Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Transl Med ; 17(1): 355, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665020

RESUMO

BACKGROUND: Exosomes are 50-150 nm endocytic vesicles secreted by almost all type of cells that carry bioactive molecules from host. These small vesicles are considered to be novel cross-talk circuits established by tumor cells and tumor microenvironment. Previous studies have shown certain biological influence of exosomal programmed cell-death ligand 1 (Exo-PD-L1) on immune suppression and dysfunction. The aim of the current study was to investigate the impact of Exo-PD-L1 and soluble PD-L1 (sPD-L1) on non-small cell lung cancer (NSCLC) and explore the concordance between Exo-PD-L1 and PD-L1 expression in matched tumor tissues in NSCLC patients. METHODS: 85 consecutive patients from April 2017 to December 2017 at General Hospital of Eastern Command Theatre who were primarily diagnosed with NSCLC and 27 healthy individuals were enrolled in this study. Two milliliters of whole blood samples were collected from each participant and further centrifuged. Exosomes were derived from serum using the commercial kit (Total Exosome Isolation Kit), which was further identified by Western blotting analysis (CD63/TSG101), transmission electron microscope analysis (TEM) and nanoparticle tracking analysis (NTA). Exosomes were next solubilized for Exo-PD-L1 detection by enzyme-linked immuno-sorbent assay (ELISA). PD-L1 expression in matched tissue were assessed by PD-L1 immunohistochemistry (IHC) (clone 28-8) assay. Tumor proportion score (TPS) ≥ 1% was deemed as "positive" in this study and TPS < 1% was deemed as "negative". Written informed consent were obtained before acquisition of all data and biological sample. Data were analyzed using SPSS 20.0 and Graphpad Prism 5 software. Chi square test was conducted to estimate the correlation between Exo-PD-L1 levels, sPD-L1 levels, PD-L1 IHC profiles and clinicopathological features. For all analysis, a two-sided p < 0.05 was considered significant statistically. RESULTS: Exo-PD-L1 levels were higher in NSCLC patients with advanced tumor stage, larger tumor size (> 2.5 cm) (p < 0.001), positive lymph node status (p < 0.05) and distant metastasis (p < 0.05). In contrast, sPD-L1 levels were not different between NSCLC patients and healthy donors, it was not correlated with any clinicopathologic features except for tumor size (> 2.5 cm) (p < 0.05). In addition, Exo-PD-L1 levels showed slight correlation with sPD-L1 levels (Spearman's correlation at r = 0.3, p = 0.0027) while no correlation with PD-L1 IHC profiles was detected. CONCLUSIONS: In conclusion, Exo-PD-L1, but not sPD-L1, was correlated with NSCLC disease progression, including tumor size, lymph node status, metastasis and TNM stage. However, Exo-PD-L1 was not associated with PD-L1 IHC status.


Assuntos
Antígeno B7-H1/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Neoplasias Pulmonares/sangue , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Casos e Controles , Estudos de Coortes , Exossomos/imunologia , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Solubilidade , Pesquisa Translacional Biomédica , Microambiente Tumoral/imunologia
2.
Neuroscience ; 547: 88-97, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38615829

RESUMO

Down syndrome (DS), also known as trisomy 21, is one of the most common chromosomal disorders associated with intellectual disability. Mouse models are valuable for mechanistic and therapeutic intervention studies. The purpose of this study was to investigate astroglial anomalies in Dp16, a widely used DS mouse model. Brain sections were prepared from one-month-old Dp16 mice and their littermates, immunostained with an anti-GFAP or anti-S100B antibody, and imaged to reconstruct astroglial morphology in three dimensions. No significant difference in the number of astrocytes was found in either the hippocampal CA1 region or cortex between Dp16 and WT mice. However, the average astroglial volume in Dp16 was significantly (P < 0.05) greater than that in WT, suggesting the astroglial activation. Reanalysis of the single-nucleus RNA sequencing data indicated that the genes differentially expressed between WT and Dp16 astrocytes were associated with synapse organization and neuronal projection. In contrast, in vitro cultured neonatal astrocytes did not exhibit significant morphological changes. The expression of Gfap in in vitro cultured Dp16 astrocytes was not increased as it was in in vivo hippocampal tissue. However, after treatment with lipopolysaccharides, the inflammatory response gene IFNß increased significantly more in Dp16 astrocytes than in WT astrocytes. Overall, our results showed that the increase in astrogliogenesis in DS was not apparent in the early life of Dp16 mice, while astrocyte activation, which may be partly caused by increased responses to inflammatory stimulation, was significant. The inflammatory response of astrocytes might be a potential therapeutic target for DS intellectual disability.


Assuntos
Astrócitos , Modelos Animais de Doenças , Síndrome de Down , Animais , Síndrome de Down/patologia , Síndrome de Down/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/patologia , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/patologia , Encéfalo/metabolismo
3.
Hum Cell ; 37(3): 832-839, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372889

RESUMO

Pathogenic variants of the KCNH1 gene can cause dominant-inherited Temple-Baraitser/Zimmermann-Laband syndrome with severe mental retardation, seizure, gingival hyperplasia and nail hypoplasia. This study established an induced pluripotent stem cell (iPSC) line using urinary cells from a girl with KCNH1 recurrent/hotspot pathogenic variant c.1070G > A (p.R357Q). The cell identity, pluripotency, karyotypic integrity, absence of reprogramming virus and mycoplasma contamination, and differential potential to three germ layers of the iPSC line, named as ZJUCHi003, were characterized and confirmed. Furthermore, ZJUCHi003-derived neurons manifested slower action potential repolarization process and wider action potential half-width than the normal neurons. This cell line will be useful for investigating the pathogenic mechanisms of KCNH1 variants-associated symptoms, as well as for evaluating novel therapeutic approaches.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Fibromatose Gengival , Hallux/anormalidades , Deformidades Congênitas da Mão , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Unhas Malformadas , Polegar/anormalidades , Feminino , Humanos , Deficiência Intelectual/genética , Anormalidades Múltiplas/genética , Mutação , Canais de Potássio Éter-A-Go-Go/genética
4.
Genes Genomics ; 45(10): 1305-1315, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548883

RESUMO

BACKGROUND: Down syndrome (DS), the most frequently occurring human chromosomal disorder, is caused by trisomy 21. The exact molecular effects of trisomy on certain cell populations in the brain remain poorly understood. OBJECTIVE: The purpose of this study was to investigate the effects of trisomy on the transcriptomes of various types of neurons and nonneuronal cells in the hippocampus. METHODS: A total of 8993 nuclei from the WT and 6445 nuclei from the Dp16 hippocampus were analyzed by single-nucleus RNA sequencing (snRNA-seq). Cell clustering was achieved by the Seurat program. RESULTS: Hippocampal cells were grouped into multiple neuronal and nonneuronal populations. Only a limited number of trisomic genes were upregulated (q < 0.001) over 1.25-fold in a specific type of hippocampal cell. Specifically, deregulation of genes associated with synaptic signaling and organization was observed in multiple cell populations, including excitatory neurons, oligodendrocytes, and microglia. This observation suggests the potential importance of synapse deficits in DS. Interestingly, GO annotation of the upregulated genes suggested potential activation of the immune system by hippocampal excitatory neurons. Fewer trisomic genes were altered in nonneuronal cells than in neurons. Notably, microglial transcriptome analysis revealed significantly (q < 0.001) increased expression of C1qb and C1qc, which suggested potential involvement of complement-mediated synapse loss mediated by microglia in DS. CONCLUSION: The trisomy-related hippocampal deficits should be driven by a small amount, not all, of the trisomic genes in a specific type of cell. Our work may help to narrow down both the molecular and cellular targets for future gene therapies in DS.


Assuntos
Síndrome de Down , Camundongos , Animais , Humanos , Síndrome de Down/genética , Trissomia/genética , Transcriptoma , Hipocampo/metabolismo , Análise de Sequência de RNA
5.
Oncogene ; 41(7): 930-942, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34615998

RESUMO

Colorectal cancer (CRC) is among the top five most common malignant tumors worldwide and has a high mortality rate. Identification of the mechanism of CRC and potential therapeutic targets is critical for improving survival. In the present study, we observed high expression of RAN binding protein 1 (RANBP1) in CRC tissues. Upregulated RANBP1 expression was strongly associated with TNM stages and was an independent risk factor for poor prognosis. In vitro and in vivo functional experiments demonstrated that RANBP1 promoted the proliferation and invasion of CRC cells and inhibited the apoptosis of CRC cells. Low RANBP1 expression reduced the expression levels of hsa-miR-18a, hsa-miR-183, and hsa-miR-106 microRNAs (miRNAs) by inhibiting the nucleoplasmic transport of precursor miRNAs (pre-miRNAs), thereby promoting the accumulation of the latter in the nucleus and reducing the expression of mature miRNAs. Further experiments and bioinformatic analyses demonstrated that RANBP1 promoted the expression of YAP by regulating miRNAs and the Hippo pathway. We also found that YAP acted as a transcriptional cofactor to activate RANBP1 transcription in combination with TEAD4 transcription factor. Thus, RANBP1 further promoted the progression of CRC by forming a positive feedback loop with YAP. Our results revealed the biological role and mechanism of RANBP1 in CRC for the first time, suggesting that RANBP1 can be used as a diagnostic molecule and a potential therapeutic target in CRC.


Assuntos
MicroRNAs
6.
J Exp Clin Cancer Res ; 40(1): 162, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971927

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a common tumor characterized by its high mortality. However, the underlying molecular mechanisms that drive CRC tumorigenesis are unclear. Clock genes have important roles in tumor development. In the present study, the expression and functions of clock gene TIMELESS (encoding the Timeless protein) in CRC were investigated. METHODS: Immunohistochemistry, cell proliferation, migration, invasion, EMT and xenograft tumor experiments were used to prove the function of Timeless in the tumorigenesis of CRC. Immunoprecipitation, mass spectrometry, Immunofluorescence and Chromatin immunoprecipitation (ChIP) were utilized to clarify the mechanism of Timeless in regulating CRC tumorigenesis. RESULTS: We found that Timeless was upregulated in CRC tissues compared with corresponding normal tissues and its expression was closely associated with the TNM stages and overall survival of CRC patients. Functional studies demonstrated that Timeless promoted the proliferation, invasion, and EMT of CRC cells in vitro and in vivo. Mechanistic investigations showed that Timeless activated the ß-catenin signal pathway by binding to Myosin-9, which binds to ß-catenin to induce its nuclear translocation. The upregulation of Timeless was attributed to CREB-binding protein (CBP)/p300-mediated H3K27 acetylation of the promoter region of Timeless. CONCLUSION: Timeless regulates the tumorigenesis of CRC by binding to and regulating myosin-9, suggesting Timeless might be a potential prognostic biomarker and therapeutic target for CRC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Via de Sinalização Wnt , Acetilação , Animais , Células CACO-2 , Carcinogênese , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Células HCT116 , Células HT29 , Xenoenxertos , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/genética , Prognóstico , Regulação para Cima
7.
Gut Pathog ; 11: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828386

RESUMO

BACKGROUND: The relationship between disturbances of the gut microbiota and 1,25(OH)2D3 deficiency has been established both in humans and animal models with a vitamin D poor diet or a lack of sun exposure. Our prior study has demonstrated that Cyp27b1 -/- (Cyp27b1 knockout) mice that could not produce 1,25(OH)2D3 had significant colon inflammation phenotypes. However, whether and how 1,25(OH)2D3 deficiency due to the genetic deletion controls the gut homeostasis and modulates the composition of the gut microbiota remains to be explored. RESULTS: 1,25(OH)2D3 deficiency impair the composition of the gut microbiota and metabolite in Cyp27b1 -/- mice, including Akkermansia muciniphila, Solitalea Canadensis, Bacteroides-acidifaciens, Bacteroides plebeius and SCFA production. 1,25(OH)2D3 deficiency cause the thinner colonic mucus layer and increase the translocation of the bacteria to the mesenteric lymph nodes. We also found 1,25(OH)2D3 supplement significantly decreased Akkermansia muciniphila abundance in fecal samples of Cyp27b1 -/- mice. CONCLUSION: Deficiency in 1,25(OH)2D3 impairs the composition of gut microbiota leading to disruption of intestinal epithelial barrier homeostasis and induction of colonic inflammation. This study highlights the association between 1,25(OH)2D3 status, the gut microbiota and the colonic mucus barrier that is regarded as a primary defense against enteric pathogens.

8.
Proteomics Clin Appl ; 11(11-12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28816019

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and is the fourth most lethal cancer in China. Little is known about the proteome of high grade esophageal squamous intraepithelial neoplasia (HGN), which is a premalignant lesion of ESCC. A quantitative proteomic analysis using an isobaric tag for relative and absolute quantification (iTRAQ) approach is used to characterize the protein expression profiles in HGN. Among the 3156 identified proteins, a total of 236 proteins are discovered to be differentially expressed. Compared with paired normal esophageal epithelial tissues, 138 proteins are upregulated and 98 proteins are downregulated in HGN. Bioinformatics analyses are performed according to gene ontology, clusters of orthologous groups, and kyoto encyclopedia of genes and genomes enrichment analyses. Six differentially expressed proteins are chosen and validated by Western blotting. The results of the study increase our understanding of early tumorigenesis during ESCC, and provide insights into the proteome at the initial stages of the disease that can be used to identify potential biomarkers for early diagnosis and for therapeutic targets.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Carcinoma de Células Escamosas do Esôfago , Humanos , Espectrometria de Massas em Tandem
10.
PLoS One ; 11(1): e0146426, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26790152

RESUMO

Epidemiological studies showed that 1,25-Dihydroxyvitamin D[1,25(OH)2D3] insufficiency appears to be associated with aging and colon cancer while underlying biological mechanisms remain largely unknown. Inflammatory bowel disease is one of the risk factors for colon cancer. In this study, we investigated whether 1,25(OH)2D3 deficiency has an impact on the colon of 25-hydroxyvitamin D 1α-hydroxylase knockout [Cyp27b1(-/-)] mice fed on a rescue diet (high calcium, phosphate, and lactose) from weaning to 10 months of age. We found that 1,25(OH)2D3 deficient mice displayed significant colon inflammation phenotypes including shortened colon length, thinned and disordered mucosal structure, and inflammatory cell infiltration. DNA damage, cellular senescence and the production of senescence-associated inflammatory cytokines were also increased significantly in the colon of Cyp27b1(-/-)mice. Furthermore, the levels of ROS in the colon were increased significantly, whereas the expression levels of antioxidative genes were down-regulated dramatically in the colon of Cyp27b1(-/-)mice. Taken together, our results demonstrated that 1,25(OH)2D3 deficiency could induce colon inflammation, which may result from increased oxidative stress and DNA damage, subsequently, induced cell senescence and overproduction of senescence-associated secretory factors. Therefore, our findings suggest that 1,25(OH)2D3 may play an important role in preventing the development and progression of colon inflammation and colon cancer.


Assuntos
Calcitriol , Senescência Celular , Colite/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Deficiência de Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Animais , Colite/genética , Colite/patologia , Colo/patologia , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA