Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 31(7): 60, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32642974

RESUMO

Recently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time. Nanoporous anodic alumina has often been used for mammalian cell culture, biofunctionalization, drug delivery, and biosensing by coating its surface with biocompatible materials. Despite its wide application in tissue engineering, thorough in vivo and in vitro studies of AAO are still required to enhance its biocompatibility and thereby pave the way for its application in tissue replacements. Recognizing this gap, this review article aims to highlight the biomedical potentials of AAO for applications in tissue replacements along with the mechanism of porous structure formation and pore characteristics in terms of fabrication parameters.


Assuntos
Óxido de Alumínio/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Engenharia Tecidual , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Eletrodos , Humanos , Teste de Materiais/métodos , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
2.
Adv Healthc Mater ; 11(7): e2102123, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34967148

RESUMO

Interconnected pathways in 3D bioartificial organs are essential to retaining cell activity in thick functional 3D tissues. 3D bioprinting methods have been widely explored in biofabrication of functionally patterned tissues; however, these methods are costly and confined to thin tissue layers due to poor control of low-viscosity bioinks. Here, cell-laden hydrogels that could be precisely patterned via water-soluble gelatin templates are constructed by economical extrusion 3D printed plastic templates. Tortuous co-continuous plastic networks, designed based on triply periodic minimal surfaces (TPMS), serve as a sacrificial pattern to shape the secondary sacrificial gelatin templates. These templates are eventually used to form cell-encapsulated gelatin methacryloyl (GelMA) hydrogel scaffolds patterned with the complex interconnected pathways. The proposed fabrication process is compatible with photo-crosslinkable hydrogels wherein prepolymer casting enables incorporation of high cell populations with high viability. The cell-laden hydrogel constructs are characterized by robust mechanical behavior. In vivo studies demonstrate a superior cell ingrowth into the highly permeable constructs compared to the bulk hydrogels. Perfusable complex interconnected networks within cell-encapsulated hydrogels may assist in engineering thick and functional tissue constructs through the permeable internal channels for efficient cellular activities in vivo.


Assuntos
Bioimpressão , Gelatina , Bioimpressão/métodos , Hidrogéis , Metacrilatos , Plásticos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
3.
Bioact Mater ; 15: 214-249, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386359

RESUMO

Metal additive manufacturing (AM) has led to an evolution in the design and fabrication of hard tissue substitutes, enabling personalized implants to address each patient's specific needs. In addition, internal pore architectures integrated within additively manufactured scaffolds, have provided an opportunity to further develop and engineer functional implants for better tissue integration, and long-term durability. In this review, the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted. After introducing metal AM processes, biocompatible metals adapted for integration with AM machines are presented. Then, we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including, topology optimization techniques, as well as unit cell patterns based on lattice networks, and triply periodic minimal surface. Here, the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed. Subsequently, the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters. We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation. Finally, we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.

4.
ACS Biomater Sci Eng ; 5(3): 1228-1237, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405642

RESUMO

The natural local porosity variation in the native tissue can be replicated by graded porosity scaffolds. Scaffolds with radial porosity distribution can be a solution to improve both mechanical and biological functions of the biomimetic scaffolds. In the present study, fluid permeability as a quantitative indicator of biological performance is studied numerically and experimentally for different pore shapes and porosity distribution patterns in the scaffolds designed on the basis of triply periodic minimal surfaces (TPMSs). Among the uniform porosity scaffolds, those designed on the basis of P* (P surface) and Y** (G surface) showed the highest permeability. In the radially graded porosity scaffolds with linear porosity distribution, permeability was found to be about twice more sensitive to the peripheral porosity than the porosity at the center. The results suggest that the permeability-gradient parameter relationships can follow different trends depending on the pore shape as opposed to the conventional uniform porosity scaffolds. This implies the need for the design maps that were developed to choose appropriate scaffold pore design parameters. Finally, experimental permeability measurement was performed via a constant head permeability test, and the effect of test parameters (i.e., fluid height) was discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA