmacologia , Têxteis , Titânio/farmacologia
14.
Small ; 18(38): e2202691, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35986434

RESUMO

The richened reactive oxygen species (ROS) and their derived excessive inflammation at bone injured sites hinder osteogenesis of endosseous Ti-based implants. Herein, anti-oxidized polydopamine (PDA) is deposited on hydrothermal growth formed hydroxyapatite (HA) nanorods on Ti to form a core-shell structural nanorod-like array with HA as a core and PDA as an amorphous shell (PDA@HA), showing not only ROS scavenging ability but also near-infrared (NIR) light derived photo-thermal effects. PDA@HA suppresses inflammation based on its ROS scavenging ability to a certain extent, while periodic photo-thermal treatment (PTT) at a mild temperature (41 ± 1 °C) further accelerates the transition of the macrophages (MΦs) adhered to PDA@HA from the pro-inflammatory (M1) phenotype to the anti-inflammatory (M2) phenotype in vitro and in vivo. Transcriptomic analysis reveals that the activation of the PI3K-Akt1 signaling pathway is responsible for the periodic PTT induced acceleration of the M1-to-M2 transition of MΦs. Acting on mesenchymal stem cells (MSCs) with paracrine cytokines of M2 macrophages, PDA@HA with mild PTT greatly promote the osteogenetic functions of MSCs and thus osteogenesis. This work paves a way of employing mildly periodic PTT to induce a favorable immunomodulatory microenvironment for osteogenesis and provides insights into its underlying immunomodulation mechanism.


Assuntos
Durapatita , Osteogênese , Citocinas/metabolismo , Durapatita/química , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Small ; 18(41): e2204028, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089666

RESUMO

It is difficult to effectively treat bacterial osteomyelitis using photothermal therapy or photodynamic therapy due to poor penetration of light. Here, a microwave (MW)-excited magnetic composite of molybdenum disulfide (MoS2 ) / iron oxide (Fe3 O4 ) is reported for the treatment of bacteria-infected osteomyelitis. In in vitro and in vivo experiments, MoS2 /Fe3 O4 is shown to effectively eradicate bacteria-infected mouse tibia osteomyelitis, due to MW thermal enhancement and reactive oxygen species (ROS) (1 O2 and ·O2 - ) production under MW radiation. In addition, the mechanism of MW heat generation is proposed by MW network vector analysis. By the density functional theory and finite element method, the ROS generation mechanism is proposed. The synergy or conductive network between dielectric MoS2 and magnetic Fe3 O4 can reach both enhancement of the dielectric and magnetic attenuation capability. In addition, abundant interfaces are generated to enhance the attenuation of electromagnetic waves by MoS2 and Fe3 O4, introducing multiple reflections and interfacial polarization. Therefore, MoS2 /Fe3 O4 has excellent MW absorption ability based on the synergy or conductive network between MoS2 and magnetic Fe3 O4 as well as multiple dielectric reflections and interfacial polarization.


Assuntos
Osteomielite , Infecções Estafilocócicas , Animais , Camundongos , Micro-Ondas , Molibdênio , Osteomielite/terapia , Espécies Reativas de Oxigênio , Infecções Estafilocócicas/terapia , Staphylococcus aureus
16.
Small ; 18(36): e2106056, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35570711

RESUMO

Mg-Ca alloys have emerged as a promising research direction for biomedical implants in the orthopedic field. However, their clinical use is deterred by their fast corrosion rate. In this work, a pH stimuli-responsive silk-halloysite (HNT)/phytic acid (PA) self-healing coating (Silk-HNT/PA) is constructed to slow down the corrosion rate of Mg-1Ca alloy and its cell viability and osteogenic differentiation ability are enhanced. The Silk-HNT/PA coating exhibits appealing active corrosion protection, by eliciting pH-triggerable self-healing effects, while simultaneously affording superior biocompatibility and osteogenic differentiation ability. Moreover, in vivo studies by histological analysis also demonstrate better osseointegration for the Silk-HNT/PA coated Mg-1Ca alloy. In summary, the Silk-HNT/PA coating in the present study has great potential in enhancing the biomedical utility of Mg alloys.


Assuntos
Magnésio , Osteogênese , Ligas , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Concentração de Íons de Hidrogênio , Seda
17.
J Mater Sci Mater Med ; 33(9): 64, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104513

RESUMO

The repair of critical diaphyseal defects of lower weight-bearing limbs is an intractable problem in clinical practice. From December 2017, we prospectively applied 3D printed porous Ti6Al4V scaffolds to reconstruct this kind of bone defect. All patients experienced a two-stage surgical process, including thorough debridement and scaffold implantation. With an average follow-up of 23.0 months, ten patients with 11 parts of bone defects were enrolled in this study. The case series included three females and seven males, their defect reasons included seven parts of osteomyelitis and four parts of aseptic nonunion. The bone defects located at femur (five parts) and tibia (six parts), with an average defect distance of 12.2 cm. Serial postoperative radiologic follow-ups displayed a continuous process of new bone growing and remodeling around the scaffold. One patient suffered tibial varus deformity, and he underwent a revision surgery. The other nine patients achieved scaffold stability. No scaffold breakage occurred. In conclusion, the implantation of 3D printed Ti6Al4V scaffold was feasible and effective to reconstruct critical bone defects of lower limbs without additional bone grafting. Graphical abstract.


Assuntos
Transplante Ósseo , Alicerces Teciduais , Ligas , Feminino , Humanos , Extremidade Inferior , Masculino , Porosidade , Impressão Tridimensional , Estudos Prospectivos , Titânio
18.
Chem Soc Rev ; 50(8): 5086-5125, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33634817

RESUMO

Some infectious or malignant diseases such as cancers are seriously threatening the health of human beings all over the world. The commonly used antibiotic therapy cannot effectively treat these diseases within a short time, and also bring about adverse effects such as drug resistance and immune system damage during long-term systemic treatment. Phototherapy is an emerging antibiotic-free strategy to treat these diseases. Upon light irradiation, phototherapeutic agents can generate cytotoxic reactive oxygen species (ROS) or induce a temperature increase, which leads to the death of targeted cells. These two kinds of killing strategies are referred to as photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. So far, many photo-responsive agents have been developed. Among them, the metal-organic framework (MOF) is becoming one of the most promising photo-responsive materials because its structure and chemical compositions can be easily modulated to achieve specific functions. MOFs can have intrinsic photodynamic or photothermal ability under the rational design of MOF construction, or serve as the carrier of therapeutic agents, owing to its tunable porosity. MOFs also provide feasibility for various combined therapies and targeting methods, which improves the efficiency of phototherapy. In this review, we firstly investigated the principles of phototherapy, and comprehensively summarized recent advances of MOF in PDT, PTT and synergistic therapy, from construction to modification. We expect that our demonstration will shed light on the future development of this field, and bring it one step closer to clinical trials.


Assuntos
Antineoplásicos/farmacologia , Estruturas Metalorgânicas/farmacologia , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estruturas Metalorgânicas/química , Neoplasias/metabolismo , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
19.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236263

RESUMO

Efficient and robust search and rescue actions are always required when natural or technical disasters occur. Empowered by remote sensing techniques, building damage assessment can be achieved by fusing aerial images of pre- and post-disaster environments through computational models. Existing methods pay over-attention to assessment accuracy without considering model efficiency and uncertainty quantification in such a life-critical application. Thus, this article proposes an efficient and uncertain-aware decision support system (EUDSS) that evolves the recent computational models into an efficient decision support system, realizing the uncertainty during building damage assessment (BDA). Specifically, a new efficient and uncertain-aware BDA integrates the recent advances in computational models such as Fourier attention and Monte Carlo Dropout for uncertainty quantification efficiently. Meanwhile, a robust operation (RO) procedure is designed to invite experts for manual reviews if the uncertainty is high due to external factors such as cloud clutter and poor illumination. This procedure can prevent rescue teams from missing damaged houses during operations. The effectiveness of the proposed system is demonstrated on a public dataset from both quantitative and qualitative perspectives. The solution won the first place award in International Overhead Imagery Hackathon.


Assuntos
Desastres , Método de Monte Carlo , Incerteza
20.
J Am Chem Soc ; 143(37): 15427-15439, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516125

RESUMO

Traditional surgical intervention and antibiotic treatment are poor and even invalid for chronic diseases including periodontitis induced by diverse oral pathogens, which often causes progressive destruction of tissues, even tooth loss, and systemic diseases. Herein, an ointment comprising atomic-layer Fe2O3-modified two-dimensional porphyrinic metal-organic framework (2D MOF) nanosheets is designed by incorporating a polyethylene glycol matrix. After the atomic layer deposition surface engineering, the enhanced photocatalytic activity of the 2D MOF heterointerface results from lower adsorption energy and more charge transfer amounts due to the synergistic effect of metal-linker bridging units, abundant active sites, and an excellent light-harvesting network. This biocompatible and biodegradable 2D MOF-based heterostructure exhibits broad-spectrum antimicrobial activity (99.87 ± 0.09%, 99.57 ± 0.21%, and 99.03 ± 0.24%) against diverse oral pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Staphylococcus aureus) by the synergistic effect of reactive oxygen species and released ions. This photodynamic ion therapy exhibits a superior therapeutic effect to the reported clinical periodontitis treatment owing to rapid antibacterial activity, alleviative inflammation, and improved angiogenesis.


Assuntos
Estruturas Metalorgânicas , Periodontite/terapia , Fotoquimioterapia/métodos , Catálise , Fusobacterium nucleatum , Humanos , Nanoestruturas , Periodontite/microbiologia , Fotólise , Porphyromonas gingivalis , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA