Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Proteome Res ; 20(5): 2308-2318, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33853325

RESUMO

Hirschsprung's disease (HSCR) is characterized by the lack of ganglion cells in the distal part of the digestive tract. It occurs due to migration disorders of enteric neural crest cells (ENCCs) from 5 to 12 weeks of embryonic development. More and more studies show that HSCR is a result of the interaction of multiple genes and the microenvironments, but its specific pathogenesis has not been fully elucidated. Studies have confirmed that many substances in the intestinal microenvironment, such as laminin and ß1-integrin, play a vital regulatory role in cell growth and disease progression. In addition to these high-molecular-weight proteins, research on endogenous polypeptides derived from these proteins has been increasing in recent years. However, it is unclear whether these endogenous peptides have effects on the migration of ENCCs and thus participate in the occurrence of HSCR. Previously, our research group found that compared with the normal intestinal tissue, the expression of AHNAK protein in the stenosed intestinal tissue of HSCR patients was significantly upregulated, and overexpression of AHNAK could inhibit cell migration and proliferation. In this study, endogenous peptides were extracted from the normal control intestinal tissue and the stenosed HSCR intestinal tissue. The endogenous polypeptide expression profile was analyzed by liquid chromatography-mass spectrometry, and multiple peptides derived from AHNAK protein were found. We selected one of them, "EGPEVDVNLPK", for research. Because there is no uniform naming system, this peptide is temporarily named PDAHNAK (peptide derived from AHNAK). This project aims to clarify the potential role of PDAHNAK in the development of HSCR and to further understand its relationship with its precursor protein AHNAK and how they contribute to the development of HSCR.


Assuntos
Doença de Hirschsprung , Movimento Celular , Proliferação de Células , Doença de Hirschsprung/genética , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Proteínas de Neoplasias , Peptídeos
2.
J Cell Mol Med ; 22(10): 4913-4921, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30073757

RESUMO

HSCR (Hirschsprung's disease) is a serious congenital defect, and the aetiology of it remains unclear. Many studies have highlighted the significant roles of intronic miRNAs and their host genes in various disease, few was mentioned in HSCR although. In this study, miR-483-3p along with its host gene IGF2 (Insulin-like growth factor 2) was found down-regulated in 60 HSCR aganglionic colon tissues compared with 60 normal controls. FHL1 (Four and a half LIM domains 1) was determined as a target gene of miR-483-3p via dual-luciferase reporter assay, and its expression was at a higher level in HSCR tissues. Here, we study cell migration and proliferation in human 293T and SH-SY5Y cell lines by performing Transwell and CCK8 assays. In conclusion, the knockdown of miR-483-3p and IGF2 both suppressed cell migration and proliferation, while the loss of FHL1 leads to opposite outcome. Furthermore, miR-483-3p mimics could rescue the negative effects on cell proliferation and migration caused by silencing IGF2, while the FHL1 siRNA may inverse the function of miR-483-3p inhibitor. This study revealed that miR-483-3p derived from IGF2 was associated with Hirschsprung's disease by targeting FHL1 and may provide a new pathway to understand the aetiology of HSCR.


Assuntos
Doença de Hirschsprung/genética , Fator de Crescimento Insulin-Like II/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , MicroRNAs/genética , Proteínas Musculares/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Doença de Hirschsprung/patologia , Humanos , Lactente , Masculino , RNA Interferente Pequeno/genética
3.
Neurosci Bull ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779176

RESUMO

Endogenous peptides, bioactive agents with a small molecular weight and outstanding absorbability, regulate various cellular processes and diseases. However, their role in the occurrence of Hirschsprung's disease (HSCR) remains unclear. Here, we found that the expression of an endogenous peptide derived from YBX1 (termed PDYBX1 in this study) was upregulated in the aganglionic colonic tissue of HSCR patients, whereas its precursor protein YBX1 was downregulated. As shown by Transwell and cytoskeleton staining assays, silencing YBX1 inhibited the migration of enteric neural cells, and this effect was partially reversed after treatment with PDYBX1. Moreover, immunoprecipitation and immunofluorescence revealed that ERK2 bound to YBX1 and PDYBX1. Downregulation of YBX1 blocked the ERK1/2 pathway, but upregulation of PDYBX1 counteracted this effect by binding to ERK2, thereby promoting cell migration and proliferation. Taken together, the endogenous peptide PDYBX1 may partially alleviate the inhibition of the ERK1/2 pathway caused by the downregulation of its precursor protein YBX1 to antagonize the impairment of enteric neural cells. PDYBX1 may be exploited to design a novel potential therapeutic agent for HSCR.

4.
J Mol Med (Berl) ; 101(9): 1125-1139, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522903

RESUMO

Hirschsprung disease (HSCR) is a congenital disorder caused by the failure of enteric neural crest cells (ENCCs) to colonize the distal bowel, resulting in absence of enteric nervous system. While a range of molecules and signaling pathways have been found to contribute to HSCR development, the risk factors and pathogenesis of this disease in many patients remain unknown. We previously demonstrated that increased activity of the prostaglandin E2 (PGE2)/PGE2 receptor subtype EP2 pathway can be a risk factor for HSCR. In this study, an Ednrb-deficient mouse model of HSCR was generated and used to investigate if PGE2/EP2 pathway could be a potential therapeutic target for HSCR. We found that downregulation of PGE2/EP2 signaling by siRNA-mediated ablation of a PGE2 synthase or pharmacologic blockage of EP2 enhanced ENCC colonization in the distal bowel of Ednrb-/- mice and alleviated their HSCR-like symptoms. Furthermore, blockage of EP2 was shown to promote ENCC migration through upregulating p38 mitogen-activated protein kinase activity, which was downregulated in the colon of Ednrb-/- mice and in the distal aganglionic bowel of HSCR patients. These data provide evidence that maternal exposure during embryonic development to an environment with dysregulated activation of the PGE2/EP2 pathway may predispose genetically susceptible offspring to HSCR, and avoidance or early disruption of maternal events (e.g. inflammation) that possibly enhance PGE2/EP2 signaling during pregnancy would reduce the occurrence and severity of this disease. KEY MESSAGES : Knockdown of PTGES alleviates HSCR severity in Ednrb-/- mice. Blockage of EP2-mediated PGE2 signaling alleviates HSCR severity in Ednrb-/- mice. Blockage of EP2-mediated PGE2 signaling promotes ENCC migration via enhancing p38 activity.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Feminino , Camundongos , Animais , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/patologia , Dinoprostona/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sistema Nervoso Entérico/metabolismo
5.
Front Mol Biosci ; 9: 1036746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589228

RESUMO

Extracellular vesicles (EV) are vesicular vesicles with phospholipid bilayer, which are present in biological fluids and extracellular microenvironment. Extracellular vesicles serve as pivotal mediators in intercellular communication by delivering lipids, proteins, and RNAs to the recipient cells. Different from extracellular vesicles derived from biofluids and that originate from cell culture, the tissue derived extracellular vesicles (Ti-EVs) send us more enriched and accurate information of tissue microenvironment. Notably, tissue derived extracellular vesicles directly participate in the crosstalk between numerous cell types within microenvironment. Current research mainly focused on the extracellular vesicles present in biological fluids and cell culture supernatant, yet the studies on tissue derived extracellular vesicles are increasing due to the tissue derived extracellular vesicles are promising agents to reflect the occurrence and development of human diseases more accurately. In this review, we aimed to clarify the characteristics of tissue derived extracellular vesicles, specify the isolation methods and the roles of tissue derived extracellular vesicles in various diseases, including tumors. Moreover, we summarized the advances and challenges of tissue derived extracellular vesicles research.

6.
Front Immunol ; 13: 1039565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341357

RESUMO

Background: Skin cutaneous melanoma (SKCM) is the most frequently encountered tumor of the skin. Immunotherapy has opened a new horizon in melanoma treatment. We aimed to construct a CD8+ T cell-associated immune gene prognostic model (CDIGPM) for SKCM and unravel the immunologic features and the benefits of immunotherapy in CDIGPM-defined SKCM groups. Method: Single-cell SKCM transcriptomes were utilized in conjunction with immune genes for the screening of CD8+ T cell-associated immune genes (CDIGs) for succeeding assessment. Thereafter, through protein-protein interaction (PPI) networks analysis, univariate COX analysis, and multivariate Cox analysis, six genes (MX1, RSAD2, IRF2, GBP2, IFITM1, and OAS2) were identified to construct a CDIGPM. We detected cell proliferation of SKCM cells transfected with IRF2 siRNA. Then, we analyzed the immunologic features and the benefits of immunotherapy in CDIGPM-defined groups. Results: The overall survival (OS) was much better in low-CDIGPM group versus high CDIGPM group in TCGA dataset and GSE65904 dataset. On the whole, the results unfolded that a low CDIGPM showed relevance to immune response-correlated pathways, high expressions of CTLA4 and PD-L1, a high infiltration rate of CD8+ T cells, and more benefits from immunotherapy. Conclusion: CDIGPM is an good model to predict the prognosis, the potential immune escape from immunotherapy for SKCM, and define immunologic and molecular features.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/terapia , Melanoma/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/metabolismo , Linfócitos T CD8-Positivos , Prognóstico , Imunoterapia , Melanoma Maligno Cutâneo
7.
Front Pediatr ; 10: 749107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321017

RESUMO

Hirschsprung's disease (HSCR) is a congenital disorder characterized by the absence of enteric neural crest cells (ENCCs). LncRNA rhabdomyosarcoma 2-associated transcript (RMST) is essential for the growth and development of neuron. This study aimed to reveal the role of RMST in the pathogenesis of HSCR. The expression level of RMST, miR-1251, SOX2, and AHNAK was evaluated with qRT-PCR or western blot. CCK-8 and transwell assays were applied to detect cell proliferation and migration. CHIP and RIP assays were applied to determine the combination relationship between SOX2 and promoter region of miR-1251 or RMST and SOX2, respectively. Dual-luciferase reporter assay was performed to confirm miR-1251 targeted AHNAK. As results have shown, RMST was downregulated in the aganglionic colon of HSCR patients. The knockdown of RMST attenuated cell proliferation and migration significantly. MiR-1251, the intronic miRNA of RMST, was also low expressed in HSCR, but RMST did not alter the expression of miR-1251 directly. Furthermore, SOX2 was found to regulate the expression of miR-1251 via binding to the promoter region of miR-1251, and RMST strengthened this function by interacting with SOX2. Moreover, AHNAK was the target gene of miR-1251, which was co-regulated by RMST and SOX2. In conclusion, our study demonstrated that RMST functioned as a transcriptional co-regulator of SOX2 to regulate miR-1251 and resulted in the upregulation of AHNAK, leading to the occurrence of HSCR. The novel RMST/SOX2/miR-1251/AHNAK axis provided potential targets for the diagnosis and treatment of HSCR during embryonic stage.

8.
Epigenomics ; 12(5): 409-422, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32297806

RESUMO

Aim: To discover the potential roles of plasma exosomal miRNAs in Hirschsprung's disease (HSCR) and identify potential noninvasive biomarkers for early diagnosis of HSCR. Materials & methods: Plasma samples were collected from HSCR patients and matched controls. Exosomes were isolated before high-throughput Illumina sequencing was utilized to gain a profile of dysregulated exosomal miRNAs, followed with further verification in two separate cohorts. Bioinformatics analyses were also adopted to explore the molecular functions of dysregulated miRNAs in Hirschsprung's disease. Results & conclusion: 31 dysregulated miRNAs were identified with five considered as promising HSCR signatures. Gene enrichment analysis disclosed that the upregulated miRNAs were most likely to participate in 'extracellular matrix-receptor interaction' and contribute to HSCR through interfering in cell junctions.


Assuntos
Biomarcadores , MicroRNA Circulante , Exossomos , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/genética , MicroRNAs/genética , Biologia Computacional/métodos , Exossomos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Doença de Hirschsprung/sangue , Humanos , Biópsia Líquida/métodos , MicroRNAs/sangue , Prognóstico , Interferência de RNA
9.
Aging (Albany NY) ; 12(18): 18588-18602, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32950974

RESUMO

Hirschsprung disease (HSCR) is a congenital disorder attributed to the failure of the neural crest derivatives migrating and/or differentiating along the hindgut. The most frequent complication in Hirschsprung disease patients is Hirschsprung-associated enterocolitis (HAEC). However, its pathogenesis has not been fully understood. This study investigated miRNAs influenced by Lipopolysaccharide (LPS) in postoperative HAEC patients, their effect on enterocolitis and the underlying mechanism. MiR-132 and miR-212 were up-regulated in HAEC dilated tissues and LPS-treated mice enteritis samples. LPS-stimulated HT29 cells showed a high expression of miR-132 and miR-212. QRT-PCR analysis, western blotting, luciferase reporter assay, and flow cytometric analysis were carried out in vitro, showing that miR-132 and miR-212 could directly inhibit Sirtuin 1 (SIRT1) expression. Consequently, SIRT1 deficiency in LPS-stimulated HT29 cell line and LPS-treated mice activated NLRP3 inflammasome and Caspase-1-mediated pyroptosis. Furthermore, the above inflammation activation was reversed by miR-132/212 inhibitor or SIRT1 overexpression plasmid transfection.In conclusion, LPS upregulated miR-132 and miR-212 expression in HAEC, suppressing SIRT1 and facilitating NLRP3 inflammasome activation, which induced pyroptosis. Our findings illustrated the role of LPS/miR-132/-212/SIRT1/NLRP3 regulatory network in the occurrence and progression of HAEC and proposed a new molecular pathway for LPS-mediated cell pyroptosis.

10.
Gut Microbes ; 11(4): 842-854, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944159

RESUMO

Hirschsprung disease (HSCR) is a birth defect with an approximate incidence of 1/5,000 live births, and up to one-third of HSCR patients develop Hirschsprung-associated enterocolitis (HAEC), the leading cause of HSCR-related death. Very little is known about the pathogenesis, prevention, and early diagnosis of HAEC. Here, we used a prospective study to investigate the enteric microbiome composition at the time of surgery as a predictor for developing postoperative HAEC. We identified a microbiome signature containing 21 operational taxonomic units (OTUs) that can potentially predict postoperative HAEC with ~85% accuracy. Furthermore, we identified exclusive breastfeeding as a novel protective factor for total HAEC (i.e., preoperative and postoperative HAEC combined). In addition, we discovered that breastfeeding was associated with a lowered risk for HAEC potentially mediated by modulating the gut microbiome composition characterized by a lower abundance of Gram-negative bacteria and lower LPS concentrations. In conclusion, modulating the gut microbiome by encouraging breastfeeding might prevent HAEC progression in HSCR patients.


Assuntos
Bactérias/crescimento & desenvolvimento , Enterocolite/etiologia , Microbioma Gastrointestinal , Doença de Hirschsprung/cirurgia , Mucosa Intestinal/microbiologia , Complicações Pós-Operatórias , Bactérias/classificação , Aleitamento Materno , Estudos de Casos e Controles , Colo/microbiologia , Feminino , Doença de Hirschsprung/complicações , Humanos , Lactente , Lipopolissacarídeos/metabolismo , Masculino , Estudos Prospectivos
11.
Life Sci ; 236: 116918, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610208

RESUMO

Long noncoding RNAs (lncRNAs) are characterized as a group of endogenous RNAs that are more than 200 nucleotides in length and have no protein-encoding function. More and more evidence indicates that lncRNAs play vital roles in various human diseases, especially in tumorigenesis. Focally amplified lncRNA on chromosome 1 (FAL1), a novel lncRNA with enhancer-like activity, has been identified as an oncogene in multiple cancers and high expression level of FAL1 is usually associated with poor prognosis. Dysregulation of FAL1 has been shown to promote the proliferation and metastasis of cancer cells. In the present review, we summarized and illustrated the functions and underlying molecular mechanisms of FAL1 in the occurrence and development of different cancers and other diseases. FAL1 has the potential to appear as a feasible diagnostic and prognostic tool and new therapeutic target for cancer patients though further investigation is needed so as to accelerate clinical application.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia , RNA Longo não Codificante/genética , Humanos , Transdução de Sinais
12.
J Pediatr Surg ; 54(10): 2032-2037, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30814036

RESUMO

BACKGROUND: We previously studied the metabolomics, transcriptomics and proteomics of intestinal tissue of Hirschsprung disease (HSCR) patients; the results suggested that the expression of prostaglandin E2(PGE2), prostaglandin E receptor 2(PTGER2) and microsomal prostaglandin E synthase-1 (mPGES-1) notably increased in HSCR colon tissues. We already verified the differential expression of PGE2/EP2 in HSCR patients; therefore we investigate how mPGES-1 derived PGE2 affects the migration and the potential mechanism in cells, revealing the role of mPGES-1 derived PGE2 in the pathogenesis of Hirschsprung disease. METHODS: SH-SY5Y and SK-N-BE2 cell lines were obtained from American Type Culture Collection (ATCC, USA). Prostaglandin E2 and its synthetase inhibitors were purchased from Med Chem Express (MCE, USA). Migration assays were performed with transwell and scratch assays. Cell proliferation was confirmed by CCK8 method. Flow cytometer was used to detect the cell cycle and cell apoptosis. The expressions of mRNA and protein of EP2, ARP2/3 were determined by qRT-PCR and western blot respectively. Immunofluorescence and confocal laser scanning microscopy were used to observe the morphology and function of cytoskeleton. RESULTS: MPGES-1 derived PGE2 decreased the relative expression of EP2 and ARP2/3 and caused damage to cytoskeleton. As to cell functions, PGE2 inhibited cell migration while having no effects on the proliferation, cell cycle and apoptosis. By adding mPGES-1 inhibitor MK886 the abnormal expression and damaged cell function were reversed. CONCLUSIONS: MPGES-1 derived PGE2 inhibits the cell migration by regulating ARP2/3 complex via prostaglandin E2 receptor. Potential mechanisms are the damage of cytoskeleton and related proteins leading to failure of cell polarize and migration. Here we thoroughly inquire the role mPGES-1 derived PGE2 plays in cell migration which might provide a new thinking in the investigation interrelated to the pathogenesis of HSCR.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Dinoprostona/metabolismo , Doença de Hirschsprung , Prostaglandina-E Sintases/metabolismo , Linhagem Celular Tumoral , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/fisiopatologia , Humanos
13.
Cell Prolif ; 51(5): e12489, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30062828

RESUMO

OBJECTIVES: Emerged evidence demonstrates that long non-coding RNAs (lncRNAs) may play quintessential regulatory roles in the cellular processes, tumourigenesis and the development of disease. Though focally amplified lncRNA on chromosome 1 (FAL1) has been identified to have crucial functions in many diseases, its biological mechanism in the development of Hirschsprung's disease (HSCR) still remains unknown. MATERIALS AND METHODS: The expression levels of FAL1 in HSCR aganglionic tissues and matched normal specimens were detected by quantitative real-time PCR (qRT-PCR). Cell proliferation and migration were detected by Cell Counting Kit-8 (CCK-8) assay, Ethynyl-deoxyuridine (EdU) assay and transwell assay relatively. Cell cycle and apoptosis were assessed using flow cytometer analysis. Moreover, the novel targets of FAL1 were confirmed with the help of bioinformatics analysis and dual-luciferase reporter assay. Western blot assay as well as RNA immunoprecipitation (RIP) assay was conducted to investigate the potential mechanism. RESULTS: FAL1 expression was markedly down-regulated in HSCR aganglionic tissues and decreased FAL1 expression was associated with the diagnosis of HSCR. Cell functional analyses indicated that FAL1 overexpressing notably promoted cell proliferation and migration, while down-regulation of FAL1 suppressed cell proliferation and migration. Additionally, Flow cytometry assay demonstrated that knockdown of FAL1 induced markedly cell cycle stalled in the G0/G1 phase. Furthermore, FAL1 could positively regulate AKT1 expression by competitively binding to miR-637. CONCLUSIONS: These results illuminated that FAL1 may work as a ceRNA to modulate AKT1 expression via competitively binding to miR-637 in HSCR, suggesting that it may be clinically valuable as a biomarker of HSCR.


Assuntos
Regulação para Baixo/genética , Doença de Hirschsprung/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional/métodos , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Regulação para Cima/genética
14.
Cell Cycle ; 17(9): 1092-1101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29895226

RESUMO

Circular RNAs (circRNAs) are a novel class of noncoding RNAs (ncRNAs), which have been shown to participate in intracellular RNA regulatory networks and play vital roles in many pathological processes. Recently, circular RNA_PRKCI (circ-PRKCI) has been reported to regulate cell proliferation, migration and invasion in several human cancers. Hirschsprung disease (HSCR) is a well-known congenital gut motility disorder which roots in the aberrance of cranial-caudal neural crest cell migration. In this study, we investigated whether circ-PRKCI may affect cell migration and proliferation in HSCR. Quantitative reverse transcription PCR (qRT-PCR) was performed to detect the expression of circ-PRKCI in 48 HSCR aganglionic tissues and 48 normal bowel tissues. Luciferase reporter assay and RNA immunoprecipitation (RIP) assay verified the direct interaction between miR-1324 and PLCB1 or circ-PRKCI. Cell counting Kit-8 (CCK-8) and Ethynyldeoxyuridine (EdU) assays were employed to appraise the effects of miR-1324 or circ-PRKCI on cell proliferative potential, while transwell was performed to detect the migration in vitro. We found that circ-PRKCI was significantly down-regulated in HSCR aganglionic tissues. Morever, knockdown of circ-PRKCI suppressed cell proliferation and migration in vitro. Mechanistically, we confirmed that circ-PRKCI functioned as a molecular sponge for miR-1324 to upregulate the expression of PLCB1. In conclusion, our present study revealed the important role of circ-PRKCI-miR-1324-PLCB1 regulatory network in HSCR, providing a novel insight for the pathogenesis of HSCR.


Assuntos
Movimento Celular , Proliferação de Células , Doença de Hirschsprung/patologia , Isoenzimas/metabolismo , MicroRNAs/metabolismo , Fosfolipase C beta/metabolismo , Proteína Quinase C/metabolismo , RNA Circular/metabolismo , Sítios de Ligação , Regulação para Baixo , Feminino , Inativação Gênica , Células HEK293 , Humanos , Lactente , Isoenzimas/genética , Masculino , Proteína Quinase C/genética , Curva ROC , Elementos de Resposta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA